1
|
Terranova ML. Prominent Roles and Conflicted Attitudes of Eumelanin in the Living World. Int J Mol Sci 2023; 24:ijms24097783. [PMID: 37175490 PMCID: PMC10178024 DOI: 10.3390/ijms24097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Eumelanin, a macromolecule widespread in all the living world and long appreciated for its protective action against harmful UV radiation, is considered the beneficial component of the melanin family (ευ means good in ancient Greek). This initially limited picture has been rather recently extended and now includes a variety of key functions performed by eumelanin in order to support life also under extreme conditions. A lot of still unexplained aspects characterize this molecule that, in an evolutionary context, survived natural selection. This paper aims to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. In this context, attention is drawn to the duality of roles played by eumelanin, which occasionally reverses its functional processes, switching from an anti-oxidant to a pro-oxidant behavior and implementing therefore harmful effects.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
2
|
Charalampopoulou A, Barcellini A, Frittitta GE, Fulgini G, Ivaldi GB, Magro G, Liotta M, Orlandi E, Pullia MG, Tabarelli de Fatis P, Facoetti A. In Vitro Effects of Photon Beam and Carbon Ion Radiotherapy on the Perineural Invasion of Two Cell Lines of Neurotropic Tumours. Life (Basel) 2023; 13:794. [PMID: 36983949 PMCID: PMC10056732 DOI: 10.3390/life13030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Primary mucosal melanoma (PMM) and pancreatic ductal adenocarcinoma (PDAC) are two aggressive malignancies, characterized by intrinsic radio-chemoresistance and neurotropism, a histological feature resulting in frequent perineural invasion (PNI), supported by neurotrophic factors secreted in the tumour microenvironment (TME), such as neurotrophin-3 (NT-3). Carbon-ion radiotherapy (CIRT) could represent an effective option in unresectable PMM and PDAC. Only a few data about the effects of CIRT on PNI in relation to NT-3 are available in the literature, despite the numerous pieces of evidence revealing the peculiar effects of this type of radiation on tumour cell migration. This in vitro study investigated for the first time the response of PMM and PDAC cells to NT-3 and evaluated the effects of conventional photon beam radiotherapy (XRT) and CIRT on cell viability, proliferation, and migration. Our results demonstrated the greater capacity of C-ions to generally decrease cell viability, proliferation, and migration, while the addition of NT-3 after both types of irradiation determined an increase in these features, maintaining a dose-dependent trend and acting more effectively as a chemoattractant than inductor in the case of migration.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Hadron Academy PhD Course, Istituto Universitario di STUDI Superiori (IUSS), 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Emanuele Frittitta
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Biology and Biotechnology Department, University of Pavia, 27100 Pavia, Italy
| | - Giorgia Fulgini
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Biology and Biotechnology Department, University of Pavia, 27100 Pavia, Italy
| | | | - Giuseppe Magro
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Marco Liotta
- Medical Physics Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Marco Giuseppe Pullia
- Physics Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | | | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
3
|
Zhang YG, Malo ME, Tschirhart T, Xia Y, Wang Z, Dadachova E, Sun J. Effects of Melanized Bacteria and Soluble Melanin on the Intestinal Homeostasis and Microbiome In Vivo. TOXICS 2022; 11:13. [PMID: 36668739 PMCID: PMC9860700 DOI: 10.3390/toxics11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation. The purpose of the current study is to examine the safety of these agents for future targeting gut microbiome to prevent radiation-induced injury. We administered mice with soluble allomelanin and observed its effect on the intestinal physiology and body weight. We then established a melanized bacterial strain in probiotic E. coli Nissle. We measured the body weight of the mice treated with melanized E. coli Nissle. We showed the enhanced bacterial abundance and colonization of the melanized bacteria E. coli Nissle in the intestine. Melanized E. coli Nissle colonized the colon in less than 3 h and showed consistent colonization over 24 h post one oral gavage. We did not find significant changes of bodyweight in the mice treated with melanized bacteria. We did not observe any inflammation in the intestine. These results demonstrate the safety of soluble melanin and melanin-producing bacteria and will support the future studies to treat radiation-induced injuries and restore dysbiosis.
Collapse
Affiliation(s)
- Yong-guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mackenzie E. Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Chicago (UIC) Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Targeting Melanin in Melanoma with Radionuclide Therapy. Int J Mol Sci 2022; 23:ijms23179520. [PMID: 36076924 PMCID: PMC9455397 DOI: 10.3390/ijms23179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.
Collapse
|
5
|
Averesch NJH, Shunk GK, Kern C. Cultivation of the Dematiaceous Fungus Cladosporium sphaerospermum Aboard the International Space Station and Effects of Ionizing Radiation. Front Microbiol 2022; 13:877625. [PMID: 35865919 PMCID: PMC9294542 DOI: 10.3389/fmicb.2022.877625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
In Space, cosmic radiation is a strong, ubiquitous form of energy with constant flux, and the ability to harness it could greatly enhance the energy-autonomy of expeditions across the solar system. At the same time, radiation is the greatest permanent health risk for humans venturing into deep space. To protect astronauts beyond Earth's magnetosphere, advanced shielding against ionizing as well as non-ionizing radiation is highly sought after. In search of innovative solutions to these challenges, biotechnology appeals with suitability for in situ resource utilization (ISRU), self-regeneration, and adaptability. Where other organisms fail, certain microscopic fungi thrive in high-radiation environments on Earth, showing high radioresistance. The adaptation of some of these molds to areas, such as the Chernobyl Exclusion Zone has coined the terms positive "radiotropism" and "radiotrophy", reflecting the affinity to and stimulation by radiation, and sometimes even enhanced growth under ionizing conditions. These abilities may be mediated by the pigment melanin, many forms of which also have radioprotective properties. The expectation is that these capabilities are extendable to radiation in space. To study its growth in space, an experiment cultivating Cladosporium sphaerospermum Penzig ATCC® 11289™ aboard the International Space Station (ISS) was conducted while monitoring radiation beneath the formed biomass in comparison to a no-growth negative control. A qualitative growth advantage in space was observable. Quantitatively, a 1.21 ± 0.37-times higher growth rate than in the ground control was determined, which might indicate a radioadaptive response to space radiation. In addition, a reduction in radiation compared to the negative control was discernable, which is potentially attributable to the fungal biomass.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States
| | - Graham K. Shunk
- Physics Department, North Carolina School of Science and Mathematics, Durham, NC, United States
- Higher Orbits “Go for Launch!” Program, Leesburg, VA, United States
| | - Christoph Kern
- Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
6
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
7
|
Malo ME, Frank C, Khokhoev E, Gorbunov A, Dontsov A, Garg R, Dadachova E. Mitigating effects of sublethal and lethal whole-body gamma irradiation in a mouse model with soluble melanin. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011508. [PMID: 35037901 DOI: 10.1088/1361-6498/ac3dcf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.
Collapse
Affiliation(s)
- Mackenzie E Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Connor Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Ravendra Garg
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi (Basel) 2021; 7:jof7060488. [PMID: 34207260 PMCID: PMC8235761 DOI: 10.3390/jof7060488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Collapse
|
10
|
Malo ME, Schultzhaus Z, Frank C, Romsdahl J, Wang Z, Dadachova E. Transcriptomic and genomic changes associated with radioadaptation in Exophiala dermatitidis. Comput Struct Biotechnol J 2020; 19:196-205. [PMID: 33425251 PMCID: PMC7772362 DOI: 10.1016/j.csbj.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
Melanized fungi have been isolated from some of the harshest radioactive environments, and their ability to thrive in these locations is in part due to the pigment melanin. Melanin imparts a selective advantage to fungi by providing a physical shield, a chemical shield, and possibly a signaling mechanism. In previous work we demonstrated that protracted exposure of the melanized yeast Exophiala dermatitidis to mixed alpha-, beta-, and gamma-emitting radiation resulted in an adapted strain able to mount a unique response to ionizing radiation in the environment in a melanin-dependent fashion. By exploring the genome and transcriptome of this adapted melanized strain relative to a non-irradiated control we determined the altered response was transcriptomic in nature, as whole genome sequencing revealed limited variation. Transcriptomic analysis indicated that of the adapted isolates analyzed, two lineages existed: one like the naïve, non-adapted strain, and one with a unique transcriptomic signature that exhibited downregulation of metabolic processes, and upregulation of translation-associated genes. Analysis of differential gene expression in the adapted strain showed an overlap in response between the control conditions and reactive oxygen species conditions, whereas exposure to an alpha particle source resulted in a robust downregulation of metabolic processes and upregulation of DNA replication and repair genes, and RNA metabolic processes. This suggest previous exposure to radiation primes the fungus to respond to subsequent exposures in a unique way. By exploring this unique response, we have expanded our knowledge of how melanized fungi interact with and respond to ionizing radiation in their environment.
Collapse
Affiliation(s)
- Mackenzie E. Malo
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| | - Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Connor Frank
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| | - Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Ekaterina Dadachova
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| |
Collapse
|
11
|
Radioadapted Wangiella dermatitidis senses radiation in its environment in a melanin-dependent fashion. Fungal Biol 2019; 124:368-375. [PMID: 32389299 DOI: 10.1016/j.funbio.2019.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/21/2022]
Abstract
Black fungi withstand extreme stresses partly due to the presence of melanin. Melanin is associated with structural integrity and resistance to chemical and radiation stress. This results in improved health and fitness, specifically in extreme conditions. Our goal was to exploit the radiation sensing nature of melanized fungus in order to develop a radioadapted strain capable of responding to radiation in the environment. The protracted exposure of a melanized fungus, Wangiella dermatitidis, to a mixed source of radiation altered the electron transport properties. There was no effect in an albino mutant wdpsk1. We then tested the growth response to radiation in the environment, with shielding from direct exposure to the radiation. Gamma radiation caused increased colony growth irrespective of exposure history in melanized fungus. Beta particles produced growth inhibition. The previously exposed melanized strain demonstrated colony growth in response to alpha particles in the environment. Alpha particles have a higher linear energy transfer, which produces more reactive oxygen species. Our previously exposed melanized strain was resistant to the toxic effects of H2O2, while the naïve and non-melanized strains were sensitive. We propose that previous radiation exposure introduces adaptations that equip melanized fungi to tolerate, sense, and respond to radiation byproducts.
Collapse
|
12
|
Abstract
Stress is an inextricable aspect of life, and stress biology has been a field of intensive study over the last 200-300 years. In human psychology, we consider a stress-free condition to be one of relaxation or happiness, yet with respect to microbial cells we do not have a concept that describes being non-stressed. Stresses within, and stress tolerance of, microbial systems lie at the crux of critical global challenges, such as optimising soil- and plant-health and crop yields; reducing food spoilage; bioremediation of polluted environments; effective biological control and biofuel production; gaining insight into aging processes in humans; and understanding astrobiology. There is no consensus on how to measure cellular stress, or even how we define it. 'Stress' implies that physical forces act on the microbial system in such a way that impairs its ability to function. Ironically, however, a cell that exhibits optimal growth also has reduced energy generation, is less resilient to change, and can have poor competitive ability. Furthermore, rapid growth is associated with a high level of oxidative damage and compromised vitality of the system. Stresses induced by temperature, pH, water activity, chaotropicity, reactive oxygen species, dehydration-rehydration cycles, ionizing radiation, and changes in turgor or other mechanical forces are well-known. Our knowledge of cellular stress responses, such as signal-transduction pathways, compatible-solute metabolism, protein-stabilization proteins, and plasma-membrane adaptations, is also considerable. However, we have limited understanding of the complex and dynamic stresses that typically occur in microbial habitats or industrial systems, and how these impact the biophysics, cellular biology and evolutionary trajectories of microbes. There is also a paucity of information on why the cellular system ultimately fails under extremes of stress, and it is even debatable whether any microbe can ever be completely stress-free. However, cells that exhibit optimal rates of biotic activity are likely to exhibit low ecological fitness compared with those that are moderately stressed; in other words, stress can enhance microbial vitality, vigour and resilience. 'Stress' is sometimes applied mistakenly to describe the effects of toxic substances that have target site-specific modes-of-action (e.g. antibiotics) rather than and do not inhibit the cell via any type of stress-mediated mechanism. Whereas terms such as 'rapid-growth stress', 'nutrient stress' and 'biotic stress' span a range of logical categories, their modes-of-action do usually involve a biophysical component. Stress can impact all levels of biology (from biomacromolecules to ecosystems), is a potent driver for evolutionary processes and - it could be argued - is an inherent property of life itself. The published articles that follow include a number of unprecedented findings and were compiled for this special issue Biology of Fungal Systems under Stress. Collectively, they are testament to the breadth and importance of the stress-biology field.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
13
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|