1
|
Wallis CM, Baumgartner K. Fatty acid methyl ester (FAME) profiling for species-specific characterization and detection of fungal pathogens that cause tree and grapevine trunk diseases. Mycologia 2025; 117:319-330. [PMID: 39841972 DOI: 10.1080/00275514.2024.2439753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by Eutypa lata, band canker of almond, caused by Neofusicoccum mediterraneum and Neofusicoccum parvum, and twig and branch dieback of walnut, caused by N. mediterraneum, Botryosphaeria dieback of grape, caused by Diplodia mutila, Diplodia seriata, N. mediterraneum, and N. parvum, and esca of grape, caused by Phaeomoniella chlamydospora and Phaeoacremonium minimum. Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed. Fatty acid methyl ester (FAME) profiling can be an effective and inexpensive diagnostic tool. FAME analyses were conducted on pure cultures of multiple isolates per species to characterize profiles and assess whether this technique could result in consistent identification. FAME profiles were dominated by oleic acid (18:1 ω9c) and palmitic acid (16:0), with less abundant FAMEs in different ratios for each species and isolates within species. Canonical discriminant analyses revealed which minor FAMEs were most variable, with a total of 20 different FAMEs that can explain 69.01% of profile variance in the first two canonicals. Using these analyses, samples were self-tested and correctly sorted 97.18% of the time. Within species, canonical discriminant analyses were able to separate isolates further, often by original geographic location or by host plant species. These results further suggest that potential novel species, subspecies, or races may be present among the isolates analyzed, demonstrating the capacity of FAME profiling to have a role in discovering cryptic species and accurately identifying fungal pathogens in conjunction with other molecular techniques and genomic analyses.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, USDA-ARS Davis, Davis, California 95616
| |
Collapse
|
2
|
Wang Y, Chang L, Zhang H, Chen YQ, Chen W, Chen H. Characterization of Three Types of Elongases from Different Fungi and Site-Directed Mutagenesis. J Fungi (Basel) 2024; 10:129. [PMID: 38392800 PMCID: PMC10890106 DOI: 10.3390/jof10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Fatty acid elongases play crucial roles in synthesizing long-chain polyunsaturated fatty acids. Identifying more efficient elongases is essential for enhancing oleaginous microorganisms to produce high yields of target products. We characterized three elongases that were identified with distinct specificities: McELO from Mucor circinelloides, PrELO from Phytophthora ramorum, and PsELO from Phytophthora sojae. Heterologous expression in Saccharomyces cerevisiae showed that McELO preferentially elongates C16 to C18 fatty acids, PrELO targets Δ6 polyunsaturated fatty acids, and PsELO uses long chain saturated fatty acids as substrates. McELO and PrELO exhibited more homology, potentially enabling fatty acid composition remodeling and enhanced LC-PUFAs production in oleaginous microorganisms. Site-directed mutagenesis of conserved amino acids across elongase types identified residues essential for activity, supported by molecular docking. Alanine substitution of conserved polar residues led to enzyme inactivation, underscoring their importance in the condensation reaction. Our findings offer promising elongase candidates for polyunsaturated fatty acid production, contributing to the bioindustry's sustainable development.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wallis CM, Lawrence DP, Travadon R, Baumgartner K. Characterization of grapevine fungal canker pathogens Fatty Acid Methyl Ester (FAME) profiles. Mycologia 2021; 114:203-213. [PMID: 34890530 DOI: 10.1080/00275514.2021.1983396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fatty acid methyl ester (FAME) analyses can be useful for distinguishing microbial species. This study conducted FAME analyses on 14 fungal species known to cause grapevine trunk diseases. FAME profiles were dominated by oleic acid, albeit profiles were characteristic enough to separate species. Discriminant analyses suggested that palmitoleic acid/sapienic acid, pentadecylic acid, and an unsaturated 17-carbon fatty acid (17:1ω8 c)could explain 79.8% of the variance in the profiles among species in the first three discriminant functions. FAME profile libraries were created for use in a commercialized software, which was able to accurately identify isolates to the species level, with a low rate (9.4%) of samples to be reassessed. Dendrograms created using neighbor-joining cluster analyses with data from FAME profiles were compared with those using internal transcribed spacer (ITS) region sequences. This revealed that FAME profiles, albeit useful for tentative species identification, should not be used for determining phylogenetic relationships because the dendrograms were significantly unconcordant. Regardless, these results demonstrated the potential of FAME analyses in quickly and initially identifying closely related fungal species or confirming conclusions from other species identification techniques that would require independent validation.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California 93648
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, California 95616
| |
Collapse
|
5
|
Lacey RF, Sullivan-Hill BA, Deslippe JR, Keyzers RA, Gerth ML. The Fatty Acid Methyl Ester (FAME) profile of Phytophthora agathidicida and its potential use as diagnostic tool. FEMS Microbiol Lett 2021; 368:fnab113. [PMID: 34448862 PMCID: PMC8427540 DOI: 10.1093/femsle/fnab113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/24/2021] [Indexed: 12/04/2022] Open
Abstract
Phytophthora diseases cause devastation to crops and native ecosystems worldwide. In New Zealand, Phytophthora agathidicida is threatening the survival of kauri, an endemic, culturally and ecologically important tree species. The current method for detecting P. agathidicida is a soil bating assay that is time-consuming and requires high levels of expertise to assess, thus limiting the analytical sample throughput. Here, we characterized the fatty acid methyl ester (FAME) profile of P. agathidicida. We also compared it with the FAME profile of P. cinnamomi and assessed the efficacy of FAME analysis as a diagnostic tool for detecting the pathogen in soil samples. In FAME analysis, the total fatty acid content is isolated from a sample and converted to FAMEs for analysis, a process that takes less than a day. Unique fatty acid acyl chains can serve as biomarkers for specific organisms. We detected 12 fatty acids in P. agathidicida, two of which (20:4ω6 and 20:5ω3) show promise as potential Phytophthora specific biomarkers. Collectively, these findings advance our fundamental understanding of P. agathidicida biology and provide a promising technique to increase the rate of sample processing and the speed of pathogen detection for P. agathidicida in soil.
Collapse
Affiliation(s)
- Randy F Lacey
- School of Biological Sciences, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
| | - Blake A Sullivan-Hill
- School of Biological Sciences, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
| | - Monica L Gerth
- School of Biological Sciences, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600 Wellington 6140, New Zealand
| |
Collapse
|
6
|
Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 2020; 166:1365-1376. [PMID: 33161079 DOI: 10.1016/j.ijbiomac.2020.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Ziyue You
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Yang Luo
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Chengji Yang
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Jie Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yanlin Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guangjing Wei
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Pan Dong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China.
| | - Maozhi Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
7
|
Liu D, Pan Y, Li K, Li D, Li P, Gao Z. Proteomics Reveals the Mechanism Underlying the Inhibition of Phytophthora sojae by Propyl Gallate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8151-8162. [PMID: 32633954 DOI: 10.1021/acs.jafc.0c02371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora sojae is a serious soil-borne pathogen, and the major control measures undertaken include the induction of soybean-resistance genes, fungicides, and scientific and reasonable planting management. Owing to the safety and resistance of fungicides, it is of great importance to screen new control alternatives. In a preliminary study, we observed that propyl gallate (PG) exerts a considerable inhibitory effect on P. sojae and can effectively prevent and cure soybean diseases, although the underlying mechanism remains unclear. To explore the inhibitory mechanism of PG on P. sojae, we analyzed the differences in the protein profile of P. sojae before and after treatment with PG using tandem mass tag (TMT) proteomics. Proteomic analysis revealed that the number of differentially expressed proteins (DEPs) was 285, of which 75 were upregulated and 210 were downregulated, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways primarily comprised glycolysis, tricarboxylic acid cycle, fatty acid metabolism, secondary metabolite generation, and other pathways. Among the DEPs involved in PG inhibition of P. sojae are two closely related uncharacterized proteins encoded by PHYSODRAFT_522340 and PHYSODRAFT_344464, denoted PsFACL and PsCPT herein. The CRISPR/Cas9 knockout technique revealed that PsFACL and PsCPT were involved in the growth rate and pathogenicity. In addition, the results of gas chromatography-mass spectrometry (GC-MS) showed that there were differences in fatty acid levels between wild-type (WT) and CRISPR/Cas9 knockout transformants. Knocking out PsFACL and PsCPT resulted in the restriction of the synthesis and β-oxidation of long-chain fatty acids, respectively. These suggest that PsFACL and PsCPT were also involved in the regulation of the fatty acid metabolism. Our results aid in understanding the mechanism underlying the inhibition of P. sojae growth by PG.
Collapse
Affiliation(s)
- Dong Liu
- College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, 99 North of Tianzhushan Road, Anqing 246003, Anhui, China
| | - Yuemin Pan
- College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, Anhui, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Anqing 246003, Anhui, China
| | - Kunyuan Li
- College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China
| | - Dandan Li
- College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China
| | - Ping Li
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, 99 North of Tianzhushan Road, Anqing 246003, Anhui, China
| | - Zhimou Gao
- College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China
| |
Collapse
|
8
|
Chinchilla D, Bruisson S, Meyer S, Zühlke D, Hirschfeld C, Joller C, L'Haridon F, Mène-Saffrané L, Riedel K, Weisskopf L. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci Rep 2019; 9:18778. [PMID: 31889050 PMCID: PMC6937334 DOI: 10.1038/s41598-019-55218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host’s health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS’s protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sébastien Bruisson
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Silvan Meyer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Charlotte Joller
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
9
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Genome-wide characterization of Phytophthora infestans metabolism: a systems biology approach. MOLECULAR PLANT PATHOLOGY 2018; 19:1403-1413. [PMID: 28990716 PMCID: PMC6638193 DOI: 10.1111/mpp.12623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
Genome-scale metabolic models (GEMs) provide a functional view of the complex network of biochemical reactions in the living cell. Initially mainly applied to reconstruct the metabolism of model organisms, the availability of increasingly sophisticated reconstruction methods and more extensive biochemical databases now make it possible to reconstruct GEMs for less well-characterized organisms, and have the potential to unravel the metabolism in pathogen-host systems. Here, we present a GEM for the oomycete plant pathogen Phytophthora infestans as a first step towards an integrative model with its host. We predict the biochemical reactions in different cellular compartments and investigate the gene-protein-reaction associations in this model to obtain an impression of the biochemical capabilities of P. infestans. Furthermore, we generate life stage-specific models to place the transcriptomic changes of the genes encoding metabolic enzymes into a functional context. In sporangia and zoospores, there is an overall down-regulation, most strikingly reflected in the fatty acid biosynthesis pathway. To investigate the robustness of the GEM, we simulate gene deletions to predict which enzymes are essential for in vitro growth. This model is an essential first step towards an understanding of P. infestans and its interactions with plants as a system, which will help to formulate new hypotheses on infection mechanisms and disease prevention.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University, Wageningen 6708 PBthe Netherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University, Wageningen 6708 PBthe Netherlands
| |
Collapse
|
10
|
Negrel L, Halter D, Wiedemann-Merdinoglu S, Rustenholz C, Merdinoglu D, Hugueney P, Baltenweck R. Identification of Lipid Markers of Plasmopara viticola Infection in Grapevine Using a Non-targeted Metabolomic Approach. FRONTIERS IN PLANT SCIENCE 2018; 9:360. [PMID: 29619037 PMCID: PMC5871909 DOI: 10.3389/fpls.2018.00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/05/2018] [Indexed: 05/31/2023]
Abstract
The Oomycete Plasmopara viticola is responsible for downy mildew, which is one of the most damaging grapevine diseases. Due to the strictly biotrophic way of life of P. viticola, its metabolome is relatively poorly characterized. In this work, we have used a mass spectrometry-based non-targeted metabolomic approach to identify potential Plasmopara-specific metabolites. This has led to the characterization and structural elucidation of compounds belonging to three families of atypical lipids, which are not detected in healthy grapevine tissues. These lipids include ceramides and derivatives of arachidonic and eicosapentaenoic acid, most of which had not been previously described in Oomycetes. Furthermore, we show that these lipids can be detected in Plasmopara-infected tissues at very early stages of the infection process, long before the appearance the first visible symptoms of the disease. Therefore, the potential use of these specific lipids as markers to monitor the development of P. viticola is discussed.
Collapse
|
11
|
Abstract
The eukaryotic microbes called oomycetes include many important saprophytes and pathogens, with the latter exhibiting necrotrophy, biotrophy, or obligate biotrophy. Understanding oomycete metabolism is fundamental to understanding these lifestyles. Genome mining and biochemical studies have shown that oomycetes, which belong to the kingdom Stramenopila, secrete suites of carbohydrate- and protein-degrading enzymes adapted to their environmental niches and produce unusual lipids and energy storage compounds. Despite having limited secondary metabolism, many oomycetes make chemicals for communicating within their species or with their hosts. Horizontal and endosymbiotic gene transfer events have diversified oomycete metabolism, resulting in biochemical pathways that often depart from standard textbook descriptions by amalgamating enzymes from multiple sources. Gene fusions and duplications have further shaped the composition and expression of the enzymes. Current research is helping us learn how oomycetes interact with host and environment, understand eukaryotic diversity and evolution, and identify targets for drugs and crop protection chemicals.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| |
Collapse
|
12
|
Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJG, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics 2015; 16:741. [PMID: 26438312 PMCID: PMC4594904 DOI: 10.1186/s12864-015-1904-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Liliana M Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK. .,Present address: Department of Plant Pathology, North Carolina State University Raleigh, Raleigh, NC, 27695, USA.
| | | | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl von Linne´ Weg 10, Cologne, 50829, Germany.
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Christine Sambles
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - D Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371, Olomouc, Czech Republic.
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Otmar Spring
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Reinhard Zipper
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - David J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Integrative Fungal Research (IPF), Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Miao S, Dashtbozorg SS, Callow NV, Ju LK. Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3367-3376. [PMID: 25790115 DOI: 10.1021/acs.jafc.5b00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rhamnolipid biosurfactants have potential applications in the control of zoosporic plant pathogens. However, rhamnolipids have not been closely investigated for the anti-zoospore mechanism or for developing new anti-zoospore chemicals. In this study, RhL-1 and RhL-3 groups of rhamnolipids were used to generate the corresponding RhL-2 and RhL-4 groups and the free diacids. Conversion of RhL-3 to RhL-1 was also accomplished in vitro with cellobiase as the catalyst. The anti-zoospore effects of RhL-1-RhL-4 and the diacids were investigated with zoospores of Phytophthora sojae. For RhL-1-RhL-4, approximately 20, 30, 40, and 40 mg/L, respectively, were found to be the lowest concentrations required to stop movement of all zoospores, which indicates that the anti-zoospore effect remains strong even after RhL-1 and RhL-3 are hydrolyzed into RhL-2 and RhL-4. The free diacids required a significantly higher critical concentration of about 125 mg/L. Rhamnose can be obtained as a co-product.
Collapse
Affiliation(s)
- Shida Miao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Soroosh Soltani Dashtbozorg
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Nicholas V Callow
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
14
|
Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures. Fungal Biol 2014; 118:792-9. [PMID: 25209638 DOI: 10.1016/j.funbio.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023]
Abstract
Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats.
Collapse
|