1
|
Gray K, Edwards H, Doan AG, Huso W, Lee J, Pan W, Bolima N, Gautam I, Wang T, Srivastava R, Zupan M, Marten MR, Harris S. The impact of fungal developmental structures on mechanical properties of mycelial materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.644731. [PMID: 40236148 PMCID: PMC11996468 DOI: 10.1101/2025.04.01.644731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
This study explores how suppressing asexual development in Aspergillus nidulans enhances the mechanical properties of mycelial materials. Using four aconidial mutants ( Δ brlA , Δ flbA , Δ fluG , and fadA G42R ) that lack asexual development and a control strain (A28) that undergoes typical asexual development, we found that the absence of asexual development significantly improves mechanical strength. All mutants exhibited higher ultimate tensile strength (UTS) than the control, with Δ fluG and Δ brlA (fluffy nonsporulating, FNS phenotype) showing the highest UTS. Additionally, fadA G42R and Δ flbA (fluffy autolytic dominant, FAD phenotype) demonstrated significantly higher strain at failure (SF), linked to increased autolysis and lower dry cell mass compared to the control and FNS mutants. Solid-state NMR analysis revealed that autolysis in FAD mutants disrupts galactofuranose-related metabolic processes, altering cell wall composition and contributing to higher elasticity. These findings suggest that suppressing asexual development enhances mycelial material strength, while autolysis mechanisms influence elasticity. This research highlights the potential for genetic manipulation in fungi to engineer advanced mycelial-based materials with tailored mechanical properties.
Collapse
|
2
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
3
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Glazenburg MM, Laan L. Complexity and self-organization in the evolution of cell polarization. J Cell Sci 2023; 136:jcs259639. [PMID: 36691920 DOI: 10.1242/jcs.259639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cellular life exhibits order and complexity, which typically increase over the course of evolution. Cell polarization is a well-studied example of an ordering process that breaks the internal symmetry of a cell by establishing a preferential axis. Like many cellular processes, polarization is driven by self-organization, meaning that the macroscopic pattern emerges as a consequence of microscopic molecular interactions at the biophysical level. However, the role of self-organization in the evolution of complex protein networks remains obscure. In this Review, we provide an overview of the evolution of polarization as a self-organizing process, focusing on the model species Saccharomyces cerevisiae and its fungal relatives. Moreover, we use this model system to discuss how self-organization might relate to evolutionary change, offering a shift in perspective on evolution at the microscopic scale.
Collapse
Affiliation(s)
- Marieke M Glazenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Meng Y, Zeng F, Hu J, Li P, Xiao S, Zhou L, Gong J, Liu Y, Hao Z, Cao Z, Dong J. Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. MOLECULAR PLANT PATHOLOGY 2022; 23:32-44. [PMID: 34628700 PMCID: PMC8659557 DOI: 10.1111/mpp.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The fungal pathogen Setosphaeria turcica causes leaf blight on maize, which leads to considerable crop losses. However, how S. turcica establishes sustained systemic infection is largely unknown. Here, we report several novel factors contributing to S. turcica pathogenicity, identified using a genomic and transcriptional screen at different stages of S. turcica appressorium development. We identified two cytoskeleton regulators, SLM1 and SLM2, that are crucial for hypha and appressorium development. The SLM1 and SLM2 transcripts accumulated during germling stage but their levels were notably reduced at the appressorium stage. Deletion of SLM2 dramatically affected cell morphology, penetration ability, and pathogenicity. We also identified three different types of S. turcica glycosyl hydrolases that are critical for plant cell wall degradation. Their transcripts accumulated during the appressorium infection stage induced by cellophane and maize leaf. Most importantly, we characterized a novel and specific S. turcica effector, appressorium-coupled effector 1 (StACE1), whose expression is coupled to appressorium formation in S. turcica. This protein is required for maize infection and induces cell death on expression in Nicotiana benthamiana. These observations suggest that the phytopathogen S. turcica is primed in advance with multiple strategies for maize infection, which are coupled to appressorium formation at the early infection stages.
Collapse
Affiliation(s)
- Yanan Meng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jingjing Hu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Shenglin Xiao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Lihong Zhou
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jiangang Gong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
6
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Laundon D, Chrismas N, Wheeler G, Cunliffe M. Chytrid rhizoid morphogenesis resembles hyphal development in multicellular fungi and is adaptive to resource availability. Proc Biol Sci 2020; 287:20200433. [PMID: 32517626 PMCID: PMC7341943 DOI: 10.1098/rspb.2020.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the ecological prominence of fungi is their distinctive cell biology, our understanding of which has been principally based on dikaryan hyphal and yeast forms. The early-diverging Chytridiomycota (chytrids) are ecologically important and a significant component of fungal diversity, yet their cell biology remains poorly understood. Unlike dikaryan hyphae, chytrids typically attach to substrates and feed osmotrophically via anucleate rhizoids. The evolution of fungal hyphae appears to have occurred from rhizoid-bearing lineages and it has been hypothesized that a rhizoid-like structure was the precursor to multicellular hyphae. Here, we show in a unicellular chytrid, Rhizoclosmatium globosum, that rhizoid development exhibits striking similarities with dikaryan hyphae and is adaptive to resource availability. Rhizoid morphogenesis exhibits analogous patterns to hyphal growth and is controlled by β-glucan-dependent cell wall synthesis and actin polymerization. Chytrid rhizoids growing from individual cells also demonstrate adaptive morphological plasticity in response to resource availability, developing a searching phenotype when carbon starved and spatial differentiation when interacting with particulate organic matter. We demonstrate that the adaptive cell biology and associated developmental plasticity considered characteristic of hyphal fungi are shared more widely across the Kingdom Fungi and therefore could be conserved from their most recent common ancestor.
Collapse
Affiliation(s)
- Davis Laundon
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
8
|
Ivarsson M, Drake H, Bengtson S, Rasmussen B. A Cryptic Alternative for the Evolution of Hyphae. Bioessays 2020; 42:e1900183. [DOI: 10.1002/bies.201900183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Ivarsson
- Department of BiologyUniversity of Southern Denmark Campusvej 55 Odense M DK 5230 Denmark
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Henrik Drake
- Department of Biology and Environmental ScienceLinnaeus University Kalmar 391 82 Sweden
| | - Stefan Bengtson
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Birger Rasmussen
- School of Earth SciencesThe University of Western Australia Nedlands WA 6009 Australia
| |
Collapse
|
9
|
Abstract
Filamentous fungi grow by adding cell wall and membrane exclusively at the apex of tubular structures called hyphae. Growth was previously believed to occur only through exocytosis at the Spitzenkörper, an organised body of secretory macro- and microvesicles found only in growing hyphae. More recent work has indicated that an area deemed the sub-apical collar is enriched for endocytosis and is also required for hyphal growth. It is now generally believed that polarity of filamentous fungi is achieved through the balancing of the processes of endocytosis and exocytosis at these two areas. This review is an update on the current progress and understanding surrounding the occurrence of endocytosis and its spatial regulation as they pertain to growth and pathogenicity in filamentous fungi.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Son YE, Cho HJ, Lee MK, Park HS. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species. PLoS One 2020; 15:e0228643. [PMID: 32017793 PMCID: PMC6999877 DOI: 10.1371/journal.pone.0228643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi reproduce asexually or sexually, and the processes of asexual and sexual development are tightly regulated by a variety of transcription factors. In this study, we characterized a Zn2Cys6 transcription factor in two Aspergillus species, A. nidulans (AN5859) and A. flavus (AFLA_046870). AN5859 encodes a Zn2Cys6 transcription factor, called ZcfA. In A. nidulans, ΔzcfA mutants exhibit decreased fungal growth, a reduction in cleistothecia production, and increased asexual reproduction. Overexpression of zcfA results in increased conidial production, suggesting that ZcfA is required for proper asexual and sexual development in A. nidulans. In conidia, deletion of zcfA causes decreased trehalose levels and decreased spore viability but increased thermal sensitivity. In A. flavus, the deletion of the zcfA homolog AFLA_046870 causes increased conidial production but decreased sclerotia production; these effects are similar to those of zcfA deletion in A. nidulans development. Overall, these results demonstrate that ZcfA is essential for maintaining a balance between asexual and sexual development and that some roles of ZcfA are conserved in Aspergillus spp.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun 2019; 10:4080. [PMID: 31501435 PMCID: PMC6733946 DOI: 10.1038/s41467-019-12085-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023] Open
Abstract
Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions.
Collapse
|
12
|
The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol 2019; 57:893-899. [DOI: 10.1007/s12275-019-9214-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
|
13
|
Jia Q, Chen X, Köllner TG, Rinkel J, Fu J, Labbé J, Xiong W, Dickschat JS, Gershenzon J, Chen F. Terpene Synthase Genes Originated from Bacteria through Horizontal Gene Transfer Contribute to Terpenoid Diversity in Fungi. Sci Rep 2019; 9:9223. [PMID: 31239482 PMCID: PMC6592883 DOI: 10.1038/s41598-019-45532-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi. However, it remains unclear whether HGT has played a role in creating the enormous chemical diversity of fungal terpenoids. Here we report that fungi have acquired terpene synthase genes (TPSs), which encode pivotal enzymes for terpenoid biosynthesis, from bacteria through HGT. Phylogenetic analysis placed the majority of fungal and bacterial TPS genes from diverse taxa into two clades, indicating ancient divergence. Nested in the bacterial TPS clade is a number of fungal TPS genes that are inferred as the outcome of HGT. These include a monophyletic clade of nine fungal TPS genes, designated as BTPSL for bacterial TPS-like genes, from eight species of related entomopathogenic fungi, including seven TPSs from six species in the genus Metarhizium. In vitro enzyme assays demonstrate that all seven BTPSL genes from the genus Metarhizium encode active enzymes with sesquiterpene synthase activities of two general product profiles. By analyzing the catalytic activity of two resurrected ancestral BTPSLs and one closely related bacterial TPS, the trajectory of functional evolution of BTPSLs after HGT from bacteria to fungi and functional divergence within Metarhizium could be traced. Using M. brunneum as a model species, both BTPSLs and typical fungal TPSs were demonstrated to be involved in the in vivo production of terpenoids, illustrating the general importance of HGT of TPS genes from bacteria as a mechanism contributing to terpenoid diversity in fungi.
Collapse
Affiliation(s)
- Qidong Jia
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA. .,Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jessy Labbé
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wangdan Xiong
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA. .,Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Ramírez-Del Villar A, Roberson RW, Callejas-Negrete OA, Mouriño-Pérez RR. The actin motor MYO-5 effect in the intracellular organization of Neurospora crassa. Fungal Genet Biol 2019; 125:13-27. [PMID: 30615944 DOI: 10.1016/j.fgb.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023]
Abstract
In filamentous fungi, polarized growth is the result of vesicle secretion at the hyphal apex. Motor proteins mediate vesicle transport to target destinations on the plasma membrane via actin and microtubule cytoskeletons. Myosins are motor proteins associated with actin filaments. Specifically, class V myosins are responsible for cargo transport in eukaryotes. We studied the dynamics and localization of myosin V in wild type hyphae of Neurospora crassa and in hyphae that lacked MYO-5. In wild type hyphae, MYO-5-GFP was localized concentrated in the hyphal apex and colocalized with Spitzenkörper. Photobleaching studies showed that MYO-5-GFP was transported to the apex from subapical hyphal regions. The deletion of the class V myosin resulted in a reduced rate of hyphal growth, apical hyperbranching, and intermittent loss of hyphal polarity. MYO-5 did not participate in breaking the symmetrical growth during germination but contributed in the apical organization upon establishment of polarized growth. In the Δmyo-5 mutant, actin was organized into thick cables in the apical and subapical hyphal regions, and the number of endocytic patches was reduced. The microvesicles-chitosomes observed with CHS-1-GFP were distributed as a cloud occupying the apical dome and not in the Spitzenkörper as the WT strain. The mitochondrial movement was not associated with MYO-5, but tubular vacuole position is MYO-5-dependent. These results suggest that MYO-5 plays a role in maintaining apical organization and the integrity of the Spitzenkörper and is required for normal hyphal growth, polarity, septation, conidiation, and proper conidial germination.
Collapse
Affiliation(s)
- Arianne Ramírez-Del Villar
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Olga A Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico.
| |
Collapse
|
15
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
16
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
17
|
Dorighetto Cogo AJ, Dutra Ferreira KDR, Okorokov LA, Ramos AC, Façanha AR, Okorokova-Façanha AL. Spermine modulates fungal morphogenesis and activates plasma membrane H +-ATPase during yeast to hyphae transition. Biol Open 2018; 7:bio.029660. [PMID: 29361612 PMCID: PMC5861359 DOI: 10.1242/bio.029660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA) induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants. Summary: This study presents a new mechanistic model for the integrative role of the polyamine spermine and hormone auxin in the signaling of yeast-to-hypha transition, filling an important gap in fungal morphogenesis.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil.,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Keilla Dos Reis Dutra Ferreira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Lev A Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Alessandro C Ramos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Arnoldo R Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Anna L Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| |
Collapse
|
18
|
Renshaw H, Vargas-Muñiz JM, Juvvadi PR, Richards AD, Waitt G, Soderblom EJ, Moseley MA, Steinbach WJ. The tail domain of the Aspergillus fumigatus class V myosin MyoE orchestrates septal localization and hyphal growth. J Cell Sci 2018; 131:jcs.205955. [PMID: 29222113 DOI: 10.1242/jcs.205955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.
Collapse
Affiliation(s)
- Hilary Renshaw
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - José M Vargas-Muñiz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Amber D Richards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - William J Steinbach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
19
|
Candida albicans Hyphae: From Growth Initiation to Invasion. J Fungi (Basel) 2018; 4:jof4010010. [PMID: 29371503 PMCID: PMC5872313 DOI: 10.3390/jof4010010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is a commensal resident of the human gastrointestinal and genital tracts. Under conditions such as dysbiosis, host immune perturbances, or the presence of catheters/implanted medical devices, the fungus may cause debilitating mucosal or fatal systemic infections. The ability of C. albicans to grow as long filamentous hyphae is critical for its pathogenic potential as it allows the fungus to invade the underlying substratum. In this brief review, I will outline the current understanding regarding the mechanistic regulation of hyphal growth and invasion in C. albicans.
Collapse
|
20
|
Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0036-2016. [PMID: 28820115 PMCID: PMC11687519 DOI: 10.1128/microbiolspec.funk-0036-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
The fungal lineage is one of the three large eukaryotic lineages that dominate terrestrial ecosystems. They share a common ancestor with animals in the eukaryotic supergroup Opisthokonta and have a deeper common ancestry with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among all living organisms. This article provides an overview of some of the most important fungal traits, how they evolve, and what major genes and gene families contribute to their development. The traits highlighted here represent just a sample of the characteristics that have evolved in fungi, including polarized multicellular growth, fruiting body development, dimorphism, secondary metabolism, wood decay, and mycorrhizae. However, a great number of other important traits also underlie the evolution of the taxonomically and phenotypically hyperdiverse fungal kingdom, which could fill up a volume on its own. After reviewing the evolution of these six well-studied traits in fungi, we discuss how the recurrent evolution of phenotypic similarity, that is, convergent evolution in the broad sense, has shaped their phylogenetic distribution in extant species.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Enikő Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Jason Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
21
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
22
|
Castañeda LE, Barbosa O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 2017; 5:e3098. [PMID: 28382231 PMCID: PMC5376117 DOI: 10.7717/peerj.3098] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
Mediterranean biomes are biodiversity hotspots, and vineyards are important components of the Mediterranean landscape. Over the last few decades, the amount of land occupied by vineyards has augmented rapidly, thereby increasing threats to Mediterranean ecosystems. Land use change and agricultural management have important effects on soil biodiversity, because they change the physical and chemical properties of soil. These changes may also have consequences on wine production considering that soil is a key component of terroir. Here, we describe the taxonomic diversity and metabolic functions of bacterial and fungal communities present in forest and vineyard soils in Chile. To accomplish this goal, we collected soil samples from organic vineyards in central Chile and employed a shotgun metagenomic approach to sequence the microbial DNA. Additionally, we studied the surrounding native forest to obtain a baseline of the soil conditions in the area prior to the establishment of the vineyard. Our metagenomic analyses revealed that both habitats shared most of the soil microbial species. The most abundant genera in the two habitats were the bacteria Candidatus Solibacter and Bradyrhizobium and the fungus Gibberella. Our results suggest that the soil microbial communities are similar in these forests and vineyards. Therefore, we hypothesize that native forests surrounding the vineyards may be acting as a microbial reservoir buffering the effects of the land conversion. Regarding the metabolic diversity, we found that genes pertaining to the metabolism of amino acids, fatty acids, and nucleotides as well as genes involved in secondary metabolism were enriched in forest soils. On the other hand, genes related to miscellaneous functions were more abundant in vineyard soils. These results suggest that the metabolic function of microbes found in these habitats differs, though differences are not related to taxonomy. Finally, we propose that the implementation of environmentally friendly practices by the wine industry may help to maintain the microbial diversity and ecosystem functions associated with natural habitats.
Collapse
Affiliation(s)
- Luis E Castañeda
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile , Valdivia , Chile
| | - Olga Barbosa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ecología y Biodiversidad (IEB-Chile), Santiago, Chile
| |
Collapse
|
23
|
Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016; 57:93-99. [PMID: 27032479 DOI: 10.1016/j.semcdb.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.
Collapse
Affiliation(s)
- José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.
| | - Paola Bardetti
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Antonio de la Torre
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - María Tenorio-Gómez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
24
|
Dee JM, Mollicone M, Longcore JE, Roberson RW, Berbee ML. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 2015; 107:710-28. [PMID: 25911696 DOI: 10.3852/14-275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
The evolution of filamentous hyphae underlies an astounding diversity of fungal form and function. We studied the cellular structure and evolutionary origins of the filamentous form in the Monoblepharidomycetes (Chytridiomycota), an early-diverging fungal lineage that displays an exceptional range of body types, from crescent-shaped single cells to sprawling hyphae. To do so, we combined light and transmission electron microscopic analyses of hyphal cytoplasm with molecular phylogenetic reconstructions. Hyphae of Monoblepharidomycetes lack a complex aggregation of secretory vesicles at the hyphal apex (i.e. Spitzenkörper), have centrosomes as primary microtubule organizing centers and have stacked Golgi cisternae instead of tubular/fenestrated Golgi equivalents. The cytoplasmic distribution of actin in Monoblepharidomycetes is comparable to the arrangement observed previously in other filamentous fungi. To discern the origins of Monoblepharidomycetes hyphae, we inferred a phylogeny of the fungi based on 18S and 28S ribosomal DNA sequence data with maximum likelihood and Bayesian inference methods. We focused sampling on Monoblepharidomycetes to infer intergeneric relationships within the class and determined 78 new sequences. Analyses showed class Monoblepharidomycetes to be monophyletic and nested within Chytridiomycota. Hyphal Monoblepharidomycetes formed a clade sister to the genera without hyphae, Harpochytrium and Oedogoniomyces. A likelihood ancestral state reconstruction indicated that hyphae arose independently within the Monoblepharidomycetes lineage and in at least two other lineages. Cytological differences among monoblepharidalean and other fungal hyphae are consistent with these convergent origins.
Collapse
Affiliation(s)
- Jaclyn M Dee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T-1Z4 Canada
| | - Marilyn Mollicone
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T-1Z4 Canada
| |
Collapse
|
25
|
Abstract
Morphogenesis in fungi is often induced by extracellular factors and executed by fungal genetic factors. Cell surface changes and alterations of the microenvironment often accompany morphogenetic changes in fungi. In this review, we will first discuss the general traits of yeast and hyphal morphotypes and how morphogenesis affects development and adaptation by fungi to their native niches, including host niches. Then we will focus on the molecular machinery responsible for the two most fundamental growth forms, yeast and hyphae. Last, we will describe how fungi incorporate exogenous environmental and host signals together with genetic factors to determine their morphotype and how morphogenesis, in turn, shapes the fungal microenvironment.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - J Andrew Alspaugh
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Steven Harris
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
26
|
Heilig Y, Schmitt K, Seiler S. Phospho-regulation of the Neurospora crassa septation initiation network. PLoS One 2013; 8:e79464. [PMID: 24205386 PMCID: PMC3804505 DOI: 10.1371/journal.pone.0079464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/28/2013] [Indexed: 01/04/2023] Open
Abstract
Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.
Collapse
Affiliation(s)
- Yvonne Heilig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Affiliation(s)
- Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico 22860;
| |
Collapse
|
28
|
Cortés JCG, Sato M, Muñoz J, Moreno MB, Clemente-Ramos JA, Ramos M, Okada H, Osumi M, Durán A, Ribas JC. Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. ACTA ACUST UNITED AC 2012; 198:637-56. [PMID: 22891259 PMCID: PMC3514033 DOI: 10.1083/jcb.201202015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The α(1-3)glucan synthase Ags1 is essential for both secondary septum
formation and the primary septum structural strength needed to counter cell
turgor pressure during cell separation. Fungal cytokinesis requires the assembly of a dividing septum wall. In yeast, the
septum has to be selectively digested during the critical cell separation
process. Fission yeast cell wall α(1-3)glucan is essential, but nothing
is known about its localization and function in the cell wall or about
cooperation between the α- and β(1-3)glucan synthases Ags1 and Bgs
for cell wall and septum assembly. Here, we generate a physiological Ags1-GFP
variant and demonstrate a tight colocalization with Bgs1, suggesting a
cooperation in the important early steps of septum construction. Moreover, we
define the essential functions of α(1-3)glucan in septation and cell
separation. We show that α(1-3)glucan is essential for both secondary
septum formation and the primary septum structural strength needed to support
the physical forces of the cell turgor pressure during cell separation.
Consequently, the absence of Ags1 and therefore α(1-3)glucan generates a
special and unique side-explosive cell separation due to an instantaneous
primary septum tearing caused by the turgor pressure.
Collapse
Affiliation(s)
- Juan Carlos G Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sartorel E, Pérez-Martín J. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. J Cell Sci 2012; 125:4597-608. [PMID: 22767510 DOI: 10.1242/jcs.107862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The morphogenesis-related NDR kinase (MOR) pathway regulates morphogenesis in fungi. In spite of the high conservation of its components, impairing their functions results in highly divergent cellular responses depending on the fungal species. The reasons for such differences are unclear. Here we propose that the species-specific connections between cell cycle regulation and the MOR pathway could be partly responsible for these divergences. We based our conclusion on the characterization of the MOR pathway in the fungus Ustilago maydis. Each gene that encodes proteins of this pathway in U. maydis was deleted. All mutants exhibited a constitutive hyperpolarized growth, contrasting with the loss of polarity observed in other fungi. Using a conditional allele of the central NDR kinase Ukc1, we found that impairing MOR function resulted in a prolonged G2 phase. This cell cycle delay appears to be the consequence of an increase in Cdk1 inhibitory phosphorylation. Strikingly, prevention of the inhibitory Cdk1 phosphorylation abolished the hyperpolarized growth associated with MOR pathway depletion. We found that the prolonged G2 phase resulted in higher levels of expression of crk1, a conserved kinase that promotes polar growth in U. maydis. Deletion of crk1 also abolished the dramatic activation of polar growth in cells lacking the MOR pathway. Taken together, our results suggest that Cdk1 inhibitory phosphorylation may act as an integrator of signaling cascades regulating fungal morphogenesis and that the distinct morphological response observed in U. maydis upon impairment of the MOR pathway could be due to a cell cycle deregulation.
Collapse
Affiliation(s)
- Elodie Sartorel
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| | | |
Collapse
|
30
|
Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD. Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol 2012; 85:252-70. [PMID: 22651396 DOI: 10.1111/j.1365-2958.2012.08108.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The yeast bud site selection system represents a paradigm for understanding how fungal cells regulate the formation of a polarity axis. In Saccharomyces cerevisiae, Bud4 and Axl2 are components of the axial bud site marker. To address the possibility that these proteins regulate cellular morphogenesis in filamentous fungi, we have characterized homologues of Bud4 and Axl2 in Aspergillus nidulans. Our results show that Bud4 is involved in septum formation in both hyphae and developing conidiophores. Whereas Axl2 appears to have no obvious role in hyphal growth, it is required for the regulation of phialide morphogenesis during conidiation. In particular, Axl2 localizes to the phialide-spore junction, where it appears to promote the recruitment of septins. Furthermore, the developmental regulators BrlA and AbaA control the expression of Axl2. Additional studies indicate that Axl2 is also involved in the regulation of sexual development, not only in A. nidulans, but also in the phylogenetically unrelated fungus Fusarium graminearum. Our results suggest that Axl2 plays a key role in phialide morphogenesis and/or function during conidiation in the aspergilli.
Collapse
Affiliation(s)
- Haoyu Si
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | | | | | | | |
Collapse
|