1
|
Le Sage EH, Reinert LK, Ohmer MEB, LaBumbard BC, Altman KA, Brannelly LA, Latella I, McDonnell NB, Saenz V, Walsman JC, Wilber MQ, Woodhams DC, Voyles J, Richards-Zawacki CL, Rollins-Smith LA. Diverse Relationships between Batrachochytrium Infections and Antimicrobial Peptide Defenses Across Leopard Frog Populations. Integr Comp Biol 2024; 64:921-931. [PMID: 39090981 DOI: 10.1093/icb/icae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | | | - Karie A Altman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Latella
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Nina B McDonnell
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jason C Walsman
- Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Webb RJ, Cuff C, Berger L. Glutathione-Mediated Metal Tolerance in an Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1583-1591. [PMID: 38726969 DOI: 10.1002/etc.5885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
The spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis, has resulted in amphibian declines and extinctions worldwide. Some susceptible amphibian species can persist in contaminated habitats, prompting the hypothesis that B. dendrobatidis might be sensitive to heavy metals. We tested a panel of 12 metals to rank their toxicity to B. dendrobatidis zoospores and zoosporangia during a 6-h exposure. To better understand the mechanism for metal detoxification, we also evaluated whether glutathione is required for metal tolerance by depleting cellular glutathione before metal exposure. In addition, we investigated whether prior exposure to low metal concentrations impacted tolerance of subsequent exposure, as well as identifying metal combinations that may act synergistically. Silver (Ag), cadmium (Cd), and copper (Cu) were particularly toxic to B. dendrobatidis, with zoospore minimum lethal concentration values of 0.01 mM (Ag), 0.025 mM (Cd), and 0.5 mM (Cu). These three metals along with zinc (Zn) were also inhibitory to zoosporangia, with minimum inhibitory concentration values of 0.005 mM (Ag), 0.04 mM (Cd), 0.075 mM (Cu), and 0.04 mM (Zn). The fungicidal effects of several metals was reduced when assays were conducted in nutrient medium compared with synthetic pond water, highlighting the need for careful in vitro assay design and interpretation. Glutathione depletion strongly influenced tolerance of Cd and Ag (85% and 75% less growth, respectively) and moderately influenced tolerance of Cu, Zn, and lead (37%, 18%, and 14% less growth, respectively), indicating the importance of glutathione for metal detoxification. In general, the minimum metal concentrations that inhibited growth of B. dendrobatidis far exceeded values detected in contaminated amphibian habitats in Australia, suggesting that metal contamination alone may not have a strong protective effect against chytridiomycosis. We discuss future research directions to futher understand the potential for dissolved metals to create chytrid refuges. Environ Toxicol Chem 2024;43:1583-1591. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rebecca J Webb
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | | | - Lee Berger
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
3
|
Suresh A, Abraham J. Degradation of Emerging Pharmaceutical Pollutants from Wastewater Using Penicillium aurantiogriseum 2AJS. Appl Biochem Biotechnol 2024; 196:3488-3510. [PMID: 37672162 DOI: 10.1007/s12010-023-04653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 09/07/2023]
Abstract
Approximately 3000 pharmaceutical compounds and personal care products (PPCPs) are utilized and discharged into the wastewater at low levels, and they are rarely removed or treated in wastewater treatment facilities. The present study focused on the potential ability of Penicillium aurantiogriseum 2AJS to degrade pharmaceutical and personal care products of different classes of drugs: antipyretic and analgesic drugs (paracetamol, diclofenac, and ibuprofen) and hormones (estrogen, progesterone, and testosterone). Various ligninolytic extracellular enzymatic studies were also studied. A phytotoxicity assay was performed using the Lemna minor species procured from the Vellore Institute of Technology, Vellore. The results revealed degradation of pharmaceutical and personal care products to 95.27% (paracetamol), 94.37% (diclofenac), 89.29% (ibuprofen), 94.16% (progesterone), 91.10% (estrogen), and 82.12% (testosterone). GC-MS and NMR analyses aided in proposing the degradation pathway of all six pharmaceutical compounds. Degradation kinetics showed a first-order model for all the degradation studies with R2 values ranging between 0.89 and 0.95. A toxicological assay using Lemna minor showed very less toxicity of degraded compounds with a toxicity index ranging between 1.2 and 1.5 compared to the parent compounds. Hence, strain 2AJS can be used in in situ bioremediation of wastewater treatment processes.
Collapse
Affiliation(s)
- Anushree Suresh
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Rami M, Shafique M, Sarma SP. Structural, Functional, and Mutational Studies of a Potent Subtilisin Inhibitor from Budgett's Frog, Lepidobatrachus laevis. Biochemistry 2023; 62:2952-2969. [PMID: 37796763 DOI: 10.1021/acs.biochem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of Lepidobatrachus laevis, is a cysteine-rich peptide belonging to the I8 family of inhibitors. Protease inhibitory assays demonstrated that LL-TIL acts as a slow-tight binding inhibitor of subtilisin Carlsberg and proteinase K with inhibition constants of 91 pM and 2.4 nM, respectively. The solution structures of LL-TIL and a mutant peptide reveal that they adopt a typical TIL-type fold with a canonical conformation of a reactive site loop (RSL). The structure of the LL-TIL-subtilisin complex and molecular dynamics (MD) simulations provided an in-depth view of the structural basis of inhibition. NMR relaxation data and molecular dynamics simulations indicated a rigid conformation of RSL, which does not alter significantly upon subtilisin binding. The energy calculation for subtilisin inhibition predicted Ile31 as the highest contributor to the binding energy, which was confirmed experimentally by site-directed mutagenesis. A chimeric mutant of LL-TIL broadened the inhibitory profile and attenuated subtilisin inhibition by 2 orders of magnitude. These results provide a template to engineer more specific and potent TIL-type subtilisin inhibitors.
Collapse
Affiliation(s)
- Mihir Rami
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Mohd Shafique
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
5
|
Starr AM, Zabet-Moghaddam M, San Francisco M. Identification of a novel secreted metabolite cyclo(phenylalanyl-prolyl) from Batrachochytrium dendrobatidis and its effect on Galleria mellonella. BMC Microbiol 2022; 22:293. [PMID: 36482304 PMCID: PMC9730576 DOI: 10.1186/s12866-022-02680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations. The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra-performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. RESULTS Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae (Galleria mellonella). Concentrated filtrates caused melanization within 24 h, while live B. dendrobatidis caused melanization within 48 h. CONCLUSIONS Here we show B. dendrobatidis produces secreted metabolites previously unreported. The impacts of these chemicals were tested on an alternate non-amphibian model system that has been used for other fungi to study pathogenicity traits in this fungus.
Collapse
Affiliation(s)
- Amanda M. Starr
- grid.462127.4Bryant & Stratton College, 8141 Hull Street Road, Richmond, VA 23235 USA ,grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| | | | - Michael San Francisco
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| |
Collapse
|
6
|
Laundon D, Cunliffe M. A Call for a Better Understanding of Aquatic Chytrid Biology. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:708813. [PMID: 37744140 PMCID: PMC10512372 DOI: 10.3389/ffunb.2021.708813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/09/2021] [Indexed: 09/26/2023]
Abstract
The phylum Chytridiomycota (the "chytrids") is an early-diverging, mostly unicellular, lineage of fungi that consists of significant aquatic saprotrophs, parasites, and pathogens, and is of evolutionary interest because its members retain biological traits considered ancestral in the fungal kingdom. While the existence of aquatic chytrids has long been known, their fundamental biology has received relatively little attention. We are beginning to establish a detailed understanding of aquatic chytrid diversity and insights into their ecological functions and prominence. However, the underpinning biology governing their aquatic ecological activities and associated core processes remain largely understudied and therefore unresolved. Many biological questions are outstanding for aquatic chytrids. What are the mechanisms that control their development and life cycle? Which core processes underpin their aquatic influence? What can their biology tell us about the evolution of fungi and the wider eukaryotic tree of life? We propose that the field of aquatic chytrid ecology could be further advanced through the improved understanding of chytrid biology, including the development of model aquatic chytrids and targeted studies using culture-independent approaches.
Collapse
Affiliation(s)
- Davis Laundon
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
7
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
8
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
9
|
Barnhart KL, Bletz MC, LaBumbard BC, Tokash-Peters AG, Gabor CR, Woodhams DC. Batrachochytrium salamandrivorans ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY. Anim Conserv 2020; 23:533-546. [PMID: 33071596 DOI: 10.1111/acv.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. Bsal can cause the disease chytridiomycosis, and it is important to assess the risk of Bsal-induced chytridiomycosis to species in North America. We evaluated the susceptibility to Bsal of the common and widespread spotted salamander, Ambystoma maculatum, across life history stages and monitored the effect of Bsal exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to Bsal because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of Bsal, life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning Bsal cultures with thyroid hormone. Exposure to high levels of Bsal elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to Bsal. These results will contribute to development of appropriate Bsal management plans to conserve species at risk of emerging disease.
Collapse
Affiliation(s)
- Kelly L Barnhart
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Molly C Bletz
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Brandon C LaBumbard
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Amanda G Tokash-Peters
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Caitlin R Gabor
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666
| | - Douglas C Woodhams
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| |
Collapse
|
10
|
Beekman C, Jiang Z, Suzuki BM, Palmer JM, Lindner DL, O'Donoghue AJ, Knudsen GM, Bennett RJ. Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome. Biol Chem 2019; 399:1375-1388. [PMID: 30367778 DOI: 10.1515/hsz-2018-0240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Pseudogymnoascus destructans is a pathogenic fungus responsible for White-nose Syndrome (WNS), a disease afflicting multiple species of North American bats. Pseudogymnoascus destructans infects susceptible bats during hibernation, invading dermal tissue and causing extensive tissue damage. In contrast, other Pseudogymnoascus species are non-pathogenic and cross-species comparisons may therefore reveal factors that contribute to virulence. In this study, we compared the secretome of P. destructans with that from several closely related Pseudogymnoascus species. A diverse set of hydrolytic enzymes were identified, including a putative serine peptidase, PdCP1, that was unique to the P. destructans secretome. A recombinant form of PdCP1 was purified and substrate preference determined using a multiplexed-substrate profiling method based on enzymatic degradation of a synthetic peptide library and analysis by mass spectrometry. Most peptide substrates were sequentially truncated from the carboxyl-terminus revealing that this enzyme is a bona fide carboxypeptidase. Peptides with arginine located close to the carboxyl-terminus were rapidly cleaved, and a fluorescent substrate containing arginine was therefore used to characterize PdCP1 activity and to screen a selection of peptidase inhibitors. Antipain and leupeptin were found to be the most potent inhibitors of PdCP1 activity.
Collapse
Affiliation(s)
- Chapman Beekman
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian M Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Giselle M Knudsen
- Alaunus Biosciences, Inc., San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
11
|
Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI. Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Front Immunol 2018; 9:2536. [PMID: 30473694 PMCID: PMC6237969 DOI: 10.3389/fimmu.2018.02536] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022] Open
Abstract
The fungal skin disease, chytridiomycosis (caused by Batrachochytrium dendrobatidis and B. salamandrivorans), has caused amphibian declines and extinctions globally since its emergence. Characterizing the host immune response to chytridiomycosis has been a focus of study with the aim of disease mitigation. However, many aspects of the innate and adaptive arms of this response are still poorly understood, likely due to the wide range of species' responses to infection. In this paper we provide an overview of expected immunological responses (with inference based on amphibian and mammalian immunology), together with a synthesis of current knowledge about these responses for the amphibian-chytridiomycosis system. We structure our review around four key immune stages: (1) the naïve immunocompetent state, (2) immune defenses that are always present (constitutive defenses), (3) mechanisms for recognition of a pathogen threat and innate immune defenses, and (4) adaptive immune responses. We also evaluate the current hot topics of immunosuppression and immunopathology in chytridiomycosis, and discuss their respective roles in pathogenesis. Our synthesis reveals that susceptibility to chytridiomycosis is likely to be multifactorial. Susceptible amphibians appear to have ineffective constitutive and innate defenses, and a late-stage response characterized by immunopathology and Bd-induced suppression of lymphocyte responses. Overall, we identify substantial gaps in current knowledge, particularly concerning the entire innate immune response (mechanisms of initial pathogen detection and possible immunoevasion by Bd, degree of activation and efficacy of the innate immune response, the unexpected absence of innate leukocyte infiltration, and the cause and role of late-stage immunopathology in pathogenesis). There are also gaps concerning most of the adaptive immune system (the relative importance of B and T cell responses for pathogen clearance, the capacity and extent of immunological memory, and specific mechanisms of pathogen-induced immunosuppression). Improving our capacity for amphibian immunological research will require selection of an appropriate Bd-susceptible model species, the development of taxon-specific affinity reagents and cell lines for functional assays, and the application of a suite of conventional and emerging immunological methods. Despite current knowledge gaps, immunological research remains a promising avenue for amphibian conservation management.
Collapse
Affiliation(s)
- Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY, United States
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, Australia
| | - Lee F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, Australia
| | - Benjamin C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.,Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - J Guy Castley
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
13
|
Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA. Life history linked to immune investment in developing amphibians. CONSERVATION PHYSIOLOGY 2016; 4:cow025. [PMID: 27928507 PMCID: PMC5001151 DOI: 10.1093/conphys/cow025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 05/03/2023]
Abstract
The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
- Corresponding author: Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA. Tel: +1 617 287 6679.
| | - Sara C Bell
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Brianna A Lam
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | - Urs Stalder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andreas Hertz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Department of Biological Science, Vanderbilt University, Nashville, TN 37235-1634, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| |
Collapse
|
14
|
Van Rooij P, Martel A, Haesebrouck F, Pasmans F. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res 2015; 46:137. [PMID: 26607488 PMCID: PMC4660679 DOI: 10.1186/s13567-015-0266-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host’s skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Collapse
Affiliation(s)
- Pascale Van Rooij
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - An Martel
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Frank Pasmans
- Laboratory of Veterinary Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
15
|
Thekkiniath J, Zabet-Moghaddam M, Kottapalli KR, Pasham MR, San Francisco S, San Francisco M. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone. PLoS One 2015; 10:e0123637. [PMID: 26046527 PMCID: PMC4457425 DOI: 10.1371/journal.pone.0123637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure.
Collapse
Affiliation(s)
- Jose Thekkiniath
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, United States of America
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79402–3132, United States of America
| | - Kameswara Rao Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79402–3132, United States of America
| | - Mithun R. Pasham
- Department of Cell Biology and Pediatrics, Harvard Medical School, Boston, MA, 02115, United States of America, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, 02115, United States of America
| | - Susan San Francisco
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79402–3132, United States of America
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409–3131, United States of America
| | - Michael San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409–3131, United States of America
| |
Collapse
|
16
|
Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 2015; 112:7478-83. [PMID: 25944934 DOI: 10.1073/pnas.1507082112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Collapse
|
17
|
Larsen CE, Larsen CJ, Franzyk H, Regenberg B. Antifungal properties of peptidomimetics with an arginine-[β-(2,5,7-tri-tert-butylindol-3-yl)alanine]-arginine motif against Saccharomyces cerevisiae and Zygosaccharomyces bailii. FEMS Yeast Res 2015; 15:fov011. [DOI: 10.1093/femsyr/fov011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
|
18
|
Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME JOURNAL 2013; 8:830-40. [PMID: 24335825 PMCID: PMC3960541 DOI: 10.1038/ismej.2013.200] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 11/08/2022]
Abstract
Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host-microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization.
Collapse
|
19
|
Holden WM, Fites JS, Reinert LK, Rollins-Smith LA. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biol 2013; 118:48-60. [PMID: 24433676 DOI: 10.1016/j.funbio.2013.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
Abstract
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.
Collapse
Affiliation(s)
- Whitney M Holden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - J Scott Fites
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|