1
|
Chen Y, Guo J, Alamri AS, Alhomrani M, Huang Z, Zhang W. Recent research progress on locust bean gum (LBG)-based composite films for food packaging. Carbohydr Polym 2025; 348:122815. [PMID: 39562090 DOI: 10.1016/j.carbpol.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
In recent years, there has been an increasing demand for biodegradable/edible biopolymer food packaging films to mitigate the environmental damage caused by petroleum-based plastic food packaging. In this context, locust bean gum (LBG) or carob gum is a galactomannan extracted from the endosperm of carob (Ceratonia siliqua) seeds. Due to its excellent film-forming properties, LBG has been widely used in the development of biodegradable food packaging films. In addition, due to the rich hydroxyl groups in LBG, it can produce synergistic gelation with many biopolymers to form blended films, and LBG has also been used in combination with many additives to form composite films with excellent antibacterial, antioxidant, and barrier properties, including various nanoparticles and plant extracts. Functional composite films based on LBG can effectively extend the shelf life and monitor the freshness of fruits, meats, and other processed foods. Therefore, in this work, we briefly introduce the chemical properties and application progress of LBG, focusing on the performance of various composite LBG food packaging films. Finally, the practical applications of LBG-based composite films and edible coatings in food preservation are summarized.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Liu ZW, Wang XL, Xian HJ, Zhong JH, Ye XG, Yang YX, Hu Y, Chen Y, Li DM, Huang C. Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite. Int J Biol Macromol 2024; 279:134991. [PMID: 39197602 DOI: 10.1016/j.ijbiomac.2024.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In this study, bacterial cellulose (BC) and BC/locust bean gum (LBG) composite produced from banana hydrolysate were both used as the adsorbent for various organic dyes adsorption especially for malachite green (MG) adsorption for the first time. The BC/LBG(2%) composite exhibited significantly enhanced swelling rate and textural characteristics while maintained the basic structure of BC as depicted by XRD, FT-IR, and NMR, providing a foundation for its application as an excellent adsorbent. The composite exhibited a high adsorption rate and adsorption capacity for MG (exceeding 95 % and 2000 mg/g), and had a good selectivity for MG adsorption in the solution containing crystal violet (CV), rhodamine B (RB), and methyl orange (MO). The MG adsorption process conformed to multiple models including Langmuir and pseudo-first-order models. And the adsorption mechanism mainly comprised chemical adsorption (hydrogen bonding and electrostatic interactions) and physical adsorption. The reusability of BC/LBG(2%) composite was attractive for industrial application that the MG adsorption rate reduced merely a little (still higher than 88 %) after the 5th regeneration process. Overall, considering its adsorption capacity, selectivity, and reusability, BC/LBG(2%) composite prepared by in-situ fermentation with LBG addition was a competent adsorbent for MG adsorption and MG containing wastewater treatment.
Collapse
Affiliation(s)
- Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Hui-Jun Xian
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jun-Hang Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong-Xia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
3
|
Sana SS, Raorane CJ, Venkatesan R, Roy S, Swain SK, Kim SC, Al-Tabakha M, Bhandare RR, Raj V, Lee S. State-of-the-art progress on locust bean gum polysaccharide for sustainable food packaging and drug delivery applications: A review with prospectives. Int J Biol Macromol 2024; 275:133619. [PMID: 38964694 DOI: 10.1016/j.ijbiomac.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Locust bean gum (LBG), a polysaccharide-based natural polymer, is being widely researched as an appropriate additive for various products, including food, gluten-free formulations, medicines, paper, textiles, oil well drilling, cosmetics, and medical uses. Drug delivery vehicles, packaging, batteries, and catalytic supports are all popular applications for biopolymer-based materials. This review discusses sustainable food packaging and drug delivery applications for LBG. Given the benefits of LBG polysaccharide as a source of dietary fiber, it is also being investigated as a potential treatment for many health disorders, including colorectal cancer, diabetes, and gastrointestinal difficulties. The flexibility of LBG polysaccharide allows it to form hydrogen bonds with water molecules, a crucial characteristic of biomaterials, and the film-forming properties of LBG are critical for food packaging applications. The extraction process of LBG plays an important role in properties such as viscosity and gel-forming properties. Moreover, there are multiple factors such as temperature, pressure, pH, etc. The LBG-based functional composite film is effective in improving the shelf life as well as monitoring the freshness of fruits, meat and other processed food. The LBG-based hydrogel is excellent carrier of drugs and can be used for slow and sustainable release of active components present in drugs. Thus, the primary goal of this review was to conduct a comprehensive evaluation of the literature with a focus on the composition, properties, processing, food packaging, and medicine delivery applications of LBG polysaccharides. Thus, we investigated the chemical composition, extraction, and characteristics of LBG polysaccharides that underlie their applications in the food packaging and medicine delivery fields.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | | | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Orissa, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Moawia Al-Tabakha
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chi W, Li T, Wei N, Pan Z, Wang L. Incorporation of Bayberry Tannin into a Locust Bean Gum/Carboxycellulose Nanocrystals/ZnO Coating: Properties and Its Application in Banana Preservation. Polymers (Basel) 2023; 15:3364. [PMID: 37631423 PMCID: PMC10458572 DOI: 10.3390/polym15163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The application of polysaccharide-based coatings to prolong the shelf-life of fruits has attracted increasing attention. This study aims to develop a fruit coating comprising locust bean gum/carboxycellulose nanocrystals/ZnO (LCZ) blended with bayberry tannins (BT). The results revealed a significant increase from 4.89% and 11.04% to 29.92% and 45.01% in the free radical scavenging rates of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-di-[3-ethylbenzthiazthiazoline sulfonate] with the percentage of BT increasing from 0% to 5%, respectively. At a 5% of BT, the antibacterial activity against both E.coli and S. aureus exceeded 90% while simultaneously achieving excellent UV shielding (transmittance of 380-200 nm ≤ 0.19%). After 3 days of storage, uncoated bananas showed signs of browning, and their titratable acid and vitamin C (Vc) contents decreased from 0.57% to 0.30% and from 7.37 mg/100 g to 4.77 mg/100 g, respectively. However, bananas coated with LCZ containing 3% BT not only exhibited a better appearance, but also possessed higher titratable acid (0.44%) and Vc content (5.31 mg/100 g). This study provides a sustainable and multifunctional coating for fruit preservation.
Collapse
Affiliation(s)
| | | | | | | | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
5
|
Jurić S, Bureš MS, Vlahoviček-Kahlina K, Stracenski KS, Fruk G, Jalšenjak N, Bandić LM. Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chem X 2023; 17:100575. [PMID: 36845493 PMCID: PMC9945628 DOI: 10.1016/j.fochx.2023.100575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The layer-by-layer application of biopolymeric coatings to mandarin fruits as a postharvest treatment to improve fruit coating efficacy has been reported. A single 1 % (w/v) chitosan application was evaluated, and polyelectrolyte complexes such as 1.5 % (w/v) alginate/chitosan, 1 % (w/v) hydroxypropyl methylcellulose/chitosan, and 0.2 % (w/v) locust bean gum/chitosan were applied to mandarin fruits. The quality of coated mandarin fruits was observed at temperatures: 20 ± 2 °C (up to 10 days) and 5 °C (up to 28 days). Changes in the fruit metabolism were observed by evaluating bioactive compounds (polyphenolic compounds and flavonoids), antioxidant activity, and organic acids during the preservation of mandarin fruits. All of the tested combinations of layer-by-layer coatings significantly impacted the quality of mandarin fruits throughout storage, both at room temperature and cold storage, respectively. The overall best performance was observed for a layer-by-layer hydroxypropyl methylcellulose/chitosan coating in terms of visual aspects, bioactive compounds, antioxidant activity, and organic acids content.
Collapse
Key Words
- ABTS, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
- AC, alginate/chitosan-coated mandarins
- ANOVA, analysis of variance
- Bioactive compounds
- C, chitosan single-coated mandarins
- CIE, International Commission on Illumination
- CS, Cold storage
- Chitosan
- Ctrl, control
- DAD, diode-array detector
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- Edible coatings
- GC, locust bean gum/chitosan-coated mandarins
- HC, hydroxypropyl methylcellulose/chitosan-coated mandarins
- HPLC, high-performance liquid chromatography
- KMO, Kaiser-Meyer-Olkin measure of sampling adequacy
- LbL, Layer-by-Layer
- Mandarin fruit
- Organic acids
- PCA, Principal component analysis
- Polyelectrolyte complex
- RT, Room temperature
- TA, Titratable acidity
- TF, Total flavonoids
- TPC, Total polyphenolic content
- TSS, Total soluble solids
Collapse
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Marija Sigurnjak Bureš
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Kristina Vlahoviček-Kahlina
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Katarina Sopko Stracenski
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Goran Fruk
- Department of Pomology, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Nenad Jalšenjak
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Luna Maslov Bandić
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Egg-yolk-derived carbon dots@albumin bio-nanocomposite as multifunctional coating and its application in quality maintenance of fresh litchi fruit during storage. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Rong L, Zhang T, Ma Y, Wang T, Liu Y, Wu Z. An intelligent label using sodium carboxymethyl cellulose and carrageenan for monitoring the freshness of fresh-cut papaya. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li T, Chi W, Ning Y, Xu S, Wang L. Locust bean gum/carboxycellulose nanocrystal coating incorporating ZnO clusters built by the accretion of micro spindles or sheets for strawberries preservation. Int J Biol Macromol 2023; 226:267-278. [PMID: 36495996 DOI: 10.1016/j.ijbiomac.2022.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Two shapes of ZnO clusters constructed by the growth of spindle-like (I-ZnO) and sheet-like (II-ZnO) microparticles added to Locust bean gum/carboxycellulose nanocrystal (LBG/C-CNC) coating for improving properties as the enhancers and antibacterial agents. Subsequently, active LBG/C-CNC/ZnO (LCZ) coatings were evaluated to combat the fruits rot triggered by microorganisms aiming to extend their shelf life. The results showed that II-ZnO clusters with flower-shape enhanced the properties more obviously due to more interaction sites. The oxygen and water vapor permeability of the coating containing 5 % II-ZnO (LCZII-5) decreased from 2.00 and 5.98 × 10-11 to 0.6 cm3 mm m-2 day-1 atm-1 and 1.85 × 10-11 g m-1 s-1 Pa-1, respectively. And the antibacterial rate against E. coli and S. aureus could reach more than 75 %. Meanwhile, the tensile strength (TS) increased by 50.95 %. The inhibition rates on strawberries of weight and Vc loss by LCZII-5 coating were 30.64 % and 53.59 %, respectively. More importantly, the coatings could be easily washed off with water in spite of tightly being connected with the surface of the strawberries. As was expected, this study provides a feasible method for preparing novel fruit coatings with an effective preservation.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Shiyu Xu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
9
|
Siddiqui SA, Zannou O, Bahmid NA, Fidan H, Alamou AF, Nagdalian АА, Hassoun A, Fernando I, Ibrahim SA, Arsyad M. Consumer behavior towards nanopackaging - A new trend in the food industry. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Wu Y, Wu W, Farag MA, Shao P. Functionalized cellulose nanocrystal embedded into citrus pectin coating improves its barrier, antioxidant properties and potential application in food. Food Chem 2022; 401:134079. [PMID: 36115226 DOI: 10.1016/j.foodchem.2022.134079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 02/01/2023]
Abstract
Due to the hydrophilic of the pectin material, the coating has poor barrier properties and a negative preservation effect on fresh fruits. In this study, citrus pectin coating with improved barrier and antioxidant properties was prepared by embedding with functional cellulose nanocrystals (CNC). It was assessed that cellulose nanocrystals grafted with p-coumaric acid (CNC-P) were uniformly dispersed in the pectin matrix to improve coating barrier properties. The addition of 8 % CNC-P to the pectin coating led to a decrease in water vapor and oxygen permeability from the coating by 12.6 % and 22.3 %, respectively. Additionally, the grafted p-coumaric acid (PA) introduced antioxidant properties to the cellulose nanocrystals. The fresh-cut fruits preservation assay showed that the coating containing CNC-P exerted a stronger inhibition effect of the browning process within 8 h than other coatings. This study suggests that pectin coating embedded with CNC-P has the potential to be used in food packaging.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China.
| |
Collapse
|
11
|
Liu Q, Li Y, Xing S, Wang L, Yang X, Hao F, Liu M. Genipin-crosslinked amphiphilic chitosan films for the preservation of strawberry. Int J Biol Macromol 2022; 213:804-813. [PMID: 35691425 DOI: 10.1016/j.ijbiomac.2022.06.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
As a material for films used to keep fruits fresh, chitosan has attracted extensive interest because of its advantages of degradability, environmental friendliness, and biocompatibility. In this study, two amphiphilic chitosan derivative films were prepared by crosslinking N-2-hydroxypropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxypropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC)) with genipin, an excellent natural cross-linking agent. The microstructures, mechanical properties, water vapor permeability, swelling ratios, light transmittance, wettability, thermal stability, antibacterial properties, and biocompatibility of the crosslinked films were characterized. The results showed that the crosslinked films had compact structures, low moisture permeability, strong water resistance, strong ultraviolet resistance, unaffected visible light transmittance, and good hydrophilicity. Compared with the uncrosslinked films, the tensile strength of the genipin-crosslinked ones was increased by 328.33 % (HBCC) and 397.83 % (H2ECC). More importantly, the crosslinked films had strong antibacterial activity against Staphylococcus aureus and Escherichia coli and were non-toxic to endothelial cells. The crosslinked films could effectively prolong the preservation time of strawberries, inhibit the decay of strawberries, and inhibit the reduction of vitamin C in strawberries. In conclusion, genipin-crosslinked HBCC and H2ECC films are potential fruit preservation materials.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shu Xing
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ling Wang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fei Hao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
12
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
13
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|