1
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. J Fungi (Basel) 2022; 8:jof8111142. [DOI: 10.3390/jof8111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Plants harbor a variety of fungal symbionts both above- and belowground, yet little is known about how these fungi interact within hosts, especially in a world where resource availability is changing due to human activities. Systemic vertically transmitted endophytes such as Epichloë spp. may have particularly strong effects on the diversity and composition of later-colonizing symbionts such as root fungal endophytes, especially in primary successional systems. We made use of a long-term field experiment in Great Lakes sand dunes to test whether Epichloë colonization of the dune-building grass, Ammophila breviligulata, could alter fungal root endophyte species richness or community composition in host plants. We also tested whether nitrogen addition intensified the effects of Epichlöe on the root endophyte community. We found that Epichloë increased richness of root endophytes in Ammophila by 17% overall, but only shifted community composition of root endophytes under nitrogen-enriched conditions. These results indicate that Epichlöe acts as a key species within Ammophila, changing richness and composition of the root mycobiome and integrating above- and belowground mycobiome interactions. Further, effects of Epichloë on root endophyte communities were enhanced by N addition, indicating that this fungal species may become even more important in future environments.
Collapse
|
3
|
Poveda J, Díaz-González S, Díaz-Urbano M, Velasco P, Sacristán S. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:932288. [PMID: 35991403 PMCID: PMC9390090 DOI: 10.3389/fpls.2022.932288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - María Díaz-Urbano
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
4
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
5
|
Galindo-Solís JM, Fernández FJ. Endophytic Fungal Terpenoids: Natural Role and Bioactivities. Microorganisms 2022; 10:microorganisms10020339. [PMID: 35208794 PMCID: PMC8875210 DOI: 10.3390/microorganisms10020339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are a highly diverse group of fungi that intermittently colonize all plants without causing symptoms of the disease. They sense and respond to physiological and environmental changes of their host plant and microbiome. The inter-organism interactions are largely driven by chemical networks mediated by specialized metabolites. The balance of these complex interactions leads to healthy and strong host plants. Endophytic strains have particular machinery to produce a plethora of secondary metabolites with a variety of bioactivities and unknown functions in an ecological niche. Terpenoids play a key role in endophytism and represent an important source of bioactive molecules for human health and agriculture. In this review, we describe the role of endophytic fungi in plant health, fungal terpenoids in multiple interactions, and bioactive fungal terpenoids recently reported from endophytes, mainly from plants used in traditional medicine, as well as from algae and mangroves. Additionally, we highlight endophytic fungi as producers of important chemotherapeutic terpenoids, initially discovered in plants. Despite advances in understanding endophytism, we still have much to learn in this field. The study of the role, the evolution of interactions of endophytic fungi and their terpenoids provide an opportunity for better applications in human health and agriculture.
Collapse
Affiliation(s)
- Juan M. Galindo-Solís
- Posgrado en Biotecnología, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Mexico City CP 09340, Mexico;
| | - Francisco J. Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, Mexico City CP 09340, Mexico
- Correspondence: ; Tel.: +52-(55)-5804-6453
| |
Collapse
|
6
|
Jahn L, Storm-Johannsen L, Seidler D, Noack J, Gao W, Schafhauser T, Wohlleben W, van Berkel WJH, Jacques P, Kar T, Piechulla B, Ludwig-Müller J. The Endophytic Fungus Cyanodermella asteris Influences Growth of the Nonnatural Host Plant Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:49-63. [PMID: 34615362 DOI: 10.1094/mpmi-03-21-0072-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cyanodermella asteris is a fungal endophyte from Aster tataricus, a perennial plant from the northern part of Asia. Here, we demonstrated an interaction of C. asteris with Arabidopsis thaliana, Chinese cabbage, rapeseed, tomato, maize, or sunflower resulting in different phenotypes such as shorter main roots, massive lateral root growth, higher leaf and root biomass, and increased anthocyanin levels. In a variety of cocultivation assays, it was shown that these altered phenotypes are caused by fungal CO2, volatile organic compounds, and soluble compounds, notably astins. Astins A, C, and G induced plant growth when they were individually included in the medium. In return, A. thaliana stimulates the fungal astin C production during cocultivation. Taken together, our results indicate a bilateral interaction between the fungus and the plant. A stress response in plants is induced by fungal metabolites while plant stress hormones induced astin C production of the fungus. Interestingly, our results not only show unidirectional influence of the fungus on the plant but also vice versa. The plant is able to influence growth and secondary metabolite production in the endophyte, even when both organisms do not live in close contact, suggesting the involvement of volatile compounds.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Linda Jahn
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa Storm-Johannsen
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Diana Seidler
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jasmin Noack
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Wei Gao
- Biopsychology, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Schafhauser
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology and Biotechnology, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology and Biotechnology, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux, Belgium
| | - Tambi Kar
- Lipofabrik, Cité Scientifique, Bât. Polytech-Lille, Avenue Langevin 59 655, Villeneuve d'Ascq, France
| | - Birgit Piechulla
- Institute for Biological Science, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Jutta Ludwig-Müller
- Plant Physiology, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
7
|
Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, Hüttel B, Barry KW, Haridas S, Chen C, Bauer D, Andreopoulos W, Pangilinan J, LaButti K, Riley R, Lipzen A, Clum A, Drula E, Henrissat B, Kohler A, Grigoriev IV, Martin FM, Hacquard S. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun 2021; 12:7227. [PMID: 34893598 PMCID: PMC8664821 DOI: 10.1038/s41467-021-27479-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
The roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A. thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like small secreted proteins. We identify a set of 84 gene families associated with endophytism, including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional program activated by phylogenetically-distant mycobiota members upon host contact. Recolonization experiments with individual fungi indicate that strains with detrimental effects in mono-association with the host colonize roots more aggressively than those with beneficial activities, and dominate in natural root samples. Furthermore, we show that the pectin-degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant health.
Collapse
Affiliation(s)
- Fantin Mesny
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Thorsten Thiergart
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Brigitte Pickel
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lea Atanasova
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Diane Bauer
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elodie Drula
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques, 13009, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Univ., 13009, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Annegret Kohler
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francis M Martin
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France.
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Tsinghua East Road Haidian District, Beijing, China.
| | - Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
8
|
Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc Natl Acad Sci U S A 2021; 118:2111521118. [PMID: 34853170 PMCID: PMC8670527 DOI: 10.1073/pnas.2111521118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding how host–microbe homeostasis is controlled and maintained in plant roots is key to enhance plant productivity. However, the factors that contribute to the maintenance of this equilibrium between plant roots and their multikingdom microbial communities remain largely unknown. Here, we observed a link between fungal load in roots and plant health, and we showed that modulation of fungal abundance is tightly controlled by a two-layer regulatory circuit involving the host innate immune system on one hand and bacterial root commensals on another hand. Our results shed a light into how host–microbe and microbe–microbe interactions act in concert to prevent dysbiosis in Arabidopsis thaliana roots, thereby promoting plant health and maintaining growth-promoting activities of multikingdom microbial commensals. In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host–microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere.
Collapse
|
9
|
Yung L, Sirguey C, Azou-Barré A, Blaudez D. Natural Fungal Endophytes From Noccaea caerulescens Mediate Neutral to Positive Effects on Plant Biomass, Mineral Nutrition and Zn Phytoextraction. Front Microbiol 2021; 12:689367. [PMID: 34295322 PMCID: PMC8290495 DOI: 10.3389/fmicb.2021.689367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Phytoextraction using hyperaccumulating plants is a method for the remediation of soils contaminated with trace elements (TEs). As a strategy for improvement, the concept of fungal-assisted phytoextraction has emerged in the last decade. However, the role played by fungal endophytes of hyperaccumulating plants in phytoextraction is poorly studied. Here, fungal endophytes isolated from calamine or non-metalliferous populations of the Cd/Zn hyperaccumulator Noccaea caerulescens were tested for their growth promotion abilities affecting the host plant. Plants were inoculated with seven different isolates and grown for 2 months in trace element (TE)-contaminated soil. The outcomes of the interactions between N. caerulescens and its native strains ranged from neutral to beneficial. Among the strains, Alternaria thlaspis and Metapochonia rubescens, respectively, isolated from the roots of a non-metallicolous and a calamine population of N. caerulescens, respectively, exhibited the most promising abilities to enhance the Zn phytoextraction potential of N. caerulescens related to a significant increase of the plant biomass. These strains significantly increased the root elemental composition, particularly in the case of K, P, and S, suggesting an improvement of the plant nutrition. Results obtained in this study provide new insights into the relevance of microbial-assisted phytoextraction approaches in the case of hyperaccumulating plants.
Collapse
Affiliation(s)
- Loïc Yung
- Université de Lorraine, CNRS, LIEC, Nancy, France
| | | | - Antonin Azou-Barré
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, INRAE, LSE, Nancy, France
| | | |
Collapse
|
10
|
Moisan K, Raaijmakers JM, Dicke M, Lucas‐Barbosa D, Cordovez V. Volatiles from soil-borne fungi affect directional growth of roots. PLANT, CELL & ENVIRONMENT 2021; 44:339-345. [PMID: 32996612 PMCID: PMC7821104 DOI: 10.1111/pce.13890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 05/11/2023]
Abstract
Volatiles play major roles in mediating ecological interactions between soil (micro)organisms and plants. It is well-established that microbial volatiles can increase root biomass and lateral root formation. To date, however, it is unknown whether microbial volatiles can affect directional root growth. Here, we present a novel method to study belowground volatile-mediated interactions. As proof-of-concept, we designed a root Y-tube olfactometer, and tested the effects of volatiles from four different soil-borne fungi on directional growth of Brassica rapa roots in soil. Subsequently, we compared the fungal volatile organic compounds (VOCs) previously profiled with Gas Chromatography-Mass Spectrometry (GC-MS). Using our newly designed setup, we show that directional root growth in soil is differentially affected by fungal volatiles. Roots grew more frequently toward volatiles from the root pathogen Rhizoctonia solani, whereas volatiles from the other three saprophytic fungi did not impact directional root growth. GC-MS profiling showed that six VOCs were exclusively emitted by R. solani. These findings verify that this novel method is suitable to unravel the intriguing chemical cross-talk between roots and soil-borne fungi and its impact on root growth.
Collapse
Affiliation(s)
- Kay Moisan
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
- Present address:
Bio‐communication & EcologyETH ZürichZürichSwitzerland
| | - Viviane Cordovez
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
11
|
Barberis L, Michalet S, Piola F, Binet P. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biol 2020; 125:326-345. [PMID: 33766311 DOI: 10.1016/j.funbio.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.
Collapse
Affiliation(s)
- Louise Barberis
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Serge Michalet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5557 Écologie microbienne, Villeurbanne, France
| | - Florence Piola
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Philippe Binet
- Université de Bourgogne-Franche-Comté, CNRS-UFC, UMR6249 Chrono-environnement, Montbéliard, France.
| |
Collapse
|
12
|
Volatile Organic Compounds (VOCs) of Endophytic Fungi Growing on Extracts of the Host, Horseradish ( Armoracia rusticana). Metabolites 2020; 10:metabo10110451. [PMID: 33171636 PMCID: PMC7695154 DOI: 10.3390/metabo10110451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes and their hosts. In this study, the VOCs produced by 43 different fungal isolates of endophytic and soil fungi during growth on horseradish root (Armoracia rusticana) extract or malt extract agar were examined, by using headspace-gas chromatography-mass spectrometry (headspace-GC-MS) and a high relative surface agar film as a medium. The proposed technique enabled sensitive detection of several typical VOCs (acetone, methyl acetate, methyl formate, ethyl acetate, methyl butanol isomers, styrene, beta-phellandrene), along with glucosinolate decomposition products, including allyl cyanide and allyl isothiocyanate and other sulfur-containing compounds—carbon disulfide, dimethyl sulfide. The VOC patterns of fungi belonging to Setophoma, Paraphoma, Plectosphaerella, Pyrenochaeta, Volutella, Cadophora, Notophoma, and Curvularia genera were described for the first time. The VOC pattern was significantly different among the isolates. The pattern was indicative of putative myrosinase activity for many tested isolates. On the other hand, endophytes and soil fungi as groups could not be separated by VOC pattern or intensity.
Collapse
|
13
|
Muñoz-Barrios A, Sopeña-Torres S, Ramos B, López G, Del Hierro I, Díaz-González S, González-Melendi P, Mélida H, Fernández-Calleja V, Mixão V, Martín-Dacal M, Marcet-Houben M, Gabaldón T, Sacristán S, Molina A. Differential Expression of Fungal Genes Determines the Lifestyle of Plectosphaerella Strains During Arabidopsis thaliana Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1299-1314. [PMID: 32720872 DOI: 10.1094/mpmi-03-20-0057-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.
Collapse
Affiliation(s)
- Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Irene Del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Vanessa Fernández-Calleja
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| |
Collapse
|
14
|
Morsy M, Cleckler B, Armuelles-Millican H. Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E877. [PMID: 32664321 PMCID: PMC7411952 DOI: 10.3390/plants9070877] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
In a search for efficient fungal endophytes that can promote crop production and/or increase crop tolerance to abiotic stress, we isolated and tested various species harbored by wild plants. Sixty-seven endophytic fungal isolates were obtained from drought stressed, poor soil habitats, and inland high salt areas. We extensively tested the roles of Ampelomyces sp. and Penicillium sp. isolates in improving tomato growth and yield. Under greenhouse and field trails, Ampelomyces sp. and Penicillium sp. endophytes proved effective in conferring positive benefits to tomatoes placed under stress as well as under normal growing conditions. Ampelomyces sp. conferred tolerance to tomatoes placed under drought stress in addition to enhancing overall plant growth and fruit yield in comparison to non-symbiotic plants under drought stress. Penicillium sp. conferred tolerance to tomatoes placed under 300 mM salinity stress in addition to enhancing root biomass in comparison to non-symbiotic plants. Both endophytes proved efficient in enhancing plant growth, stress tolerance, recovery, and fruit yield under optimal experimental conditions in comparison to non-symbiotic plants. Field testing of tomato yield showed increased yield of symbiotic tomatoes compared to non-symbiotic ones. This data suggests that both Ampelomyces sp. and Penicillium sp. share a promising potential for improving future agricultural production, particularly with the projected changes in climate in the future.
Collapse
Affiliation(s)
- Mustafa Morsy
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL 35470, USA; (B.C.); (H.A.-M.)
| | | | | |
Collapse
|
15
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
16
|
Chauhan NM, Gutama AD, Aysa A. Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC Microbiol 2019; 19:172. [PMID: 31357942 PMCID: PMC6664548 DOI: 10.1186/s12866-019-1547-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 07/19/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Endophytic Fungi (EF) are an underexplored group of microorganisms as only a few plants have been studied with regards to their community. Diversity of EF found in young and old leaves of Enset plant has not been well studied. We analyzed and compared the colonization frequency (CF), richness diversity and fungal communities of the EF inhabiting the young and old leaves of Enset plant from Southern region of Ethiopia. Standard methods were used for isolation and identification of endophytic species from Enset leaves. RESULTS The study investigates the difference in quantity, in variety, in consistent pattern of community of EF along with different Enset varieties. A total number of 18 samples were analyzed and 108 morphospecies of EF were isolated and distributed among 17 genera. Aspergillus sp. and Penicillium sp. were the most common fungi reported in Enset plant. The largest numbers of EF isolates were observed in Maziya and Arkiya variety and the diversity index and species richness were found to be significant in Enset plant among these varieties. A high number of EF was isolated from old leaves in comparison to young leaves among all the varieties studied. Composition of EF at different altitudinal location also varied within each sites. CONCLUSION Isolation, characterization and distribution of the EF from Enset plant is the first approach that has been conducted in the developing country like Ethiopia. The findings of the present study show that the Enset agro-forestry system produces potential variability in the colonization, richness diversity and composition of EF in Enset plants. The assemblage of EF in healthy tissues of Enset plants may indicate that some of the fungi are possible latent pathogens and some may become saprophytic.
Collapse
Affiliation(s)
- Nitin M Chauhan
- Assistant Professor of Biotechnology, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| | - Abdissa D Gutama
- Assistant Professor of Biotechnology, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia
| | - Afras Aysa
- Assistant Professor of Biotechnology, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia
| |
Collapse
|
17
|
Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 2019; 190:589-604. [PMID: 31201518 PMCID: PMC6647456 DOI: 10.1007/s00442-019-04433-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Plants are ubiquitously exposed to a wide diversity of (micro)organisms, including mutualists and antagonists. Prior to direct contact, plants can perceive microbial organic and inorganic volatile compounds (hereafter: volatiles) from a distance that, in turn, may affect plant development and resistance. To date, however, the specificity of plant responses to volatiles emitted by pathogenic and non-pathogenic fungi and the ecological consequences of such responses remain largely elusive. We investigated whether Arabidopsis thaliana plants can differentiate between volatiles of pathogenic and non-pathogenic soil-borne fungi. We profiled volatile organic compounds (VOCs) and measured CO2 emission of 11 fungi. We assessed the main effects of fungal volatiles on plant development and insect resistance. Despite distinct differences in VOC profiles between the pathogenic and non-pathogenic fungi, plants did not discriminate, based on plant phenotypic responses, between pathogenic and non-pathogenic fungi. Overall, plant growth was promoted and flowering was accelerated upon exposure to fungal volatiles, irrespectively of fungal CO2 emission levels. In addition, plants became significantly more susceptible to a generalist insect leaf-chewing herbivore upon exposure to the volatiles of some of the fungi, demonstrating that a prior fungal volatile exposure can negatively affect plant resistance. These data indicate that plant development and resistance can be modulated in response to exposure to fungal volatiles.
Collapse
|
18
|
Shymanovich T, Faeth SH. Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass ( Poa alsodes). Ecol Evol 2019; 9:6624-6642. [PMID: 31236248 PMCID: PMC6580270 DOI: 10.1002/ece3.5241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/24/2023] Open
Abstract
AIM The endophyte Epichloë alsodes, with known insecticidal properties, is found in a majority of Poa alsodes populations across a latitudinal gradient from North Carolina to New York. A second endophyte, E. schardlii var. pennsylvanica, with known insect-deterring effects, is limited to a few populations in Pennsylvania. We explored whether such disparate differences in distributions could be explained by selection from biotic and abiotic environmental factors. LOCATION Along the Appalachian Mountains from North Carolina to New York, USA. TAXON Fungi. METHODS Studied correlations of infection frequencies with abiotic and biotic environmental factors. Checked endophyte vertical transmission rates and effects on overwintering survival. With artificial inoculations for two host populations with two isolates per endophyte species, tested endophyte-host compatibility. Studied effects of isolates on host performances in greenhouse experiment with four water-nutrients treatments. RESULTS Correlation analysis revealed positive associations of E. alsodes frequency with July Max temperatures, July precipitation, and soil nitrogen and phosphorous and negative associations with insect damage and soil magnesium and potassium. Plants infected with E. alsodes had increased overwintering survival compared to plants infected with E. schardlii or uninfected (E-) plants. Artificial inoculations indicated that E. alsodes had better compatibility with a variety of host genotypes than did E. schardlii. The experiment with reciprocally inoculated plants grown under different treatments revealed a complexity of interactions among hosts, endophyte species, isolate within species, host plant origin, and environmental factors. Neither of the endophyte species increased plant biomass, but some of the isolates within each species had other effects on plant growth such as increased root:shoot ratio, number of tillers, and changes in plant height that might affect host fitness. MAIN CONCLUSION In the absence of clear and consistent effects of the endophytes on host growth, the differences in endophyte-mediated protection against herbivores may be the key factor determining distribution differences of the two endophyte species.
Collapse
Affiliation(s)
- Tatsiana Shymanovich
- Biology DepartmentUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| | - Stanley H. Faeth
- Biology DepartmentUniversity of North Carolina at GreensboroGreensboroNorth Carolina
| |
Collapse
|
19
|
Exploring the natural microbiome of the model liverwort: fungal endophyte diversity in Marchantia polymorpha L. Symbiosis 2019. [DOI: 10.1007/s13199-019-00597-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
de Vries S, de Vries J, von Dahlen JK, Gould SB, Archibald JM, Rose LE, Slamovits CH. On plant defense signaling networks and early land plant evolution. Commun Integr Biol 2018; 11:1-14. [PMID: 30214675 PMCID: PMC6132428 DOI: 10.1080/19420889.2018.1486168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
All land plants must cope with phytopathogens. Algae face pathogens, too, and it is reasonable to assume that some of the strategies for dealing with pathogens evolved prior to the origin of embryophytes – plant terrestrialization simply changed the nature of the plant-pathogen interactions. Here we highlight that many potential components of the angiosperm defense toolkit are i) found in streptophyte algae and non-flowering embryophytes and ii) might be used in non-flowering plant defense as inferred from published experimental data. Nonetheless, the common signaling networks governing these defense responses appear to have become more intricate during embryophyte evolution. This includes the evolution of the antagonistic signaling pathways of jasmonic and salicylic acid, multiple independent expansions of resistance genes, and the evolution of resistance gene-regulating microRNAs. Future comparative studies will illuminate which modules of the streptophyte defense signaling network constitute the core and which constitute lineage- and/or environment-specific (peripheral) signaling circuits.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
21
|
Antonovics J, Abbate JL, Bruns EL, Fields PD, Forrester NJ, Gilbert KJ, Hood ME, Park T, Taylor DR. Effect of the anther-smut fungus Microbotryum on the juvenile growth of its host Silene latifolia. AMERICAN JOURNAL OF BOTANY 2018; 105:1088-1095. [PMID: 29995339 DOI: 10.1002/ajb2.1114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plant pathogens that form persistent systemic infections within plants have the potential to affect multiple plant life history traits, yet we tend to focus only on visible symptoms. Anther smut of Silene latifolia caused by the fungus Microbotryum lychnidis-dioicae induces the anthers of its host to support fungal spore production instead of pollen, and the pathogen is primarily transmitted among flowering plants by pollinators. Nevertheless, most of its life cycle is spent in the asymptomatic vegetative phase, and spores falling on seedlings or nonflowering plants can also infect the host. The purpose of this study was to ask whether the fungus also had an effect on its host plant in the juvenile vegetative phase before flowering as this is important for the disease dynamics in species where infection of seedlings is commonplace. METHODS Leaf length and leaf number of inoculated and uninoculated juvenile plants were compared in greenhouse experiments, and in one experiment, disease status of the plants at flowering was determined. KEY RESULTS Inoculated plants had shorter but more leaves, and reduced root mass at the early juvenile (preflowering) stage. Some of these effects were detectable in plants that were inoculated but showed no disease symptoms at flowering. CONCLUSIONS These results show that pathogenic fungi can have endophyte-like effects even in the total absence of their typical and more charismatic symptoms, and conversely that the assessment of endophyte effects on the fitness of their hosts should include all stages of the host life cycle.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jessica L Abbate
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Emily L Bruns
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Peter D Fields
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | | | | | - Michael E Hood
- Biology Department, Amherst College, Amherst, MA, 01003, USA
| | - Timothy Park
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
22
|
Nelson JM, Hauser DA, Hinson R, Shaw AJ. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. THE NEW PHYTOLOGIST 2018; 218:1217-1232. [PMID: 29411387 DOI: 10.1111/nph.15012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life.
Collapse
Affiliation(s)
| | - Duncan A Hauser
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - Rosemary Hinson
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - A Jonathan Shaw
- Duke University Department of Biology, Durham, NC, 27708, USA
| |
Collapse
|
23
|
de Vries S, von Dahlen JK, Schnake A, Ginschel S, Schulz B, Rose LE. Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiol Ecol 2018; 94:4925062. [PMID: 29528408 PMCID: PMC5939626 DOI: 10.1093/femsec/fiy037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/05/2018] [Indexed: 11/12/2022] Open
Abstract
Phytophthora infestans is a devastating pathogen of tomato and potato. It readily overcomes resistance genes and applied agrochemicals and hence even today causes large yield losses. Fungal endophytes provide a largely unexplored avenue of control of Phy. infestans. Not only do endophytes produce a wide array of bioactive metabolites, they may also directly compete with and defeat pathogens in planta. Here, we tested 12 fungal endophytes isolated from different plant species in vitro for their production of metabolites with anti- Phytophthora activity. Four well-performing isolates were evaluated for their ability to suppress nine isolates of Phy. infestans on agar medium and in planta. Two endophytes reliably inhibited all Phy. infestans isolates on agar medium, of which Phoma eupatorii isolate 8082 was the most promising. It nearly abolished infection by Phy. infestans in planta. Our data indicate a role for the production of anti-Phytophthora compounds by the fungus and/or an enhanced plant defense response, as evident by an enhanced anthocyanin production. Here, we present a potential biocontrol agent, which can inhibit a broad-spectrum of Phy. infestans isolates. Such broadly acting inhibition is ideal, because it allows for effective control of genetically diverse isolates and may slow the adaptation of Phy. infestans.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anika Schnake
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Sarah Ginschel
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Barbara Schulz
- Institute of Microbiology, Technische Universitaet Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
24
|
Hernandez-Escribano L, Iturritxa E, Elvira-Recuenco M, Berbegal M, Campos J, Renobales G, García I, Raposo R. Herbaceous plants in the understory of a pitch canker-affected Pinus radiata plantation are endophytically infected with Fusarium circinatum. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. Fungal Endophytes: Beyond Herbivore Management. Front Microbiol 2018; 9:544. [PMID: 29628919 PMCID: PMC5876286 DOI: 10.3389/fmicb.2018.00544] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM) programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.
Collapse
Affiliation(s)
- Bamisope S. Bamisile
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian and Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chandra K. Dash
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian and Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, Faculty of Agriculture, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Ravindran Keppanan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian and Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian and Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Root Infection of Canker Pathogens, Fusarium circinatum and Diplodia sapinea, in Asymptomatic Trees in Pinus radiata and Pinus pinaster Plantations. FORESTS 2018. [DOI: 10.3390/f9030128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Urbina H, Breed MF, Zhao W, Lakshmi Gurrala K, Andersson SGE, Ågren J, Baldauf S, Rosling A. Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biol 2018; 122:231-240. [PMID: 29551197 DOI: 10.1016/j.funbio.2017.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 01/16/2023]
Abstract
Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana. Plants were grown under controlled conditions in organic topsoil local to the Swedish genotype, and harvested after ten weeks. Total DNA was extracted from three belowground compartments: endosphere (sonicated roots), rhizosphere and bulk soil, and fungal communities were characterized from each by amplification and sequencing of the fungal barcode region ITS2. Fungal species diversity was found to decrease from bulk soil to rhizosphere to endosphere. A significant effect of plant genotype on fungal community composition was detected only in the endosphere compartment. Despite A. thaliana being a non-mycorrhizal plant, it hosts a number of known mycorrhiza fungi in its endosphere compartment, which is also colonized by endophytic, pathogenic and saprotrophic fungi. Species in the Archaeorhizomycetes were most abundant in rhizosphere samples suggesting an adaptation to environments with high nutrient turnover for some of these species. We conclude that A. thaliana endosphere fungal communities represent a selected subset of fungi recruited from soil and that plant genotype has small but significant quantitative and qualitative effects on these communities.
Collapse
Affiliation(s)
- Hector Urbina
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden; Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN, 47907, USA
| | - Martin F Breed
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden; School of Biological Sciences and the Environment Institute, University of Adelaide, North Terrace, SA-5005, Australia
| | - Weizhou Zhao
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Kanaka Lakshmi Gurrala
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Sandra Baldauf
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| |
Collapse
|
28
|
Sapp M, Ploch S, Fiore-Donno AM, Bonkowski M, Rose LE. Protists are an integral part of the Arabidopsis thaliana
microbiome. Environ Microbiol 2017; 20:30-43. [DOI: 10.1111/1462-2920.13941] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Melanie Sapp
- Institute of Population Genetics, Universitätstrasse 1; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University; Universitätstrasse 40225 Düsseldorf Germany
- Institute of Zoology, Department of Terrestrial Ecology, Zülpicher Str 47b; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne; Zülpicher Strasse 50674 Köln Germany
| | - Sebastian Ploch
- Institute of Population Genetics, Universitätstrasse 1; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University; Universitätstrasse 40225 Düsseldorf Germany
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25; 60325 Frankfurt am Main Germany
| | - Anna M. Fiore-Donno
- Institute of Zoology, Department of Terrestrial Ecology, Zülpicher Str 47b; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne; Zülpicher Strasse 50674 Köln Germany
| | - Michael Bonkowski
- Institute of Zoology, Department of Terrestrial Ecology, Zülpicher Str 47b; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne; Zülpicher Strasse 50674 Köln Germany
| | - Laura E. Rose
- Institute of Population Genetics, Universitätstrasse 1; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University; Universitätstrasse 40225 Düsseldorf Germany
| |
Collapse
|
29
|
Wężowicz K, Rozpądek P, Turnau K. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. MYCORRHIZA 2017; 27:499-511. [PMID: 28317065 PMCID: PMC5486607 DOI: 10.1007/s00572-017-0768-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/10/2017] [Indexed: 05/08/2023]
Abstract
The impact of fungal endophytes and the modulating role of arbuscular mycorrhizal fungi (AMF) on the vitality of Verbascum lychnitis, grown in the laboratory in a substratum from a post-mining waste dump was investigated. We report that inoculation with a single endophyte negatively affected the survival rate and biomass production of most of the plant-endophyte consortia examined. The introduction of arbuscular mycorrhiza fungi into this setup (dual inoculation) had a beneficial effect on both biomass yield and survivability. V. lychnitis co-inoculated with AMF and Cochliobolus sativus, Diaporthe sp., and Phoma exigua var. exigua yielded the highest biomass, exceeding the growth rate of both non-inoculated and AMF plants. AMF significantly improved the photosynthesis rates of the plant-endophyte consortia, which were negatively affected by inoculation with single endophytes. The abundance of PsbC, a photosystem II core protein previously shown to be upregulated in plants colonized by Epichloe typhina, exhibited a significant increase when the negative effect of the fungal endophyte was attenuated by AMF.
Collapse
Affiliation(s)
- Katarzyna Wężowicz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
30
|
Characterisation of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Qin Y, Pan X, Kubicek C, Druzhinina I, Chenthamara K, Labbé J, Yuan Z. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth. Front Microbiol 2017; 8:158. [PMID: 28220113 PMCID: PMC5292420 DOI: 10.3389/fmicb.2017.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant-fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and pleosporalean fungi, and initial evidence for the use of this fungal group in benefiting plant production.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Xueyu Pan
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Christian Kubicek
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Irina Druzhinina
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Komal Chenthamara
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Jessy Labbé
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| |
Collapse
|
32
|
Endophytism and bioactivity of endophytic fungi isolated from Combretum lanceolatum Pohl ex Eichler. Symbiosis 2016. [DOI: 10.1007/s13199-016-0427-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Liebe S, Wibberg D, Winkler A, Pühler A, Schlüter A, Varrelmann M. Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes. FEMS Microbiol Ecol 2016; 92:fiw004. [PMID: 26738557 DOI: 10.1093/femsec/fiw004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 12/22/2022] Open
Abstract
Post-harvest colonization of sugar beets accompanied by rot development is a serious problem due to sugar losses and negative impact on processing quality. Studies on the microbial community associated with rot development and factors shaping their structure are missing. Therefore, high-throughput sequencing was applied to describe the influence of environment, plant genotype and storage temperature (8°C and 20°C) on three different communities in stored sugar beets, namely fungi (internal transcribed spacers 1 and 2), Fusarium spp. (elongation factor-1α gene fragment) and oomycetes (internal transcribed spacers 1). The composition of the fungal community changed during storage mostly influenced by the storage temperature followed by a weak environmental effect. Botrytis cinerea was the prevalent species at 8°C whereas members of the fungal genera Fusarium and Penicillium became dominant at 20°C. This shift was independent of the plant genotype. Species richness within the genus Fusarium also increased during storage at both temperatures whereas the oomycetes community did not change. Moreover, oomycetes species were absent after storage at 20°C. The results of the present study clearly show that rot development during sugar beet storage is associated with pathogens well known as causal agents of post-harvest diseases in many other crops.
Collapse
Affiliation(s)
- Sebastian Liebe
- Institute of Sugar Beet Research, D-37077 Göttingen, Germany
| | - Daniel Wibberg
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Anika Winkler
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, D-37077 Göttingen, Germany
| |
Collapse
|
34
|
Saucedo-García A, Anaya AL, Espinosa-García FJ, González MC. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. PLoS One 2014; 9:e98454. [PMID: 24887512 PMCID: PMC4041768 DOI: 10.1371/journal.pone.0098454] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/02/2014] [Indexed: 12/17/2022] Open
Abstract
Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens.
Collapse
Affiliation(s)
- Aurora Saucedo-García
- Posgrado en Ciencias Biológicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Distrito Federal, México
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Ana Luisa Anaya
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Francisco J. Espinosa-García
- Laboratorio de Ecología Química, Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - María C. González
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal, México
| |
Collapse
|
35
|
|
36
|
Hale IL, Broders K, Iriarte G. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:492. [PMID: 25278956 PMCID: PMC4167000 DOI: 10.3389/fpls.2014.00492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/03/2014] [Indexed: 05/04/2023]
Abstract
Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an "extended genotype," an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhancing the immunity and fitness of crop species.
Collapse
Affiliation(s)
- Iago L. Hale
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
- *Correspondence: Iago L. Hale, Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, USA e-mail:
| | - Kirk Broders
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
| | - Gloria Iriarte
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| |
Collapse
|
37
|
|
38
|
Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0240-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 2013; 117:250-60. [DOI: 10.1016/j.funbio.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
|
40
|
Fungal Endophytes in Plant Roots: Taxonomy, Colonization Patterns, and Functions. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
|