1
|
Xue Y, Ma N, Jiang L, Wang W, Li S. Home-field advantage effect weakened over time but was strengthened by labile carbon input in later litter decomposition stage. FRONTIERS IN PLANT SCIENCE 2025; 16:1545311. [PMID: 40161221 PMCID: PMC11951264 DOI: 10.3389/fpls.2025.1545311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Home-field advantage (HFA) hypothesis proposes that leaf litter decays more rapidly in its original place than elsewhere owing to specific litter-field affinity. However, the HFA effect may vary over time and receive influences from other external factors, and it remains unclear whether the labile carbon (C) in root exudates influences the HFA effect during later decomposition stage. We aim to 1) elucidate how the HFA effect varies over time, 2) demonstrate how the HFA effect changes when stimulated by labile C at the later decomposition stage, and 3) explore how fungi affect the HFA effect. We conducted a reciprocal litter transplant experiment using two tree species, (Pinus elliottii and Cunninghamia lanceolata) with a two-phase design (early vs. late decomposition, plus glucose addition). We harvested the samples of soil and litter after decomposition for 1, 2, 4 and 6 months. Glucose (labile C) was added to soil after decomposition of 4 months. The HFA effect decreased over time, and the fungal community dissimilarity between home and away soils, especially Eurotiomycetes, affected variations in HFA. Additionally, glucose additions led to a significant increase of 15.19% in the HFA effect (p<0.05) during later decomposition stage, which was primarily associated with Sordariomycetes. Our findings implies that the HFA in litter decomposition was mainly associated with specific fungal taxa. Importantly, the introduction of labile C strengthened the HFA effect at later decomposition stage. Therefore, it cannot be overlooked that the priming effect of labile C input on the HFA effect at later decomposition stage in future research. Our two-phase design study further highlights the differences in litter decomposition between home and away soils at different decomposing stages and the regulation of HFA by specific fungal taxa and labile carbon inputs, especially in the later decomposition stage.
Collapse
Affiliation(s)
- Yafang Xue
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Ma
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Weimin Wang
- Shenzhen Ecological Environmental Monitoring Center of Guangdong Province, Shenzhen, China
| | - Shenggong Li
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Shabaev AV, Savinova OS, Moiseenko KV, Glazunova OA, Fedorova TV. Saprotrophic Wood Decay Ability and Plant Cell Wall Degrading Enzyme System of the White Rot Fungus Crucibulum laeve: Secretome, Metabolome and Genome Investigations. J Fungi (Basel) 2024; 11:21. [PMID: 39852439 PMCID: PMC11766592 DOI: 10.3390/jof11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. C. laeve produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the C. laeve culture liquids in the experimental conditions. The proportion of monosaccharides and polyols in the total pool of identified compounds increased on the sawdust-containing media. Multiple copies of the family AA1_1, AA3_2, AA7 and LPMOs CAZyme genes, as well as eight genes encoding proteins of the YvrE superfamily (COG3386), which includes sugar lactone lactonases, were predicted in the C. laeve genome. According to metabolic pathway analysis, the litter saprotroph C. laeve can catabolize D-gluconic and D-galacturonic acids, and possibly other aldonic acids, which seems to confer certain ecological advantages.
Collapse
Affiliation(s)
| | | | | | | | - Tatyana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (O.S.S.); (K.V.M.); (O.A.G.)
| |
Collapse
|
3
|
Wang X, Zheng WL, Wu CL, Han JJ, Xiang YP, Yang ML, He P, Yu FH, Li MH. Interactive effects of rhizospheric soil microbes and litter on the growth of the invasive hyperaccumulator Bidens pilosa in cadmium-contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1507089. [PMID: 39726418 PMCID: PMC11670255 DOI: 10.3389/fpls.2024.1507089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, Bidens pilosa, in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from B. pilosa in soil with low (5 mg kg-1) or high (10 mg kg-1) concentrations of Cd. The total, shoot, and root biomass of B. pilosa increased significantly with litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of B. pilosa was significantly lower in unsterilized rhizosphere soil than in sterilized rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root, respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on biomass did not vary in sterilized rhizosphere soils but significantly varied in unsterilized rhizosphere soils, showing that the biomass was significantly lower with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively. Tissue Cd concentrations were significantly higher in highly Cd-contaminated soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils; however, higher tissue Cd concentrations did not cause a significant decrease in the biomass of B. pilosa. Soil fungal communities, particularly the dominant phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the effects of rhizosphere soil microbes and litter on the growth of B. pilosa. Our results suggest that rhizosphere soil microbes and litter interact and affect the growth of B. pilosa: litter addition promoted growth by increasing the abundance of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in plant tissues, and rhizosphere soil inhibition was associated with a decreased abundance of Basidiomycota. Our findings highlight the importance of the interactive effects of rhizospheric soil microbes and litter on plant growth in Cd-contaminated soils.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Wei-Long Zheng
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Chun-Lan Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Jing-Jing Han
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Peng Xiang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ming-Lang Yang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Bou Orm E, Bergeret A, Malhautier L. Microbial communities and their role in enhancing hemp fiber quality through field retting. Appl Microbiol Biotechnol 2024; 108:501. [PMID: 39500773 PMCID: PMC11538233 DOI: 10.1007/s00253-024-13323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
The current development of industrial hemp "Cannabis Sativa L." fibers for technical textiles and industrial applications requires high-quality fibers with homogeneous properties. However, several factors have been reported to influence the fibers' intrinsic properties, including a post-harvest process known as retting. This process plays a crucial role in facilitating the mechanical extraction of fibers from hemp stems. Retting involves the degradation of the amorphous components surrounding the fiber bundles enabling their decohesion from stems. Microorganisms play a central role in mediating this bioprocess. During retting, they colonize the stems' surface. Therefore, the biochemical components of plant cell wall, acting as natural binding between fibers, undergo a breakdown through the production of microbial enzymes. Although its critical role, farmers often rely on empirical retting practices, and considering various biotic and abiotic factors, resulting in fibers with heterogenous properties. These factors limit the industrial applications of hemp fibers due to their inconsistent properties. Thus, the purpose of this review is to enhance our comprehension of how retting influences the dynamics of microbial communities and, consequently, the evolution of the biochemical properties of hemp stems throughout this process. Better understanding of retting is crucial for effective process management, leading to high-value fibers. KEY POINTS: • Retting enables degradation of cell wall components, controlling fiber properties. • Microbial enzymatic activity is crucial for successful decohesion of fiber bundles. • Understanding retting mechanisms is essential for consistent fiber production.
Collapse
Affiliation(s)
- Eliane Bou Orm
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
| | - Anne Bergeret
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| | - Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| |
Collapse
|
5
|
Meng W, Chang L, Qu Z, Liu B, Liu K, Zhang Y, Huang L, Sun H. Dominant Tree Species and Litter Quality Govern Fungal Community Dynamics during Litter Decomposition. J Fungi (Basel) 2024; 10:690. [PMID: 39452642 PMCID: PMC11508307 DOI: 10.3390/jof10100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Litter decomposition is a crucial biochemical process regulated by microbial activities in the forest ecosystem. However, the dynamic response of the fungal community during litter decomposition to vegetation changes is not well understood. Here, we investigated the litter decomposition rate, extracellular enzyme activities, fungal community, and nutrient cycling-related genes in leaf and twig litters over a three-year decomposition period in a pure Liquidamabar formosana forest and a mixed L. formosana/Pinus thunbergii forest. The result showed that during the three-year decomposition, twig litter in the mixed forest decomposed faster than that in the pure forest. In both leaf litter and twig litter, β-cellobiosidase and N-acetyl-glucosamidase exhibited higher activities in the mixed forest, whereas phosphatase, β-glucosidase, and β-xylosidase were higher in the pure forest. The fungal α-diversity were higher in both litters in the pure forest compared to the mixed forest, with leaf litter showing higher α-diversity than twig litter. Fungal species richness and α-diversity within leaf litter increased as decomposition progressed. Within leaf litter, Basidiomycota dominated in the mixed forest, while Ascomycota dominated in the pure forest. Funguild analysis revealed that Symbiotroph and ectomycorrhizal fungi were more abundant in the mixed forest compared to the pure forest. In the third-year decomposition, genes related to phosphorus cycling were most abundant in both forests, with the pure forest having a higher abundance of cex and gcd genes. Fungal community structure, predicted functional structure, and gene composition differed between the two forest types and between the two litter types. Notably, the fungal functional community structure during the first-year decomposition was distinct from that in the subsequent two years. These findings suggest that dominant tree species, litter quality, and decomposition time all significantly influence litter decomposition by attracting different fungal communities, thereby affecting the entire decomposition process.
Collapse
Affiliation(s)
- Wenjing Meng
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| | - Lin Chang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
| | - Zhaolei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
- College of Landscape and Horticulture, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Kang Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
| | - Yuemei Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
| | - Lin Huang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (W.M.); (L.C.); (Z.Q.); (B.L.); (K.L.); (Y.Z.)
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
6
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
7
|
Liu J, Ding C, Teng C, Zhang W, Su X, Zhu W. Impacts of litter microbial community on litter decomposition in the absence of soil microorganisms. Appl Environ Microbiol 2024; 90:e0023924. [PMID: 38483156 PMCID: PMC11022580 DOI: 10.1128/aem.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024] Open
Abstract
What is the effect of phyllosphere microorganisms on litter decomposition in the absence of colonization by soil microorganisms? Here, we simulated the litter standing decomposition stage in the field to study the differences in the composition and structure of the phyllosphere microbial community after the mixed decomposition of Populus × canadensis and Pinus sylvestris var. mongolica litter. After 15 months of mixed decomposition, we discovered that litters that were not in contact with soil had an antagonistic effect (the actual decomposition rate was 18.18%, which is lower than the expected decomposition rate) and the difference between the litters themselves resulted in a negative response to litter decomposition. In addition, there was no significant difference in bacterial and fungal community diversity after litter decomposition. The litter bacterial community was negatively responsive to litter properties and positively responsive to the fungal community. Importantly, we found that bacterial communities had a greater impact on litter decomposition than fungi. This study has enriched our understanding of the decomposition of litter itself and provided a theoretical basis for further exploring the "additive and non-additive effects" of litter decomposition and the mechanism of microbial drive. IMPORTANCE The study of litter decomposition mechanism plays an important role in the material circulation of the global ecosystem. However, previous studies have often looked at contact with soil as the starting point for decomposition. But actually, standing litter is very common in forest ecosystems. Therefore, we used field simulation experiments to simulate the decomposition of litters without contact with soil for 15 months, to explore the combined and non-added benefits of the decomposition of mixed litters, and to study the influence of microbial community composition on the decomposition rate while comparing the differences of microbial communities.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chao Teng
- Liaoning Non-Ferrous Geological Exploration and Research Institute Co. Ltd., Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Shi B, Wang X, Yang S, Chen H, Zhao Y, Shen J, Xie M, Huang B. Changes and driving factors of microbial community composition and functional groups during the decomposition of Pinus massoniana deadwood. Ecol Evol 2024; 14:e11210. [PMID: 38571805 PMCID: PMC10985386 DOI: 10.1002/ece3.11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Clarifying changes in the microbial community in deadwood at different stages of decomposition is crucial for comprehending the role of deadwood in the biogeochemical processes and the sustainability of forest development. However, there have been no reports on the dynamics of microbial community during the decomposition of Pinus massoniana. We used the "space-for-time" substitution to analyze the characteristics of microbial community changes and the key influencing factors in the P. massoniana deadwood during different decomposition stages by 16S and ITS rRNA gene sequencing. The results suggest that the microbial community structure of the early decomposition (decay class I) was significantly different from the other decay classes, while the diversity and richness of the microbial community were the highest in the late decomposition (decay class V). The Linear Discriminant Analysis Effect Size analysis revealed that most bacterial and fungal taxa were significantly enriched in decay classes I and V deadwood. During the initial stages of decomposition, the relative abundance of the bacterial functional group responsible for carbohydrate metabolism was greater than the later stages. As decomposition progressed, the relative abundance of saprophytic fungi gradually decreased, and there was a shift in the comparative abundance of mixed saprophytic-symbiotic fungi from low to high before eventually decreasing. Total organic carbon, total nitrogen, carbon-to-nitrogen ratio, total potassium, total phenol, condensed tannin, lignin, and cellulose were significantly correlated with microbial community structure, with the carbon-to-nitrogen ratio having the greatest effect. Our results indicate that the physicochemical properties of deadwood, microbial community structural composition and functional group changes were related to the decay class, among which the carbon-to-nitrogen ratio may be an important factor affecting the composition and diversity of microbial communities.
Collapse
Affiliation(s)
- Bingyang Shi
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Xiurong Wang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Shuoyuan Yang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Hongmei Chen
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Yang Zhao
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Junjie Shen
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Meixuan Xie
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Bufang Huang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| |
Collapse
|
9
|
Journeaux KL, Boddy L, Rowland L, Hartley IP. A positive feedback to climate change: The effect of temperature on the respiration of key wood-decomposing fungi does not decline with time. GLOBAL CHANGE BIOLOGY 2024; 30:e17212. [PMID: 38450825 DOI: 10.1111/gcb.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Heterotrophic soil microorganisms are responsible for ~50% of the carbon dioxide released by respiration from the terrestrial biosphere each year. The respiratory response of soil microbial communities to warming, and the control mechanisms, remains uncertain, yet is critical to understanding the future land carbon (C)-climate feedback. Individuals of nine species of fungi decomposing wood were exposed to 90 days of cooling to evaluate the medium-term effect of temperature on respiration. Overall, the effect of temperature on respiration increased in the medium term, with no evidence of compensation. However, the increasing effect of temperature on respiration was lost after correcting for changes in biomass. These results indicate that C loss through respiration of wood-decomposing fungi will increase beyond the direct effects of temperature on respiration, potentially promoting greater C losses from terrestrial ecosystems and a positive feedback to climate change.
Collapse
Affiliation(s)
- Katie L Journeaux
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Zhang X, Wu Y, Liu S, Li J, Jiang Z, Luo H, Huang X. Plant growth and development of tropical seagrass determined rhizodeposition and its related microbial community. MARINE POLLUTION BULLETIN 2024; 199:115940. [PMID: 38150979 DOI: 10.1016/j.marpolbul.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
In the recent study, we investigated the seasonal variations in root exudation and microbial community structure in the rhizosphere of seagrass Enhalus acoroides in the South China Sea. We found that the quantity and quality of root exudates varied seasonally, with higher exudation rates and more bioavailable dissolved organic matter (DOM) during the seedling and vegetative stages in spring and summer. Using Illumina NovaSeq sequencing, we analyzed bacterial and fungal communities and discovered that microbial diversity and composition were influenced by root exudate characteristics s and seagrass biomass, which were strongly dependent on seagrass growth stages. Certain bacterial groups, such as Ruegeria, Sulfurovum, Photobacterium, and Ralstonia were closely associated with root exudation and may contribute to sulfur cycling, nitrogen fixation, and carbon remineralization, which were important for plant early development. Similarly, specific fungal taxa, including Astraeus, Alternaria, Rocella, and Tomentella, were enriched in spring and summer and showed growth-promoting abilities. Overall, our study suggests that seagrass secretes different compounds in its exudates at various developmental stages, shaping the rhizosphere microbial assemblages.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Song X, Zheng R, Liu Y, Liu Z, Yu J, Li J, Zhang P, Gao Q, Li H, Li C, Liu X. Combined application of microbial inoculant and kelp-soaking wastewater promotes wheat seedlings growth and improves structural diversity of rhizosphere microbial community. Sci Rep 2023; 13:20697. [PMID: 38001242 PMCID: PMC10673839 DOI: 10.1038/s41598-023-48195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial processing of kelp generates large amounts of kelp-soaking wastewater (KSW), which contains a large amount of nutrient-containing substances. The plant growth-promoting effect might be further improved by combined application of growth-promoting bacteria and the nutrient-containing KSW. Here, a greenhouse experiment was conducted to determine the effect of the mixture of KSW and Bacillus methylotrophicus M4-1 (MS) vs. KSW alone (SE) on wheat seedlings, soil properties and the microbial community structure in wheat rhizosphere soil. The available potassium, available nitrogen, organic matter content and urease activity of MS soil as well as the available potassium of the SE soil were significantly different (p < 0.05) from those of the CK with water only added, increased by 39.51%, 36.25%, 41.61%, 80.56% and 32.99%, respectively. The dry and fresh weight of wheat seedlings from MS plants increased by 166.17% and 50.62%, respectively, while plant height increased by 16.99%, compared with CK. Moreover, the abundance and diversity of fungi in the wheat rhizosphere soil were significantly increased (p < 0.05), the relative abundance of Ascomycetes and Fusarium spp. decreased, while the relative abundance of Bacillus and Mortierella increased. Collectively, the combination of KSW and the plant growth-promoting strain M4-1 can promote wheat seedlings growth and improve the microecology of rhizosphere microorganisms, thereby solving the problems of resource waste and environmental pollution, ultimately turning waste into economic gain.
Collapse
Affiliation(s)
- Xin Song
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Rui Zheng
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Zhaoyang Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jian Yu
- Shandong Nongda Fertilizer Technology Co. Ltd, Taian, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Huying Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Chaohui Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China.
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China.
| |
Collapse
|
12
|
Liu B, Dai Y, Cheng X, He X, Bei Q, Wang Y, Zhou Y, Zhu B, Zhang K, Tian X, Duan M, Xie X, Wang L. Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Front Microbiol 2023; 14:1217966. [PMID: 37533822 PMCID: PMC10391546 DOI: 10.3389/fmicb.2023.1217966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
This study was conducted to investigate the capability of the microbial community characteristics and soil variables to promote carbon and nitrogen cycles in maize fields under straw mulch. We covered the surface soil of the maize field with different amounts of wheat straw (0 kg/ha, 2,250 kg/ha, and 4,500 kg/ha) and used 16S rRNA and ITS sequencing, Biology ECO-plate, traditional enzymology, TOC analyzer, and HPLC to measure bacterial and fungal community composition and functions, characteristics of microbial carbon source metabolism, carbon and nitrogen fraction, enzyme activity, and organic acid content in the maize rhizosphere and non-rhizosphere. The results indicated that short-term straw mulch insignificantly affected the alpha diversity of bacterial and fungal communities whereas significantly influenced their beta diversity. The results of functional prediction revealed that straw mulch considerably boosted the relative abundances of bacteria belonging to chemoheterotrophy, aerobic chemoheterotrophy, ureolysis, and nitrogen fixation and inhibited fermentation and nitrate reduction in maize rhizosphere soil. These processes primarily drove the C and N cycles in soil. Straw mulch also improved fungal saprotrophs by raising the proportion of Chaetomiaceae and Chaetosphaeriaceae. The Biology ECO-plate results illustrated that straw mulch weakened the metabolism capacity of microbial labile carbon resources. As a result, the labile C and N fractions were raised under straw mulch. Our results also showed that straw mulch primarily regulated the microbial community structure in rhizosphere soil by significantly decreasing Firmicutes and Ascomycota relative abundance while increasing Basidiomycota. The fungal community structure is more than bacterial for affecting soil microbial biomass carbon, readily oxidizable organic carbon, dissolved organic carbon, available nitrogen, ammonium, and nitrate directly and indirectly through malic acid content and cellulase, protease, and amylase activity. Overall, our findings imply that straw mulch might influence the bacterial and fungal community structures, thereby boosting the production of labile C and N components and accelerating the C and N cycle in maize fields.
Collapse
Affiliation(s)
- Bangyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Yisha Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xin Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xian He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Qicheng Bei
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Yifan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Yuling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Bo Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Kangping Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaoqin Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Meichun Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaoyu Xie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Linking processes to community functions—insights into litter decomposition combining fungal metatranscriptomics and environmental NMR profiling. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractIn forest ecosystems, decomposition is essential for carbon and nutrient cycling and therefore a key process for ecosystem functioning. During the decomposition process, litter chemistry, involved decomposer organisms, and enzymatic activity change interdependently. Chemical composition of the litter is the most complex and dynamic component in the decomposition process and therefore challenging to assess holistically. In this study, we aimed to characterize chemical shifts during decomposition and link them to changes in decomposer fungal activity. We characterized the chemical composition of freshly fallen autumn leaves of European beech (Fagus sylvatica) and the corresponding leaf litter after 1 year of decomposition by proton nuclear magnetic resonance spectroscopy. We further tested the applicability of spiking experiments for qualitative and quantitative characterization of leaves and litter chemistry. The composition and transcriptional activity of fungal communities was assessed by high-throughput Illumina sequencing in the same litter samples. We were able to distinguish freshly fallen leaves from 1-year-old litter based on their chemical composition. Chemical composition of leaves converged among regions with progressing decomposition. Fungal litter communities differed in composition among regions, but they were functionally redundant according to the expression of genes encoding litter degrading enzymes (CAZymes). Fungi of the saprotrophic genera Mycena and Chalara correlated with transcription of litter-degrading CAZymes in 1-year-old litter. Forestry measures influenced the diversity and transcription rate of the detected CAZymes transcripts in litter. Their expression was primarily predicted by composition of the soluble chemical fraction of the litter. Environmental NMR fingerprints thus proved valuable for inferring ecological contexts. We propose and discuss a holistic framework to link fungal activity, enzyme expression, and chemical composition.
Collapse
|
14
|
Liu J, Ding C, Zhang W, Wei Y, Zhou Y, Zhu W. Litter mixing promoted decomposition rate through increasing diversities of phyllosphere microbial communities. Front Microbiol 2022; 13:1009091. [PMID: 36425041 PMCID: PMC9678933 DOI: 10.3389/fmicb.2022.1009091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Decomposition of forest litter is an essential process for returning nutrients to the soil, which is crucial for preserving soil fertility and fostering the regular biological cycle and nutrient balance of the forest ecosystem. About 70% of the land-based forest litter is made up primarily of leaf litter. However, research on the complex effects and key determinants of leaf litter decomposition is still lacking. In this study, we examined the characteristics of nutrient release and microbial diversity structure during the decomposition of three types of litter in arid and semi-arid regions using 16S rRNA and ITS sequencing technology as well as nutrient content determination. It was revealed that the nutrient content and rate of decomposition of mixed litters were significantly different from those of single species. Following litter mixing, the richness and diversity of the microbial community on leaves significantly increased. It was determined that there was a significant correlation between bacterial diversity and content (Total N, Total P, N/P, and C/P). This study provided a theoretical framework for investigating the decomposition mechanism of mixed litters by revealing the microbial mechanism of mixed decomposition of litters from the microbial community and nutrient levels.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Changjun Ding,
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yawei Wei
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
Liu S, Wu J, Wang H, Lukianova A, Tokmakova A, Jin Z, Tan S, Chen S, Wang Y, Du Y, Miroshnikov KA, Xie J. Soil Layers Impact Lithocarpus Soil Microbial Composition in the Ailao Mountains Subtropical Forest, Yunnan, China. J Fungi (Basel) 2022; 8:jof8090948. [PMID: 36135673 PMCID: PMC9504396 DOI: 10.3390/jof8090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Plant litter decomposition is a complex, long-term process. The decomposition of litterfall is a major process influencing nutrient balance in forest soil. The soil microbiome is exceptionally diverse and is an essential regulator of litter decomposition. However, the microbiome composition and the interaction with litterfall and soil remain poorly understood. In this study, we examined the bacterial and fungal community composition of Lithocarpus across soil samples from different sampling seasons. Our results displayed that the microbiome assembly along the soil layer is influenced predominantly by the soil layer rather than by the sampling season. We identified that the soil layer strongly affected network complexity and that bacterial and fungal microbiomes displayed different patterns in different soil layers. Furthermore, source tracking and community composition analysis indicated that there are significantly different between soil and litter. Moreover, our results demonstrate that few dominant taxa (2% and 4% of bacterial and fungal phylotypes) dominated in the different soil layers. Hydnodontaceae was identified as the most important biomarker taxa for humic fragmented litter fungal microbiome and Nigrospora and Archaeorhizomycetaceae for organic soil and the organic mineral soil layer, and the phylum of Acidobacteria for the bacteria microbiome. Our work provides comprehensive evidence of significant microbiome differences between soil layers and has important implications for further studying soil microbiome ecosystem functions.
Collapse
Affiliation(s)
- Sijia Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jiadong Wu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Haofei Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Zhelun Jin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shuxian Tan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Sisi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yue Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yuxin Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel./Fax: +86-10-62336007
| |
Collapse
|
16
|
Liu S, Trevathan-Tackett SM, Jiang Z, Cui L, Wu Y, Zhang X, Li J, Luo H, Huang X. Nutrient loading decreases blue carbon by mediating fungi activities within seagrass meadows. ENVIRONMENTAL RESEARCH 2022; 212:113280. [PMID: 35430277 DOI: 10.1016/j.envres.2022.113280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Coastal pollution, including nutrient loading, can negatively impact seagrass health and cover and may consequently alter soil organic carbon (SOC) accumulation and preservation. Key to understanding how eutrophication impacts SOC cycling in seagrass ecosystems is how nutrient loading changes the sources of carbon being deposited and how these changes in resources, both nutrients and carbon availability, influence soil microbiota community and activity. Currently, the direction and magnitude of nutrient loading impacts on seagrass SOC dynamics are poorly understood at a meadow scale, limiting our ability to reveal the driving mechanisms of SOC remineralisation. The purpose of this study was to assess the response of surface SOC and soil microbiomes to nutrient loading within tropical seagrass meadows. To achieve this, we quantified both total SOC and recalcitrant soil organic carbon (RSOC) concentrations and sources, in addition to the composition of bacterial and fungal communities and soil extracellular enzyme activities. We found that nutrient loading elevated SOC and RSOC content, mainly facilitated by enhanced algal growth. There was no nutrient effect on the soil prokaryotic communities, however, saprotrophic fungi groups (i.e. Trapeliales, Sordaridales, Saccharomycetales and Polyporales) and fungal activities were elevated under high nutrient conditions, including extracellular enzyme activities linked to seagrass-based cellulose and lignin decomposition. This relative increase in RSOC transformation may decrease the relative contribution of seagrass carbon to RSOC pools. Additionally, significantly different fungal communities were observed between adjacent T. hemprichii and E. acoroides areas, which coincided with elevated RSOC-decomposing enzyme activity in T. hemprichii meadows, even though the mixed seagrass meadow received allochthonous SOC and RSOC from the same sources. These results suggest that nutrient loading stimulated fungal activity and community shifts specific to the local seagrass species, thereby causing fine-scale (within-meadow) variability in SOC cycling in response to nutrient loading. This study provides evidence that fungal composition and activity, mediated by human activities (e.g. nutrient loading), can be an important influence on seagrass blue carbon accumulation and remineralisation.
Collapse
Affiliation(s)
- Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, 3125, Australia
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
17
|
Li Y, Wang T, Camps-Arbestain M, Whitby CP. The regulators of soil organic carbon mineralization upon lime and/or phosphate addition vary with depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154378. [PMID: 35276156 DOI: 10.1016/j.scitotenv.2022.154378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Knowledge of the key factors regulating soil organic carbon (OC) mineralization in response to fertilizers and lime application is essential to understanding the effects of agricultural land management on soil OC preservation. Microbial community composition and OC availability to microorganisms have been proposed as the two most imperative factors controlling soil OC mineralization, although their relative importance is still under debate. Here we performed a laboratory incubation in combination with high-throughput sequencing and structural equation modeling to examine the mechanisms underlying the responses of OC mineralization in the topsoil and the subsoil of a volcanic soil (an Andosol) to the additions of lime and/or phosphate. Results showed that lime and/or phosphate additions induced distinct shifts in the microbial community composition and functional profiles in the topsoil and the subsoil. We found that OC mineralization relied on microbial community composition and functionality in the topsoil but was strongly related to the quality and quantity of the water-extractable OC (indicative of the OC availability) in the subsoil. These data suggest that the key regulator controlling the response of OC mineralization to lime and/or P additions shifts from microbial community composition to OC availability as soil depth increases in the Andosol. Our findings highlight the central role of mechanisms controlling soil OC mineralization in regulating the responses of mineralization to intensive agricultural management practices.
Collapse
Affiliation(s)
- Yang Li
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Tao Wang
- CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Marta Camps-Arbestain
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Catherine P Whitby
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
18
|
Brabcová V, Tláskal V, Lepinay C, Zrůstová P, Eichlerová I, Štursová M, Müller J, Brandl R, Bässler C, Baldrian P. Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate. Front Microbiol 2022; 13:835274. [PMID: 35495708 PMCID: PMC9045801 DOI: 10.3389/fmicb.2022.835274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fine woody debris (FWD) represents the majority of the deadwood stock in managed forests and serves as an important biodiversity hotspot and refuge for many organisms, including deadwood fungi. Wood decomposition in forests, representing an important input of nutrients into forest soils, is mainly driven by fungal communities that undergo continuous changes during deadwood decomposition. However, while the assembly processes of fungal communities in long-lasting coarse woody debris have been repeatedly explored, similar information for the more ephemeral habitat of fine deadwood is missing. Here, we followed the fate of FWD of Fagus sylvatica and Abies alba in a Central European forest to describe the assembly and diversity patterns of fungal communities over 6 years. Importantly, the effect of microclimate on deadwood properties and fungal communities was addressed by comparing FWD decomposition in closed forests and under open canopies because the large surface-to-volume ratio of FWD makes it highly sensitive to temperature and moisture fluctuations. Indeed, fungal biomass increases and pH decreases were significantly higher in FWD under closed canopy in the initial stages of decomposition indicating higher fungal activity and hence decay processes. The assembly patterns of the fungal community were strongly affected by both tree species and microclimatic conditions. The communities in the open/closed canopies and in each tree species were different throughout the whole succession with only limited convergence in time in terms of both species and ecological guild composition. Decomposition under the open canopy was characterized by high sample-to-sample variability, showing the diversification of fungal resources. Tree species-specific fungi were detected among the abundant species mostly during the initial decomposition, whereas fungi associated with certain canopy cover treatments were present evenly during decomposition. The species diversity of forest stands and the variability in microclimatic conditions both promote the diversity of fine woody debris fungi in a forest.
Collapse
Affiliation(s)
- Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Clémentine Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Zrůstová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Eichlerová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.,Bavarian Forest National Park, Grafenau, Germany
| | - Roland Brandl
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Grafenau, Germany.,Department of Conservation Biology, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Screening and Application of Ligninolytic Microbial Consortia to Enhance Aerobic Degradation of Solid Digestate. Microorganisms 2022; 10:microorganisms10020277. [PMID: 35208731 PMCID: PMC8878073 DOI: 10.3390/microorganisms10020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recirculation of solid digestate through digesters has been demonstrated to be a potential simple strategy to increase continuous stirred-tank reactor biogas plant efficiency. This study extended this earlier work and investigated solid digestate post-treatment using liquid isolated ligninolytic aerobic consortia in order to increase methane recovery during the recirculation. Based on sampling in several natural environments, an enrichment and selection method was implemented using a Lab-scale Automated and Multiplexed (an)Aerobic Chemostat system to generate ligninolytic aerobic consortia. Then, obtained consortia were further cultivated under liquid form in bottles. Chitinophagia bacteria and Sordariomycetes fungi were the two dominant classes of microorganisms enriched through these steps. Finally, these consortia where mixed with the solid digestate before a short-term aerobic post-treatment. However, consortia addition did not increase the efficiency of aerobic post-treatment of solid digestate and lower methane yields were obtained in comparison to the untreated control. The main reason identified is the respiration of easily degradable fractions (e.g., sugars, proteins, amorphous cellulose) by the selected consortia. Thus, this paper highlights the difficulties of constraining microbial consortia to sole ligninolytic activities on complex feedstock, such as solid digestate, that does not only contain lignocellulosic structures.
Collapse
|
20
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022; 22:10. [PMID: 34986801 PMCID: PMC8729104 DOI: 10.1186/s12866-021-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
21
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022. [PMID: 34986801 DOI: 10.1186/s12866-021-02431-859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
22
|
Duong HL, Paufler S, Harms H, Maskow T, Schlosser D. Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products. N Biotechnol 2021; 66:97-106. [PMID: 34767975 DOI: 10.1016/j.nbt.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany; Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province, Viet Nam.
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
23
|
Lepinay C, Tláskal V, Vrška T, Brabcová V, Baldrian P. Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Genomic and Experimental Investigations of Auriscalpium and Strobilurus Fungi Reveal New Insights into Pinecone Decomposition. J Fungi (Basel) 2021; 7:jof7080679. [PMID: 34436218 PMCID: PMC8401616 DOI: 10.3390/jof7080679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Saprophytic fungi (SPF) play vital roles in ecosystem dynamics and decomposition. However, because of the complexity of living systems, our understanding of how SPF interact with each other to decompose organic matter is very limited. Here we studied their roles and interactions in the decomposition of highly specialized substrates between the two genera Auriscalpium and Strobilurus fungi-colonized fallen pinecones of the same plant sequentially. We obtained the genome sequences from seven fungal species with three pairs: A. orientale-S. luchuensis, A. vulgare-S. stephanocystis and A. microsporum-S. pachcystidiatus/S. orientalis on cones of Pinus yunnanensis, P. sylvestris and P. armandii, respectively, and the organic profiles of substrate during decomposition. Our analyses revealed evidence for both competition and cooperation between the two groups of fungi during decomposition, enabling efficient utilization of substrates with complementary profiles of carbohydrate active enzymes (CAZymes). The Auriscalpium fungi are highly effective at utilizing the primary organic carbon, such as lignin, and hemicellulose in freshly fallen cones, facilitated the invasion and colonization by Strobilurus fungi. The Strobilurus fungi have genes coding for abundant CAZymes to utilize the remaining organic compounds and for producing an arsenal of secondary metabolites such as strobilurins that can inhibit other fungi from colonizing the pinecones.
Collapse
|
25
|
Baudy P, Zubrod JP, Konschak M, Kolbenschlag S, Pollitt A, Baschien C, Schulz R, Bundschuh M. Fungal-fungal and fungal-bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity. Ecology 2021; 102:e03471. [PMID: 34260739 DOI: 10.1002/ecy.3471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
Fungi produce a variety of extracellular enzymes making recalcitrant substrates bioavailable. Thus, fungi are central for decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species' performances, so-called net diversity effects (NDEs). We used fungal species-specific biomolecular tools to target fungal-fungal and fungal-bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 days of incubation. Fungal community data was used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria-induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria-free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity-ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co-occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies.
Collapse
Affiliation(s)
- Patrick Baudy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, Eußerthal, D-76857, Germany
| | - Marco Konschak
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Annika Pollitt
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Christiane Baschien
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, Braunschweig, D-38124, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, Eußerthal, D-76857, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, Uppsala, SWE-75007, Sweden
| |
Collapse
|
26
|
Mayer M, Rewald B, Matthews B, Sanden H, Rosinger C, Katzensteiner K, Gorfer M, Berger H, Tallian C, Berger TW, Godbold DL. Soil fertility relates to fungal-mediated decomposition and organic matter turnover in a temperate mountain forest. THE NEW PHYTOLOGIST 2021; 231:777-790. [PMID: 34013982 PMCID: PMC7611052 DOI: 10.1111/nph.17421] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Fungi are known to exert a significant influence over soil organic matter (SOM) turnover, however understanding of the effects of fungal community structure on SOM dynamics and its consequences for ecosystem fertility is fragmentary. Here we studied soil fungal guilds and SOM decomposition processes along a fertility gradient in a temperate mountain beech forest. High-throughput sequencing was used to investigate fungal communities. Carbon and nitrogen stocks, enzymatic activity and microbial respiration were measured. While ectomycorrhizal fungal abundance was not related to fertility, saprotrophic ascomycetes showed higher relative abundances under more fertile conditions. The activity of oxidising enzymes and respiration rates in mineral soil were related positively to fertility and saprotrophic fungi. In addition, organic layer carbon and nitrogen stocks were lower on the more fertile plots, although tree biomass and litter input were higher. Together, the results indicated a faster SOM turnover at the fertile end of the gradient. We suggest that there is a positive feedback mechanism between SOM turnover and fertility that is mediated by soil fungi to a significant extent. By underlining the importance of fungi for soil fertility and plant growth, these findings furthermore emphasise the dependency of carbon cycling on fungal communities below ground.
Collapse
Affiliation(s)
- Mathias Mayer
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf 8903, Switzerland
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| | - Boris Rewald
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| | - Bradley Matthews
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
- Environment Agency Austria, Spittelauer Lände 5, Vienna 1090, Austria
| | - Hans Sanden
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| | - Christoph Rosinger
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, Cologne 50674, Germany
| | - Klaus Katzensteiner
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| | - Markus Gorfer
- Bioresources Unit, Center for Health & Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria
| | - Harald Berger
- Symbiocyte, Vorgartenstraße 145, Vienna 1020, Austria
| | - Claudia Tallian
- Bioresources Unit, Center for Health & Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln 3430, Austria
| | - Torsten W. Berger
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| | - Douglas L. Godbold
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna 1190, Austria
| |
Collapse
|
27
|
Dang Q, Wang Y, Xiong S, Yu H, Zhao X, Tan W, Cui D, Xi B. Untangling the response of fungal community structure, composition and function in soil aggregate fractions to food waste compost addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145248. [PMID: 33736240 DOI: 10.1016/j.scitotenv.2021.145248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Soil fungi are key drivers in regulating the ecosystem function, playing a vital role in protecting the plant from phytopathogens and other biotic and abiotic pressures. However, the potential impact of compost addition and soil aggregate size on the fungal community and functional ecological guild remains uncertain. This study investigated the structure, composition, and function of soil fungal communities across aggregate fractions under food waste compost addition using Miseq sequencing and FUNGuild. Compost addition exerted a negative impact on fungal α-diversity, and shifted the structure and changed the composition of fungal community. Compost addition rates exhibited more contributions to fungal α-diversity variations (R = 0.609, 0.895, and 0.501 for Sobs, Shannon, and Chao indices, respectively, P = 0.001) and the separation of community structure than soil aggregate size (R = 0.952, P = 0.001). Biomarkers, including Chaetomiaceae, Ascobolaceae, and Sordariomycete, displayed significant superiority in compost-added soils, whereas the populations of Nectriaceae and Clavicipitaceae were significantly decreased. The relative abundances of animal and plant pathogens were significantly decreased, whereas that of saprotrophs were increased. The abundances of pathogens correlated positively with pH and negatively with nutrients (soil organic matter, dissolved organic carbon, total nitrigen, NH4+, and NO3-), whereas those of saprotrophs showed an opposite trend. The dose of compost was the major driver for fungal functional guild variation, whereas carbon and nitrogen source exhibited more contributions to function variation than pH value. These results provide a reference for sustainable ecological agriculture by applying compost rationally under the conditions of soil health and agricultural performance.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shangao Xiong
- Chinese Academy of Environmental Planning, Beijing 100875, China
| | - Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongyu Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
28
|
Samarajeewa AD, Velicogna JR, Schwertfeger DM, Princz JI, Subasinghe RM, Scroggins RP, Beaudette LA. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143037. [PMID: 33168240 DOI: 10.1016/j.scitotenv.2020.143037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
This study represents a holistic approach in assessing the effects of copper oxide nanoparticles (nCuO) on microbial health and community structure in soil amended with municipal biosolids. The biosolids were amended with nCuO (<50 nm) and mixed into a sandy loam soil at measured Cu concentrations of 27, 54, 123, 265 and 627 mg Cu kg-1 soil. A suite of tests were used to assess the potential impact of nCuO on microbial growth, activity, and diversity. Microbial growth was determined by the heterotrophic plate count (HPC) method, while microbial diversity was assessed using both community level physiological profiling (CLPP) and 16S ribosomal DNA (rDNA) sequencing. Microbial activity was assessed by examining soil nitrification, organic matter decomposition, soil respiration (basal and substrate induced) and soil enzyme assays for dehydrogenase, phosphatase and β-glucosidase activities. As a readily soluble positive control, copper sulfate (CuSO4) was used at measured Cu concentrations of 65, 140, 335 and 885 mg Cu kg-1 soil for select tests, and at the highest concentration for the remaining tests. Analysis on Cu bioavailability revealed that extractable Cu2+ was higher in CuSO4-spiked soils than nCuO-spiked soils. At a nCuO exposure concentration of ≤265 mg Cu kg-1 soil, stimulatory effects were observed in nitrification, β-glucosidase and community level physiological profiling (CLPP) tests. nCuO showed no significant inhibitory effects on the soil microbial growth, activity or diversity at the highest concentration (i.e. 627 mg Cu kg-1 soil), with the exception of the dehydrogenase (i.e. ≥27 mg Cu kg-1 soil) and phosphatase (i.e. 627 mg Cu kg-1 soil) enzyme activities. In contrast, inhibition from CuSO4 at 885 mg Cu kg-1 soil was observed in all tests with the exception of β-glucosidase enzyme activity. The growth of a Cu tolerant bacterium, Rhodanobacter sp., was observed at 885 mg Cu kg-1 soil (CuSO4).
Collapse
Affiliation(s)
- A D Samarajeewa
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada.
| | - J R Velicogna
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| | - D M Schwertfeger
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| | - J I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| | - R M Subasinghe
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| | - R P Scroggins
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| | - L A Beaudette
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario K1V 1C7, Canada
| |
Collapse
|
29
|
Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, Chin MY, Lo ML, Jee MS, Maie N, Melling L. Linking prokaryotic community composition to carbon biogeochemical cycling across a tropical peat dome in Sarawak, Malaysia. Sci Rep 2021; 11:6416. [PMID: 33742002 PMCID: PMC7979770 DOI: 10.1038/s41598-021-81865-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
Collapse
Affiliation(s)
- Simon Peter Dom
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Sharon Yu Ling Lau
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Frazer Midot
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mui Lan Yap
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mei-Yee Chin
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mei Lieng Lo
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mui Sie Jee
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nagamitsu Maie
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Lulie Melling
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
30
|
Zhu Q, Wang N, Duan B, Wang Q, Wang Y. Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143839. [PMID: 33298322 DOI: 10.1016/j.scitotenv.2020.143839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Understanding the succession patterns of microbial community along root growth provides deep insights into interaction between fine roots and microbes. In the study, we investigated this issue using fine roots from poplar trees and grouped these fine roots into three growth stages: newborn white roots (WR), mature yellow roots (YR) and aging brown roots (BR). Root surface traits were observed under a scanning electron microscopy (SEM). Adhered soils on roots of the three growth stages were grouped into the three soil compartments, correspondingly. The 16S rRNA and ITS1 region were sequenced for bacteria and fungi inhabiting rhizosphere soils, respectively. Phospholipid fatty acid (PLFA) technology was employed to examine the biomass of bacterial and fungal communities. The anatomical traits of fine roots show apparent differences among the WR, YR and BR. Both bacteria and fungi have 25 dominant genera with a relative abundance over 1%, of which, four genera of the bacteria (Bacillus, Burkholderia, Ralstonia and Dyella) differ in abundance among the WR, YR and BR soil compartments and four genera of the fungi (Fusarium, Chaetomium, Penicillium and Scleroderma) differ in abundance among these soil compartments. The operational taxonomic units (OTUs) showed the highest richness in the WR soil compartment for bacteria and in the YR soil compartment for fungi, indicating a different succession pattern between the bacterial and fungal communities. Furthermore, the biomass of bacterial community is larger than the fungal community according to PLFAs, and both decreased along fine root growth. The total carbon (TC) in the soil increases along root growth while the dissolved organic carbon (DOC) decreases. Redundancy analysis (RDA) shows a close correlation between twelve dominant bacteria genera and the total organic carbon (TOC), the readily oxidizable organic carbon (ROC) and DOC and ten dominant fungi genera with the TOC and ROC. In conclusion, our results indicate that fine roots growth has shaped the composition and structure of root associated bacterial and fungal communities.
Collapse
Affiliation(s)
- Qiliang Zhu
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nian Wang
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an 271018, PR China
| | - Baoli Duan
- Institute of Mountain Hazards and Environments, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Qingkui Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Yanping Wang
- Taishan Forest Ecosystem Research Station of State Forestry Administration, College of Forestry, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
31
|
Amplicon Sequencing-Based Bipartite Network Analysis Confirms a High Degree of Specialization and Modularity for Fungi and Prokaryotes in Deadwood. mSphere 2021; 6:6/1/e00856-20. [PMID: 33441408 PMCID: PMC7845612 DOI: 10.1128/msphere.00856-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Deadwood is important for our forest ecosystems. It feeds and houses many organisms, e.g., fungi and prokaryotes, with many different species contributing to its decomposition and nutrient cycling. Fungi and prokaryotes are dominant colonizers of wood and mediate its decomposition. Much progress has been achieved to unravel these communities and link them to specific wood properties. However, comparative studies considering both groups of organisms and assessing their relationships to wood resources are largely missing. Bipartite interaction networks provide an opportunity to investigate this colonizer-resource relationship more in detail and aim to directly compare results between different biotic groups. The main questions were as follows. Are network structures reflecting the trophic relationship between fungal and prokaryotic colonizers and their resources? If so, do they reflect the critical role of these groups, especially that of fungi, during decomposition? We used amplicon sequencing data to analyze fungal and prokaryotic interaction networks from deadwood of 13 temperate tree species at an early to middle stage of decomposition. Several diversity- and specialization-related indices were determined and the observed network structures were related to intrinsic wood traits. We hypothesized nonrandom bipartite networks for both groups and a higher degree of specialization for fungi, as they are the key players in wood decomposition. The results reveal highly modular and specialized interaction networks for both groups of organisms, demonstrating that many fungi and prokaryotes are resource-specific colonizers. However, as the level of specialization of fungi significantly surpassed that of prokaryotes, our findings reflect the strong association between fungi and their host. Our novel approach shows that the application of bipartite interaction networks is a useful tool to explore, quantify, and compare the deadwood-colonizers relationship based on sequencing data. IMPORTANCE Deadwood is important for our forest ecosystems. It feeds and houses many organisms, e.g., fungi and prokaryotes, with many different species contributing to its decomposition and nutrient cycling. The aim of this study was to explore and quantify the relationship between these two main wood-inhabiting organism groups and their corresponding host trees. Two independent DNA-based amplicon sequencing data sets (fungi and prokaryotes) were analyzed via bipartite interaction networks. The links in the networks represent the interactions between the deadwood colonizers and their deadwood hosts. The networks allowed us to analyze whether many colonizing species interact mostly with a restricted number of deadwood tree species, so-called specialization. Our results demonstrate that many prokaryotes and fungi are resource-specific colonizers. The direct comparison between both groups revealed significantly higher specialization values for fungi, emphasizing their strong association to respective host trees, which reflects their dominant role in exploiting this resource.
Collapse
|
32
|
|
33
|
Comparative Analysis of Carbohydrate Active Enzymes in the Flammulina velutipes var. lupinicola Genome. Microorganisms 2020; 9:microorganisms9010020. [PMID: 33374587 PMCID: PMC7822412 DOI: 10.3390/microorganisms9010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to determine the genome sequence of Flammulina velutipes var. lupinicola based on next-generation sequencing (NGS) and to identify the genes encoding carbohydrate-active enzymes (CAZymes) in the genome. The optimal assembly (71 kmer) based on ABySS de novo assembly revealed a total length of 33,223,357 bp (49.53% GC content). A total of 15,337 gene structures were identified in the F. velutipes var. lupinicola genome using ab initio gene prediction method with Funannotate pipeline. Analysis of the orthologs revealed that 11,966 (96.6%) out of the 15,337 predicted genes belonged to the orthogroups and 170 genes were specific for F. velutipes var. lupinicola. CAZymes are divided into six classes: auxiliary activities (AAs), glycosyltransferases (GTs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs). A total of 551 genes encoding CAZymes were identified in the F. velutipes var. lupinicola genome by analyzing the dbCAN meta server database (HMMER, Hotpep, and DIAMOND searches), which consisted of 54-95 AAs, 145-188 GHs, 55-73 GTs, 6-19 PLs, 13-59 CEs, and 7-67 CBMs. CAZymes can be widely used to produce bio-based products (food, paper, textiles, animal feed, and biofuels). Therefore, information about the CAZyme repertoire of the F. velutipes var. lupinicola genome will help in understanding the lignocellulosic machinery and in-depth studies will provide opportunities for using this fungus for biotechnological and industrial applications.
Collapse
|
34
|
Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes. J Fungi (Basel) 2020; 6:jof6040301. [PMID: 33228232 PMCID: PMC7711621 DOI: 10.3390/jof6040301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.
Collapse
|
35
|
Biswas A, Bera M, Khan MA, Spicer RA, Spicer TEV, Acharya K, Bera S. Evidence of fungal decay in petrified legume wood from the Neogene of the Bengal Basin, India. Fungal Biol 2020; 124:958-968. [PMID: 33059847 DOI: 10.1016/j.funbio.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/30/2022]
Abstract
Silicified fossil legume woods of Cynometroxylon Chowdhury & Ghosh collected from the Neogene (late Miocene) sediments of the Bengal Basin, eastern India, exhibit fungal decay seldom found in the fossil record. The wood possesses numerous perforate areas on the surface that seem to be the result of extensive fungal activity. In transverse section, the decayed areas (pockets) appear irregular to ellipsoidal in outline; in longitudinal section these areas of disrupted tissue are somewhat spindle-shaped. Individual pockets are randomly scattered throughout the secondary xylem or are restricted to a narrow zone. The aforesaid patterns of decay in fossil wood show similarities with that of white rot decay commonly produced by higher fungi, specifically basidiomycetes and ascomycetes. The host fossil wood harbors abundant ramifying and septate fungal hyphae with knob like swellings similar to pseudoclamps in basidiomycetes, and three-celled conidia-like reproductive structures. This record expands our current knowledge of wood decaying fungi-host plant interaction in the Neogene tropical forests of Peninsular India.
Collapse
Affiliation(s)
- Anwesha Biswas
- Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 00019, India
| | - Meghma Bera
- Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 00019, India; Department of Botany, Vidyanagar College, West Bengal, 743503, India
| | - Mahasin Ali Khan
- Department of Botany, Sidho-Kanho-Birsha University, Ranchi Road, Purulia, 723104, India
| | - R A Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, PR China; School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - T E V Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, PR China
| | - Krishnendu Acharya
- Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 00019, India
| | - Subir Bera
- Centre of Advanced Study, Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 00019, India.
| |
Collapse
|
36
|
Lee MR, Oberle B, Olivas W, Young DF, Zanne AE. Wood construction more strongly shapes deadwood microbial communities than spatial location over 5 years of decay. Environ Microbiol 2020; 22:4702-4717. [PMID: 32840945 DOI: 10.1111/1462-2920.15212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 01/18/2023]
Abstract
Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3-98.8% mass loss while decaying in common garden 'rotplots' in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1-5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.
Collapse
Affiliation(s)
- Marissa R Lee
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC, 27695, USA
| | - Brad Oberle
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA
| | - Wendy Olivas
- Department of Biology, University of Missouri, St Louis, MO, 63108, USA
| | - Darcy F Young
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW Suite 6000, Washington, DC, 20052, USA
| | - Amy E Zanne
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW Suite 6000, Washington, DC, 20052, USA
| |
Collapse
|
37
|
Zanne AE, Powell JR, Flores-Moreno H, Kiers ET, van 't Padje A, Cornwell WK. Finding fungal ecological strategies: Is recycling an option? FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Monteiro Moreira GA, Martins do Vale HM. Soil Yeast Communities in Revegetated Post-Mining and Adjacent Native Areas in Central Brazil. Microorganisms 2020; 8:microorganisms8081116. [PMID: 32722305 PMCID: PMC7464199 DOI: 10.3390/microorganisms8081116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022] Open
Abstract
Yeasts represent an important component of the soil microbiome. In central Brazil, mining activities are among the main anthropogenic factors that influence the dynamics of the soil microbiota. Few studies have been dedicated to analysis of tropical soil yeast communities, and even fewer have focused on Brazilian hotspots influenced by mining activity. The aim of the current study was to describe soil yeast communities in a post-mining site with revegetated and native areas, along Neotropical Savanna and Atlantic Forest biomes. Yeast communities were described using a culture-based method and estimator-based species accumulation curves, and their associations with environmental characteristics were assessed using multivariate analysis. The results indicate a greater species richness for yeast communities in the revegetated area. We identified 37 species describing 86% of the estimated richness according to Chao2. Ascomycetous yeasts dominated over basidiomycetous species. Candida maltosa was the most frequent species in two phytocenoses. Red-pigmented yeasts were frequent only in the summer. The main soil attributes affecting yeast communities were texture and micronutrients. In conclusion, each phytocenosis showed a particular assemblage of species as a result of local environmental phenomena. The species richness in a Revegetated area points to a possible ecological role of yeast species in environmental recovery. This study provided the first comprehensive inventory of soil yeasts in major phytocenoses in Minas Gerais, Brazil.
Collapse
Affiliation(s)
- Geisianny Augusta Monteiro Moreira
- Microbial Biology Graduate Program, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil;
| | - Helson Mario Martins do Vale
- Laboratory of Mycology, Department of Phytopathology, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil
- Correspondence: ; Tel.: +55-6131073060
| |
Collapse
|
39
|
Zheng W, Lehmann A, Ryo M, Vályi KK, Rillig MC. Growth rate trades off with enzymatic investment in soil filamentous fungi. Sci Rep 2020; 10:11013. [PMID: 32620925 PMCID: PMC7335036 DOI: 10.1038/s41598-020-68099-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2020] [Indexed: 11/09/2022] Open
Abstract
Saprobic soil fungi drive many important ecosystem processes, including decomposition, and many of their effects are related to growth rate and enzymatic ability. In mycology, there has long been the implicit assumption of a trade-off between growth and enzymatic investment, which we test here using a set of filamentous fungi from the same soil. For these fungi we measured growth rate (as colony radial extension) and enzymatic repertoire (activities of four enzymes: laccase, cellobiohydrolase, leucine aminopeptidase and acid phosphatase), and explored the interaction between the traits based on phylogenetically corrected methods. Our results support the existence of a trade-off, however only for the enzymes presumably representing a larger metabolic cost (laccase and cellobiohydrolase). Our study offers new insights into potential functional complementarity within the soil fungal community in ecosystem processes, and experimentally supports an enzymatic investment/growth rate trade-off underpinning phenomena including substrate succession.
Collapse
Affiliation(s)
- Weishuang Zheng
- PKU-HKUST ShenZhen-Hong Kong Institution, Shenzhen, 518057, China
| | - Anika Lehmann
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Masahiro Ryo
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Kriszta Kezia Vályi
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
| |
Collapse
|
40
|
Bobadilla-Carrillo GI, Magallón-Servín P, López-Vela M, Palomino-Hermosillo YA, Ramírez-Ramírez JC, Gutiérrez-Leyva R, Ibarra-Castro L, Bautista-Rosales PU. Characterization and proliferation capacity of potentially pathogenic fungi in marine and freshwater fish commercial feeds. Arch Microbiol 2020; 202:2379-2390. [PMID: 32588083 DOI: 10.1007/s00203-020-01954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
In the aquaculture industry, the selection and quality of feed are highly relevant because their integrity and management have an impact on the health and development of organisms. In general, feeds contamination depends on storage conditions and formulation. Furthermore, it has been recognized that filamentous fungi are among the most important contaminating agent in formulated feeds. Therefore, the purpose of this research was to identify saprophytic fungi capable of proliferating in commercial feeds, as well as determining their prevalence, extracellular enzymes profile, ability to assimilate carbon sources, and finally their ability to produce aflatoxins. In order to do that, twenty-two fungi were isolated from commercial fish feeds. After, the species Aspergillus chevalieri, A. cristatus, A. sydowii, A. versicolor, A. flavus, A. creber, and Lichtheimia ramosa were identified. These fungi were able to produce extracellular enzymes, such as phosphatases, esterases, proteases, β-glucosidase, and N-acetyl-β-glucosaminidase. The isolated fungi showed no selective behavior in the assimilation of the different carbon sources, showing a strong metabolic diversity. Prevalence percentages above 85% were recorded. Among all fungi studied, A. flavus M3-C1 had the highest production of aflatoxins when this strain was inoculated directly in the feeds (295 ppb). The aflatoxin production by this strain under the experimental setting is above the permitted levels, and it has been established that high levels of aflatoxins in feeds can cause alterations in fish growth as well as the development of cancerous tumors in the liver, in addition to enhancing mortality.
Collapse
Affiliation(s)
- Giovanna Ilieva Bobadilla-Carrillo
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico.,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico
| | - Paola Magallón-Servín
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | - Melissa López-Vela
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | | | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Ranferi Gutiérrez-Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Leonardo Ibarra-Castro
- Centro de Investigación en Alimentación y Desarrollo, Av. Sábalo Cerritos S/N, Col. Cerritos, C. P. 82100, Mazatlán, Sinaloa, Mexico
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico. .,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
41
|
Wu F, You Y, Werner D, Jiao S, Hu J, Zhang X, Wan Y, Liu J, Wang B, Wang X. Carbon nanomaterials affect carbon cycle-related functions of the soil microbial community and the coupling of nutrient cycles. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122144. [PMID: 32006845 DOI: 10.1016/j.jhazmat.2020.122144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 05/23/2023]
Abstract
Many studies have examined changes in soil microbial community structure and composition by carbon nanomaterials (CNMs). Few, however, have investigated their impact on microbial community functions. This study explored how fullerene (C60) and multi-walled carbon nanotubes (M50) altered functionality of an agricultural soil microbial community (Archaea, Bacteria and Eukarya), using microcosm experiments combined with GeoChip microarray. M50 had a stronger effect than C60 on alpha diversity of microbial functional genes; both CNMs increased beta diversity, resulting in functional profiles distinct from the control. M50 exerted a broader, severer impact on microbially mediated nutrient cycles. Together, these two CNMs affected CO2 fixation pathways, microbial degradation of diverse carbohydrates, secondary plant metabolites, lipids and phospholipids, proteins, as well as methanogenesis and methane oxidation. They also suppressed nitrogen fixation, nitrification, dissimilatory nitrogen reduction, eukaryotic assimilatory nitrogen reduction, and anaerobic ammonium oxidation (anammox). Phosphorus and sulfur cycles were less vulnerable; only phytic acid hydrolysis and sulfite reduction were inhibited by M50 but not C60. Network analysis suggested decoupling of nutrient cycles by CNMs, manifesting closer and more hierarchical gene networks. This work reinforces profound impact of CNMs on soil microbial community functions and ecosystem services, laying a path for future investigation in this direction.
Collapse
Affiliation(s)
- Fan Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yaqi You
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557, USA
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Shuo Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jing Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xinyu Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Wang
- School of Public Health, Peking University, Beijing, 100191, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Floudas D, Bentzer J, Ahrén D, Johansson T, Persson P, Tunlid A. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME JOURNAL 2020; 14:2046-2059. [PMID: 32382073 PMCID: PMC7368018 DOI: 10.1038/s41396-020-0667-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Abstract
Litter decomposing Agaricales play key role in terrestrial carbon cycling, but little is known about their decomposition mechanisms. We assembled datasets of 42 gene families involved in plant-cell-wall decomposition from seven newly sequenced litter decomposers and 35 other Agaricomycotina members, mostly white-rot and brown-rot species. Using sequence similarity and phylogenetics, we split the families into phylogroups and compared their gene composition across nutritional strategies. Subsequently, we used Raman spectroscopy to examine the ability of litter decomposers, white-rot fungi, and brown-rot fungi to decompose crystalline cellulose. Both litter decomposers and white-rot fungi share the enzymatic cellulose decomposition, whereas brown-rot fungi possess a distinct mechanism that disrupts cellulose crystallinity. However, litter decomposers and white-rot fungi differ with respect to hemicellulose and lignin degradation phylogroups, suggesting adaptation of the former group to the litter environment. Litter decomposers show high phylogroup diversity, which is indicative of high functional versatility within the group, whereas a set of white-rot species shows adaptation to bulk-wood decomposition. In both groups, we detected species that have unique characteristics associated with hitherto unknown adaptations to diverse wood and litter substrates. Our results suggest that the terms white-rot fungi and litter decomposers mask a much larger functional diversity.
Collapse
Affiliation(s)
- Dimitrios Floudas
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.
| | - Johan Bentzer
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
43
|
Arredondo-Santoyo M, Herrera-Camacho J, Vázquez-Garcidueñas MS, Vázquez-Marrufo G. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. = Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species. Folia Microbiol (Praha) 2020; 65:849-861. [DOI: 10.1007/s12223-020-00795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
|
44
|
Lehmann A, Zheng W, Ryo M, Soutschek K, Roy J, Rongstock R, Maaß S, Rillig MC. Fungal Traits Important for Soil Aggregation. Front Microbiol 2020; 10:2904. [PMID: 31998249 PMCID: PMC6962133 DOI: 10.3389/fmicb.2019.02904] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 01/29/2023] Open
Abstract
Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits.
Collapse
Affiliation(s)
- Anika Lehmann
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | | | - Masahiro Ryo
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Katharina Soutschek
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Julien Roy
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Rebecca Rongstock
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Maaß
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
- Plant Ecology and Nature Conservation, Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | - Matthias C. Rillig
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
45
|
Veloz Villavicencio E, Mali T, Mattila HK, Lundell T. Enzyme Activity Profiles Produced on Wood and Straw by Four Fungi of Different Decay Strategies. Microorganisms 2020; 8:microorganisms8010073. [PMID: 31906600 PMCID: PMC7022816 DOI: 10.3390/microorganisms8010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Four well-studied saprotrophic Basidiomycota Agaricomycetes species with different decay strategies were cultivated on solid lignocellulose substrates to compare their extracellular decomposing carbohydrate-active and lignin-attacking enzyme production profiles. Two Polyporales species, the white rot fungus Phlebia radiata and brown rot fungus Fomitopsis pinicola, as well as one Agaricales species, the intermediate "grey" rot fungus Schizophyllum commune, were cultivated on birch wood pieces for 12 weeks, whereas the second Agaricales species, the litter-decomposing fungus Coprinopsis cinerea was cultivated on barley straw for 6 weeks under laboratory conditions. During 3 months of growth on birch wood, only the white rot fungus P. radiata produced high laccase and MnP activities. The brown rot fungus F. pinicola demonstrated notable production of xylanase activity up to 43 nkat/mL on birch wood, together with moderate β-glucosidase and endoglucanase cellulolytic activities. The intermediate rot fungus S. commune was the strongest producer of β-glucosidase with activities up to 54 nkat/mL, and a notable producer of xylanase activity, even up to 620 nkat/mL, on birch wood. Low lignin-attacking but moderate activities against cellulose and hemicellulose were observed with the litter-decomposer C. cinerea on barley straw. Overall, our results imply that plant cell wall decomposition ability of taxonomically and ecologically divergent fungi is in line with their enzymatic decay strategy, which is fundamental in understanding their physiology and potential for biotechnological applications.
Collapse
|
46
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
47
|
Osono T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 2019. [DOI: 10.1111/1440-1703.12063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Takashi Osono
- Faculty of Science and Engineering Doshisha University Kyotanabe Kyoto Japan
| |
Collapse
|
48
|
Park YJ, Lee CS, Kong WS. Genomic Insights into the Fungal Lignocellulolytic Machinery of Flammulina rossica. Microorganisms 2019; 7:microorganisms7100421. [PMID: 31597238 PMCID: PMC6843371 DOI: 10.3390/microorganisms7100421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) of the Flammulina rossica (wood-rotting basidiomycete) genome was performed to identify its carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) revealed a total length of 35,646,506 bp (49.79% GC content). In total, 12,588 gene models of F. rossica were predicted using an ab initio gene prediction tool (AUGUSTUS). Orthologous analysis with other fungal species revealed that 7433 groups contained at least one F. rossica gene. Additionally, 12,033 (95.6%) of 12,588 genes for F. rossica proteins had orthologs among the Dikarya, and F. rossica contained 12 species-specific genes. CAZyme annotation in the F. rossica genome revealed 511 genes predicted to encode CAZymes including 102 auxiliary activities, 236 glycoside hydrolases, 94 glycosyltransferases, 19 polysaccharide lyases, 56 carbohydrate esterases, and 21 carbohydrate binding-modules. Among the 511 genes, several genes were predicted to simultaneously encode two different CAZymes such as glycoside hydrolases (GH) as well as carbohydrate-binding module (CBM). The genome information of F. rossica offers opportunities to understand the wood-degrading machinery of this fungus and will be useful for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Young-Jin Park
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| | - Chang-Soo Lee
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Korea.
| |
Collapse
|
49
|
Carbon assimilation profiles of mucoralean fungi show their metabolic versatility. Sci Rep 2019; 9:11864. [PMID: 31413281 PMCID: PMC6694110 DOI: 10.1038/s41598-019-48296-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Most mucoralean fungi are common soil saprotrophs and were probably among the first land colonisers. Although Mucoromycotina representatives grow well on simple sugar media and are thought to be unable to assimilate more complex organic compounds, they are often isolated from plant substrates. The main goal of the study was to explore the effects of isolation origin and phylogenetic placement on the carbon assimilation capacities of a large group of saprotrophic Mucoromycotina representatives (i.e. Umbelopsidales and Mucorales). Fifty two strains representing different Mucoromycotina families and isolated from different substrates were tested for their capacity to grow on 99 different carbon sources using the Biolog phenotypic microarray system and agar plates containing selected biopolymers (i.e. cellulose, xylan, pectin, and starch) as a sole carbon source. Although our results did not reveal a correlation between phylogenetic distance and carbon assimilation capacities, we observed 20 significant differences in growth capacity on specific carbon sources between representatives of different families. Our results also suggest that isolation origin cannot be considered as a main predictor of the carbon assimilation capacities of a particular strain. We conclude that saprotrophic Mucoromycotina representatives are, contrary to common belief, metabolically versatile and able to use a wide variety of carbon sources.
Collapse
|
50
|
Lee MR, Powell JR, Oberle B, Cornwell WK, Lyons M, Rigg JL, Zanne AE. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 2019; 100:e02790. [PMID: 31228251 DOI: 10.1002/ecy.2790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes, and although saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, New South Wales, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent-variable models and identified recurrent communities across wood environments using model-based classification. We used this information to evaluate whether (1) co-occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive vs. negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still more than three times more likely to have positive than negative co-occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare, and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive vs. negative interactions among fungal taxa requires experimental tests, and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi.
Collapse
Affiliation(s)
- Marissa R Lee
- Department of Biological Sciences, The George Washington University, Washington, D.C., 20052, USA
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Brad Oberle
- Division of Natural Sciences, New College of Florida, Sarasota, Florida, 34243, USA
| | - William K Cornwell
- School of Biological, Earth & Environmental Sciences, Ecology and Evolution Research Centre, UNSW Australia, Sydney, New South Wales, 2052, Australia
| | - Mitchell Lyons
- School of Biological, Earth & Environmental Sciences, Centre for Ecosystem Science, UNSW Australia, Sydney, New South Wales, 2052, Australia
| | - Jessica L Rigg
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Meanagle, New South Wales, 2568, Australia
| | - Amy E Zanne
- Department of Biological Sciences, The George Washington University, Washington, D.C., 20052, USA
| |
Collapse
|