1
|
Matelionienė N, Žvirdauskienė R, Kadžienė G, Zavtrikovienė E, Supronienė S. In Vitro Sensitivity Test of Fusarium Species from Weeds and Non-Gramineous Plants to Triazole Fungicides. Pathogens 2024; 13:160. [PMID: 38392898 PMCID: PMC10892909 DOI: 10.3390/pathogens13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium species are common plant pathogens that cause serious crop losses worldwide. Fusarium spp. colonize not only the main host plants, crops, but also alternative hosts. The effectiveness of fungicide use in disease management ranges from very successful to possibly promoting the growth of the pathogen. Triazole fungicides are widely used to control these pathogens due to their broad-spectrum activity and systemic nature. This paper reviews the sensitivity of 40 Fusarium strains isolated from weeds, non-gramineous plants, and spring wheat to metconazole, prothioconazole, and tebuconazole. The effect of fungicides was determined by the percentage inhibition of F. graminearum, F. culmorum, F. sporotrichioides, and F. avenaceum fungal mycelial growth. The 50% effective concentration (EC50) values of all isolates on metconazole were lower than 2.9 mg L-1, prothioconazole EC50 ranged from 0.12 to 23.6 mg L-1, and tebuconazole ranged from 0.09 to 15.6 mg L-1. At 0.00025-0.025 mg L-1, the fungicides were ineffective, except for the growth of the F. avenaceum species. It was observed that isolates from weeds were more sensitive to low concentrations of fungicide than isolates from crop plants. In general, information is scarce regarding the comparison of fungicide resistance in Fusarium isolates from weed and crop plants, making this study an additional contribution to the existing knowledge base.
Collapse
Affiliation(s)
- Neringa Matelionienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania; (R.Ž.); (E.Z.)
| | - Renata Žvirdauskienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania; (R.Ž.); (E.Z.)
| | - Gražina Kadžienė
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Evelina Zavtrikovienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania; (R.Ž.); (E.Z.)
| | - Skaidrė Supronienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania; (R.Ž.); (E.Z.)
| |
Collapse
|
2
|
Gerling M, von der Waydbrink G, Verch G, Büttner C, Müller MEH. Between Habitats: Transfer of Phytopathogenic Fungi along Transition Zones from Kettle Hole Edges to Wheat Ears. J Fungi (Basel) 2023; 9:938. [PMID: 37755047 PMCID: PMC10532505 DOI: 10.3390/jof9090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
3
|
Janaviciene S, Venslovas E, Kadziene G, Matelioniene N, Berzina Z, Bartkevics V, Suproniene S. Diversity of Mycotoxins Produced by Fusarium Strains Infecting Weeds. Toxins (Basel) 2023; 15:420. [PMID: 37505689 PMCID: PMC10467119 DOI: 10.3390/toxins15070420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Although Fusarium is mainly known as an agricultural pathogen that affects monocotyledonous plants, it can also infect different species of weeds in the agricultural environment, thereby contributing to the production of mycotoxins in cereals. In this study, we present new developmental data on the diversity of mycotoxins produced by Fusarium graminearum and Fusarium avenaceum strains from weeds under field conditions. Regarding the potential for the strain dependence of mycotoxin production, this study demonstrated that all F. graminearum strains isolated from weeds and spring wheat showed high potential for deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), and nivalenol (NIV) production in spring wheat under field conditions. It was determined that F. graminearum is a typical producer of B-type trichothecenes. All strains of F. avenaceum isolated from spring wheat and weeds have the potential to produce enniatins and moniliformin in spring wheat. Each type of weed can host different Fusarium species and strains that produce completely different mycotoxins. Therefore, the distribution of mycotoxins in spring wheat grain may depend more on the Fusarium species or strains that infect the weeds than on the pathogen's host plant species. The predominance of specific mycotoxins in cereals depends on the year's weather conditions and the diversity of Fusarium species present in the field.
Collapse
Affiliation(s)
- Sigita Janaviciene
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Eimantas Venslovas
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Grazina Kadziene
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Neringa Matelioniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Skaidre Suproniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
4
|
Dong F, Chen X, Lei X, Wu D, Zhang Y, Lee YW, Mokoena MP, Olaniran AO, Li Y, Shen G, Liu X, Xu JH, Shi JR. Effect of Crop Rotation on Fusarium Mycotoxins and Fusarium Species in Cereals in Sichuan Province (China). PLANT DISEASE 2023; 107:1060-1066. [PMID: 36122196 DOI: 10.1094/pdis-01-22-0024-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xiangxiang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xinyu Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yifan Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ying Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
5
|
Alisaac E, Mahlein AK. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins (Basel) 2023; 15:192. [PMID: 36977083 PMCID: PMC10053988 DOI: 10.3390/toxins15030192] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Fusarium head blight (FHB) is a major threat for wheat production worldwide. Most reviews focus on Fusarium graminearum as a main causal agent of FHB. However, different Fusarium species are involved in this disease complex. These species differ in their geographic adaptation and mycotoxin profile. The incidence of FHB epidemics is highly correlated with weather conditions, especially rainy days with warm temperatures at anthesis and an abundance of primary inoculum. Yield losses due to the disease can reach up to 80% of the crop. This review summarizes the Fusarium species involved in the FHB disease complex with the corresponding mycotoxin profiles, disease cycle, diagnostic methods, the history of FHB epidemics, and the management strategy of the disease. In addition, it discusses the role of remote sensing technology in the integrated management of the disease. This technology can accelerate the phenotyping process in the breeding programs aiming at FHB-resistant varieties. Moreover, it can support the decision-making strategies to apply fungicides via monitoring and early detection of the diseases under field conditions. It can also be used for selective harvest to avoid mycotoxin-contaminated plots in the field.
Collapse
Affiliation(s)
- Elias Alisaac
- Institute of Crop Science and Resource Conservation (INRES), Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Institute for Grapevine Breeding, Julius Kühn-Institut, 76833 Siebeldingen, Germany
| | | |
Collapse
|
6
|
Zavtrikovienė E, Gorash A, Kadžienė G, Matelionienė N, Supronienė S. Pathogenicity of Asymptomatically Residing Fusarium Species in Non-Gramineous Plants and Weeds to Spring Wheat under Greenhouse Conditions. Pathogens 2022; 11:pathogens11121467. [PMID: 36558801 PMCID: PMC9785125 DOI: 10.3390/pathogens11121467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Despite significant efforts in recent decades to combat Fusarium head blight (FHB), this disease remains one of the most important and widely studied diseases of wheat and other cereal plants. To date, studies have focused on small grain cereals as hostplants for these pathogens, but it was recently discovered that asymptomatic non-gramineous plants and weeds can serve as alternative sources of fungi associated with FHB. The aim of this study was to evaluate the pathogenicity of Fusarium avenaceum, F. culmorum, F. graminearum and F. sporotrichioides isolated from non-gramineous plants and weed species to spring wheat under greenhouse conditions. A total of 91 Fusarium isolates, including 45 from weeds and 46 from non-gramineous plants were floret inoculated at mid anthesis. The FHB incidence and severity (%) of inoculated heads and the area under the disease progress curve (AUDPC) were calculated. To determine yield losses, the weight of 1000 grains (TGW) was evaluated. Results of the research showed that FHB severity (%) values in Fusarium spp.-inoculated heads from non-gramineous plants varied from 9.3% to 69.6% and AUDPC values ranged from 161.5% to 1044.6%. TGW was most significantly reduced by the F. culmorum isolates BN26r and BN39fl from Brassica napus and isolates BV15.1l and BV142.1pe from Beta vulgaris (37%, 30%, 28.8% and 31.8% respectively, compared to the water control). In Fusarium-inoculated heads from weeds, FHB severity values ranged from 6.2% to 81.0% and AUDPC values varied from 134.2% to 1206.6%. TGW was most significantly decreased by CBP1401r isolate from Capsella bursa-pastoris (52%). The study results suggest that the pathogenicity of Fusarium species isolated from different hosts to wheat more strongly depends on the Fusarium species and strain than the hostplant. Under greenhouse conditions, F. culmorum strain groups obtained from weeds, non-gramineous plants and Triticum were more pathogenic to wheat than the water control and other Fusarium species.
Collapse
Affiliation(s)
- Evelina Zavtrikovienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania
- Correspondence: ; Tel.: +370-65851220
| | - Andrii Gorash
- Department of Cereal Breeding, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| | - Gražina Kadžienė
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| | - Neringa Matelionienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| | - Skaidrė Supronienė
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| |
Collapse
|
7
|
Gerling M, Petry L, Barkusky D, Büttner C, Müller MEH. Infected grasses as inoculum for Fusarium infestation and mycotoxin accumulation in wheat with and without irrigation. Mycotoxin Res 2022; 39:19-31. [PMID: 36282420 PMCID: PMC10156776 DOI: 10.1007/s12550-022-00470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
AbstractGrasses growing next to agricultural fields influence the Fusarium abundance, the species composition, and the mycotoxin accumulation of wheat plants, especially the field parts directly adjacent to grasses, are highly affected. Grasses are a more attractive and suitable habitat for Fusarium fungi compared to other arable weeds and occur at mostly every semi-natural landscape element (e.g., kettle holes, hedgerows, field-to-field-borders). In our study, we analyzed the ability of a highly Fusarium infected grass stripe (F. graminearum, F. culmorum, F. sporotrichioides) to infect an adjacent wheat field with these species. Results show that the primary inoculated Fusarium species were as well the dominant species isolated from the wheat field. Regarding transects originating from the grass stripe going into the field, the results demonstrate that wheat ears next to the infected grass stripe have a higher Fusarium abundance and furthermore show higher mycotoxin accumulation in the wheat kernels. This effect was highly promoted by irrigation. Therefore, grass stripes next to arable fields must be considered as reservoirs for fungal infections and as a source for a contamination with mycotoxins.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Laura Petry
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Dietmar Barkusky
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
8
|
Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins (Basel) 2022; 14:toxins14080541. [PMID: 36006203 PMCID: PMC9414964 DOI: 10.3390/toxins14080541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium graminearum is an important pathogen that causes Fusarium head blight (FHB) in several cereal crops worldwide. The potential of this pathogen to contaminate cereals with trichothecene mycotoxins presents a health risk for both humans and animals. This study aimed to evaluate the potential of different trichothecene genotypes of F. graminearum isolated from an alternative host plant to produce mycotoxins under different spring wheat grain incubation conditions. Fourteen F. graminearum strains were isolated from seven alternative host plants and identified as 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes. These strains were cultivated on spring wheat grains at 25 °C and 29 °C for 5 weeks. The mycotoxins produced were analysed with a high-performance liquid chromatograph (HPLC) coupled to a Thermo Scientific TSQ Quantiva MS/MS detector. The obtained results showed that the F. graminearum strains from alternative host plants could produce nivalenol (NIV), deoxynivalenol (DON), fusarenon-X (FUS-X), 3-ADON, deoxynivalenol-3-ß-d-glucoside (D3G), 15-ADON, and zearalenone (ZEA). F. graminearum strains produced DON and ZEA under both temperatures, with the mean concentrations varying from 363 to 112,379 µg kg−1 and from 1452 to 44,816 µg kg−1, respectively. Our results indicated the possible role of dicotyledonous plants, including weeds, as a reservoir of inoculum sources of F. graminearum-induced Fusarium head blight, associated with the risk of mycotoxin contamination in spring wheat.
Collapse
|
9
|
Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.). Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Chen L, Yang J, Wang H, Yang X, Zhang C, Zhao Z, Wang J. NX toxins: New threat posed by Fusarium graminearum species complex. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Quantifying the Role of Ground Beetles for the Dispersal of Fusarium and Alternaria Fungi in Agricultural Landscapes. J Fungi (Basel) 2021; 7:jof7100863. [PMID: 34682284 PMCID: PMC8537540 DOI: 10.3390/jof7100863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
The spread by arthropods (zoochory) is an essential dispersal mechanism for many microorganisms, like plant pathogens. Carabid beetles are very abundant and mobile ground-dwelling insects. However, their role in the dispersal of economically relevant phytopathogens, like Fusarium and Alternaria fungi is basically unknown. We quantified the total fungal, Fusarium, and Alternaria load of carabid species collected in the transition zones between small water bodies and wheat fields by screening (i) their body surface for fungal propagules with a culture-dependent method and (ii) their entire bodies for fungal DNA with a qPCR approach. The analysis of entire bodies detects fungal DNA in all carabid beetles but Alternaria DNA in 98% of them. We found that 74% of the carabids carried fungal propagules on the body surface, of which only half (49%) carried Fusarium propagules. We identified eight Fusarium and four Alternaria species on the body surface; F. culmorum was dominant. The fungal, Fusarium and Alternaria, load differed significantly between the carabid species and was positively affected by the body size and weight of the carabids. Carabid beetles reveal a remarkable potential to disseminate different fungi. Dispersal by ground-dwelling arthropods could affect the spatial-temporal patterns of plant disease and microorganisms in general.
Collapse
|
12
|
Fusarium species richness in mono- and dicotyledonous weeds and their ability to infect barley and wheat. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Dong F, Li Y, Chen X, Wu J, Wang S, Zhang X, Ma G, Lee YW, Mokoena MP, Olaniran AO, Xu JH, Shi JR. Analysis of the Fusarium graminearum Species Complex from Gramineous Weeds Near Wheat Fields in Jiangsu Province, China. PLANT DISEASE 2021; 105:3269-3275. [PMID: 33847508 DOI: 10.1094/pdis-11-20-2376-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several weed species are known as alternative hosts of the Fusarium graminearum species complex (FGSC), and their epidemiological significance in Fusarium head blight (FHB) has been investigated; however, scant information is available regarding FGSC occurrence in weeds near Chinese wheat fields. To evaluate the potential role of gramineous weeds surrounding wheat fields in FHB, 306 FGSC isolates were obtained from 210 gramineous weed samples in 2018 in Jiangsu Province. Among them, 289 were Fusarium asiaticum, and the remainder were F. graminearum. Trichothecene genotype and mycotoxin analyses revealed that 74.3% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype, and the remainder were the nivalenol (NIV) chemotype. Additionally, 82.4% of F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype, and the remainder were the NIV chemotype. FHB severity and trichothecene analysis indicated that F. asiaticum isolates with the 3ADON chemotype were more aggressive than those with the NIV chemotype in wheat. 3ADON and NIV chemotypes of F. asiaticum isolated from weeds and wheat showed no significant differences in pathogenicity in wheat. All selected F. asiaticum isolates produced perithecia, with little difference between the 3ADON and NIV chemotypes. These results highlight the epidemiology of the FGSC isolated from weeds near wheat fields, with implications for reducing FHB inoculum in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Yunpeng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Chen
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shufang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guizhen Ma
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
14
|
Raatz L, Pirhofer Walzl K, Müller MEH, Scherber C, Joshi J. Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats? Ecol Evol 2021; 11:13232-13246. [PMID: 34646465 PMCID: PMC8495789 DOI: 10.1002/ece3.8046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.
Collapse
Affiliation(s)
- Larissa Raatz
- Institute of Biochemistry and BiologyUniversität PotsdamUniversität PotsdamPotsdamGermany
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| | - Karin Pirhofer Walzl
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRIUSA
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Christoph Scherber
- Zoological Research Museum Alexander Koenig (ZFMK)Centre for Biodiversity MonitoringBonnGermany
| | - Jasmin Joshi
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Institute for Landscape and Open SpaceEastern Switzerland University of Applied SciencesJona‐RapperswilSwitzerland
| |
Collapse
|
15
|
Montoya-Martínez AC, O'Donnell K, Busman M, Vaughan MM, McCormick SP, Santillán-Mendoza R, Pineda-Vaca D, Fernández-Pavía SP, Ploetz RC, Benítez-Malvido J, Montero-Castro JC, Rodríguez-Alvarado G. Malformation Disease in Tabebuia rosea (Rosy Trumpet) Caused by Fusarium pseudocircinatum in Mexico. PLANT DISEASE 2021; 105:2822-2829. [PMID: 33904328 DOI: 10.1094/pdis-09-20-1942-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tabebuia rosea (rosy trumpet) is an economically important neotropical tree in Mexico that is highly valued for the quality of its wood, which is used for furniture, crafts, and packing, and for its use as an ornamental and shade tree in parks and gardens. During surveys conducted in the lower Balsas River Basin region in the states of Guerrero and Michoacán, symptoms of floral malformation were detected in T. rosea trees. The main objectives of this study were to describe this new disease, to determine its causal agent, and to identify it using DNA sequence data. A second set of objectives was to analyze the phylogenetic relationship of the causal agent to Fusarium spp. associated with Swietenia macrophylla trees with malformation surveyed in the same region and to compare mycotoxin production and the mating type idiomorphs of fusaria recovered from T. rosea and S. macrophylla. Tabebuia rosea showed malformed inflorescences with multiple tightly curled shoots and shortened internodes. A total of 31 Fusarium isolates recovered from symptomatic T. rosea (n = 20) and S. macrophylla (n = 11) trees were identified by molecular analysis as Fusarium pseudocircinatum. Pathogenicity tests showed that isolates of F. pseudocircinatum recovered from T. rosea induced malformation in inoculated T. rosea seedlings. Eighteen F. pseudocircinatum isolates were tested for their ability to produce mycotoxins and other secondary metabolites. Moniliformin, fusaric acid, bikaverin, beauvericin, aurofusarin. and 8-O-methylbostrycoidin were produced by at least one strain of the 18 isolates tested. A multiplex PCR assay for mating type idiomorph revealed that 22 F. pseudocircinatum isolates were MAT1-1 and that 9 were MAT1-2. Here, we report a new disease of T. rosea in Mexico caused by F. pseudocircinatum.
Collapse
Affiliation(s)
- Amelia C Montoya-Martínez
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia-Zinapécuaro, Michoacán 58880, México
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria 61604, U.S.A
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria 61604, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria 61604, U.S.A
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria 61604, U.S.A
| | - Ricardo Santillán-Mendoza
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia-Zinapécuaro, Michoacán 58880, México
- Campo Experimental Ixtacuaco, Centro de Investigación Regional Golfo Centro (CIRGOC), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tlapacoyan, Veracruz 93600, México
| | - Daniela Pineda-Vaca
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia-Zinapécuaro, Michoacán 58880, México
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia-Zinapécuaro, Michoacán 58880, México
| | - Randy C Ploetz
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead 33031-3314, U.S.A
| | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, Morelia, Michoacán 58190, México
| | - Juan C Montero-Castro
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Ciudad Universitaria, Morelia, Michoacán 58060, México
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia-Zinapécuaro, Michoacán 58880, México
| |
Collapse
|
16
|
Tralamazza SM, Piacentini KC, Savi GD, Carnielli-Queiroz L, de Carvalho Fontes L, Martins CS, Corrêa B, Rocha LO. Wild rice (O. latifolia) from natural ecosystems in the Pantanal region of Brazil: Host to Fusarium incarnatum-equiseti species complex and highly contaminated by zearalenone. Int J Food Microbiol 2021; 345:109127. [PMID: 33689972 DOI: 10.1016/j.ijfoodmicro.2021.109127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
We assessed the mycobiota diversity and mycotoxin levels present in wild rice (Oryza latifolia) from the Pantanal region of Brazil; fundamental aspects of which are severely understudied as an edible plant from a natural ecosystem. We found multiple fungal species contaminating the rice samples; the most frequent genera being Fusarium, Nigrospora and Cladosporium (35.9%, 26.1% and 15%, respectively). Within the Fusarium genus, the wild rice samples were mostly contaminated by the Fusarium incarnatum-equiseti species complex (FIESC) (80%) along with Fusarium fujikuroi species complex (20%). Phylogenetic analysis supported multiple FIESC species and gave support to the presence of two putative new groups within the complex (LN1 and LN2). Deoxynivalenol (DON) and zearalenone (ZEN) chemical analysis showed that most of the isolates were DON/ZEN producers and some were defined as high ZEN producers, displaying abundant ZEN levels over DON (over 19 times more). Suggesting that ZEN likely has a key adaptive role for FIESC in wild rice (O. latifolia). Mycotoxin determination in the rice samples revealed high frequency of ZEN, and 85% of rice samples had levels >100 μg/kg; the recommended limit set by regulatory agencies. DON was only detected in 5.2% of the samples. Our data shows that FIESC species are the main source of ZEN contamination in wild rice and the excessive levels of ZEN found in the rice samples raises considerable safety concerns regarding wild rice consumption by humans and animals.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Karim Cristina Piacentini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Geovana Dagostim Savi
- University of Southern Santa Catarina (UNESC), Scientific and Technological Park, Santa Catarina, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lívia de Carvalho Fontes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Liliana Oliveira Rocha
- Department of Food Science, Food Engineering Faculty, University of Campinas, Campinas, Brazil.
| |
Collapse
|