1
|
Takada Y, Atomi T, Yagi T, Yamamoto S, Tomita M, Shimizu M, Atomi Y. Effects of step width and gait speed on the variability of mediolateral control in the head and trunk during gait. PLoS One 2025; 20:e0320652. [PMID: 40258019 PMCID: PMC12011241 DOI: 10.1371/journal.pone.0320652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/21/2025] [Indexed: 04/23/2025] Open
Abstract
Step width is a parameter that determines the size of the base of support (BOS) during gait. Further, it is related to the control of center of mass (COM) and trunk movements and gait speed. The current study aimed to validate the effect of conditioning using combined step width (narrow and wide) and gait speed (normal [4.5 km/h] and slow [2.2 km/h]) on the segmental control of the head, thorax, and pelvis with respect to the BOS. The behavior of the head, thorax, and pelvis of 17 healthy adult participants were measured during treadmill walking using a three-dimensional motion analysis system. If the step width was narrow, the whole body segment with a high contribution to COM under narrow BOS conditions was more likely to have a high variability. However, the mediolateral direction behavior was small. On the contrary, if the step width was wide, the whole body segment with a high contribution to COM under wide BOS conditions was more likely to have a low variability. Nevertheless, the mediolateral direction behavior was large. Regarding the intersegmental association, particularly if the step width was narrow and the gait speed was normal, the head showed highly controlled movements with minimal displacement and increased fine-tuning. The thorax displayed significant importance in maintaining trunk stability, operating within a larger range of mediolateral displacement compared to the head and pelvis, under three conditions, except if the step width was narrow and the gait speed was normal. The study underscores the significant impact of both step width and gait speed on the control and stability of high-mass body segments during gait. It suggests that narrow step widths necessitate advanced control strategies, while wide step widths promote simpler, compensatory mechanisms, especially relevant in clinical contexts.
Collapse
Affiliation(s)
- Yu Takada
- Department of Rehabilitation, Uno Hospital, Okazaki, Aichi, Japan
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Tomoaki Atomi
- Department of Physical Therapy, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Takayuki Yagi
- Department of Rehabilitation, Uno Hospital, Okazaki, Aichi, Japan
| | - Shoma Yamamoto
- Department of Rehabilitation, Uno Hospital, Okazaki, Aichi, Japan
| | - Masao Tomita
- Department of Rehabilitation, Faculty of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Miho Shimizu
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoriko Atomi
- Material Health Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
2
|
Grimmitt AB, Whelan ME, Martini DN, Hoogkamer W. Walking with increased step length variability increases the metabolic cost of walking in young adults. J Exp Biol 2025; 228:jeb250126. [PMID: 40130437 DOI: 10.1242/jeb.250126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Several studies have observed a relationship between step length variability and the metabolic cost of walking. In those studies, changes in step length variability were secondary to changes in walking speed or step width variability. The purpose of this study was to determine how directly increasing step length variability affects the metabolic cost of walking. Eighteen healthy young adults completed 5 min trials of treadmill walking at 1.20 m s-1 while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0%, 5% and 10% coefficient of variation. Step length and its variability were tracked with reflective markers on the feet. Metabolic power across habitual (no projections) and the three variability conditions was measured using indirect calorimetry and analyzed using linear mixed effects modeling. Metabolic power was largest in the 10% condition (mean±s.d. 4.30±0.23 W kg-1) compared with 0% (4.16±0.18 W kg-1) and habitual (3.98±0.25 W kg-1). Actual step length variability was significantly different from prescribed conditions: 0%, 3.17±0.64%; 5%, 4.38±0.98% and 10%, 6.94±1.07%. For every 1% increase in step length variability, there was a 1.1% (0.05 W kg-1; P<0.001) increase in metabolic power. Our results demonstrate an association between the metabolic cost of walking and step length variability. This suggests that increased gait variability contributes to a small portion of the increased cost of walking seen in older adults and people with neurological impairments.
Collapse
Affiliation(s)
- Adam B Grimmitt
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Maeve E Whelan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Douglas N Martini
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Wang H, Ullah Z, Gazit E, Brozgol M, Hausdorff JM, Shull PB, Ponger P. Step Width Haptic Feedback for Gait Stability in Spinocerebellar Ataxia: Preliminary Results. Mov Disord 2025; 40:745-751. [PMID: 39804020 DOI: 10.1002/mds.30117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Wider step width and lower step-to-step variability are linked to improved gait stability and reduced fall risk. It is unclear if patients with spinocerebellar ataxia (SCA) can learn to adjust these aspects of gait to reduce fall risk. OBJECTIVES The aims were to examine the possibility of using wearable step width haptic biofeedback to enhance gait stability and reduce fall risk in individuals with SCA. METHODS Thirteen people with SCA type 3 performed step width training (single session) using real-time feedback. RESULTS Step width increased post-training (19.3 cm, interquartile range [IQR] 16.3-20.2 cm) and at retention (16.6 cm, IQR 16.2-21.1 cm), compared to baseline (11.0 cm, IQR 5.2-15.2 cm; P < 0.001). Step width variability decreased during post-training (19.7%, IQR 17.4%-26.2%) and at retention (22.3%, IQR 18.6%-30.2%), compared to baseline (44.5%, IQR 28.5%-71.2%; P < 0.001). Crossover steps, another mark of instability, decreased after training (P < 0.031). CONCLUSIONS These pilot results suggest that patients with SCA can use a novel, wearable biofeedback system to improve their gait stability. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zakir Ullah
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marina Brozgol
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Department of Physical Therapy, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Orthopedic Surgery and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Peter B Shull
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Penina Ponger
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Karatsidis A, Angelini L, Scaramozza M, Bartholome E, Clinch SP, Shen C, Lindemann M, Mazzà C, Scotland A, van Beek J, Belachew S, Craveiro L. Characterizing gait in people with multiple sclerosis using digital data from smartphone sensors: A proposed framework. Mult Scler 2025; 31:512-528. [PMID: 39963834 PMCID: PMC12008473 DOI: 10.1177/13524585251316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
BACKGROUND Mobility assessment is essential for monitoring disease progression in people with multiple sclerosis (PwMS). Technologies such as wearable sensors show potential for this purpose, but consensus is needed to optimize collection and interpretation of digital measures in PwMS. OBJECTIVE To propose a framework for measuring and interpreting key aspects of impaired gait in PwMS using a smartphone worn at the waist level. METHODS The framework was developed on the basis of clinical understanding and knowledge of sensor signal processing, supported by a systematic literature review (SLR). The SLR targeted articles published after 2011 that measured gait characteristics in PwMS. Findings were used to propose standardized definitions for complementary gait domains and define digital measures that should be captured for each domain. RESULTS The resulting framework for PwMS recommends definitions for pace, rhythm, stability, symmetry, variability, smoothness, complexity and fatigability gait domains. For each domain, a set of digital measures is described with respect to their interpretability and associated caveats. CONCLUSION This framework provides recommendations for measuring complex gait patterns in PwMS using widely available technology. This work promotes the use of standardized gait domain definitions and harmonized descriptions of associated digital measures, paving the way for future validation efforts.
Collapse
|
5
|
Sveva V, Guerra A, Mangone M, Agostini F, Bernetti A, Berardelli A, Paoloni M, Bologna M. Effects of cerebellar transcranial alternating current stimulation on balance and gait in healthy subjects. Clin Neurophysiol 2025:S1388-2457(25)00453-5. [PMID: 40180842 DOI: 10.1016/j.clinph.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Transcranial Alternating Current Stimulation (tACS) is a non-invasive brain stimulation technique that modulates cortical oscillations and influences behavior. OBJECTIVES This study aimed to explore the effects of cerebellar theta (5 Hz) and gamma (50 Hz) tACS on human balance and gait through kinematic analysis. MATERIALS AND METHODS Nineteen right-handed healthy subjects participated in three randomized motor tasks: postural standing (PS), gait initiation (GI), and gait cycle (GC). Participants underwent theta-, gamma-, or sham-tACS over the cerebellum while kinematic data were collected using a force platform and an 8-camera optoelectronic system. RESULTS Theta-tACS significantly influenced motor behavior during PS and GC, but not GI. Specifically, it reduced the Maximum Radius, Total Trace Length, Longitudinal Range, and Area during PS, and decreased Stride Width during GC. In contrast, cerebellar gamma-tACS had no significant effect on any kinematic parameters across the tasks. CONCLUSIONS Cerebellar theta-tACS may enhance postural stability and gait control in healthy individuals. We hypothesize that theta-tACS may entrain theta-resonant neurons in the cerebellar cortex, affecting motor control networks involved in balance and gait. SIGNIFICANCE This study highlights tACS's potential as a non-invasive treatment for balance and gait disorders associated with cerebellar dysfunction.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Via Giuseppe Orus, 2, 35131 Padua, Italy
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Bernetti
- Department of Science and Biological and Ambient Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, LE, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
6
|
Celik Y, Wall C, Moore J, Godfrey A. Better Understanding Rehabilitation of Motor Symptoms: Insights from the Use of Wearables. Pragmat Obs Res 2025; 16:67-93. [PMID: 40125472 PMCID: PMC11930022 DOI: 10.2147/por.s396198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Movement disorders present a substantial challenge by adversely affecting daily routines and overall well-being through a diverse spectrum of motor symptoms. Traditionally, motor symptoms have been evaluated through manual observational methods and patient-reported outcomes. While those approaches are valuable, they are limited by their subjectivity. In contrast, wearable technologies (wearables) provide objective assessments while actively supporting rehabilitation through continuous tracking, real-time feedback, and personalized physical therapy-based interventions. The aim of this literature review is to examine current research on the use of wearables in the rehabilitation of motor symptoms, focusing on their features, applications, and impact on improving motor function. By exploring research protocols, metrics, and study findings, this review aims to provide a comprehensive overview of how wearables are being used to support and optimize rehabilitation outcomes. To achieve that aim, a systematic search of the literature was conducted. Findings reveal that gait disturbance and postural balance are the primary motor symptoms extensively studied with tremor and freezing of gait (FoG) also receiving attention. Wearable sensing ranges from bespoke inertial and/or electromyography to commercial units such as personal devices (ie, smartwatch). Interactive (virtual reality, VR and augmented reality, AR) and immersive technologies (headphones), along with wearable robotic systems (exoskeletons), have proven to be effective in improving motor skills. Auditory cueing (via smartwatches or headphones), aids gait training with rhythmic feedback, while visual cues (via VR and AR glasses) enhance balance exercises through real-time feedback. The development of treatment protocols that incorporate personalized cues via wearables could enhance adherence and engagement to potentially lead to long-term improvements. However, evidence on the sustained effectiveness of wearable-based interventions remains limited.
Collapse
Affiliation(s)
- Yunus Celik
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Conor Wall
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Jason Moore
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
7
|
Vallortigara J, Greenfield J, Hunt B, Graessner H, Reinhard C, Nadke A, Schuman BJ, Hoffman D, Morris S, Giunti P. Comparison of specialist ataxia centres with non-specialist services in terms of care access and organisation, health services resource utilisation and costs in Germany using patient-reported data. Heliyon 2025; 11:e42121. [PMID: 39995921 PMCID: PMC11849067 DOI: 10.1016/j.heliyon.2025.e42121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
Background The ataxias are rare complex neurological disorders challenging to diagnose and manage. We explored the patient pathways, health care use and costs of individuals attending a specialist ataxia centre (SAC) compared with non-specialist settings in Germany. Methods We distributed a survey to people with ataxia to gather information about diagnosis and management of the ataxias, utilisation of health care services, and patients' satisfaction in both SAC and non-specialist settings. We compared mean resource use and health service costs per patient, stratifying by whether patients attended a SAC or not. Results We collected and analysed responses from 101 participants. For patients who visited both a SAC and a standard neurology clinic, 67.2 % reported that the care received at a SAC was better. Positive feedback about SAC services included understanding their condition (66.7 % positive feedback), giving practical advice to manage better their ataxia (66.7 % positive feedback) and offering opportunities to take part in research (79.2 % positive feedback). Costs were not significantly different between those attending a SAC and those who did not, although the average cost per patient per year found in SACs was higher compared with non-SACs. The mean total cost per patient over a one-year period was €2091 for non-SAC patients and €4043 for SAC patients (P = 0.19 in adjusted analyses). We identified barriers in accessing SACs including the lack of clear referral pathway and the travel required to such centres. We made recommendations about gaps identified in the care provided based on people's experience and feedback. Conclusions This study provides useful information about ataxia patient care pathways in Germany, with higher patients' satisfaction in SAC compared to non-SAC, without a significant difference in costs. The findings can be used to change policy for better care for people with these rare complex neurological diseases.
Collapse
Affiliation(s)
- Julie Vallortigara
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK
| | | | | | - Holm Graessner
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Nadke
- Deutsche Heredo Ataxie Gesellschaft (DHAG), Hofener Straße 76, 70372, Stuttgart, Germany
| | - Bart-Jan Schuman
- Friedreich Ataxie Förderverein e.V., Am Heckenacker 9a, 85652, Pliening, Germany
| | | | - Steve Morris
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
8
|
Nunes AS, Patel S, Oubre B, Jas M, Kulkarni DD, Luddy AC, Eklund NM, Yang FX, Manohar R, Soja NN, Burke KM, Wong B, Isaev D, Espinosa S, Schmahmann JD, Stephen CD, Wills AM, Hung A, Dickerson BC, Berry JD, Arnold SE, Khurana V, White L, Sapiro G, Gajos KZ, Khan S, Gupta AS. Multimodal Digital Phenotyping of Behavior in a Neurology Clinic: Development of the Neurobooth Platform and the First Two Years of Data Collection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.28.24319527. [PMID: 39974013 PMCID: PMC11838688 DOI: 10.1101/2024.12.28.24319527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Quantitative analysis of human behavior is critical for objective characterization of neurological phenotypes, early detection of neurodegenerative diseases, and development of more sensitive measures of disease progression to support clinical trials and translation of new therapies into clinical practice. Sophisticated computational modeling can support these objectives, but requires large, information-rich data sets. This work introduces Neurobooth, a customizable platform for time-synchronized multimodal capture of human behavior. Over a two year period, a Neurobooth implementation integrated into a clinical setting facilitated data collection across multiple behavioral domains from a cohort of 470 individuals (82 controls and 388 with neurologic diseases) who participated in a collective 782 sessions. Visualization of the multimodal time series data demonstrates the presence of rich phenotypic signs across a range of diseases. These data and the open-source platform offer potential for advancing our understanding of neurological diseases and facilitating therapy development, and may be a valuable resource for related fields that study human behavior.
Collapse
Affiliation(s)
- Adonay S. Nunes
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Patel
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brandon Oubre
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mainak Jas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Divya D. Kulkarni
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna C. Luddy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole M. Eklund
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Faye X. Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohin Manohar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy N. Soja
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine M. Burke
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Institute of Health Professions, Boston, MA, USA
| | - Bonnie Wong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dmitry Isaev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Steven Espinosa
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jeremy D. Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher D. Stephen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert Hung
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James D. Berry
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven E. Arnold
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence White
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Princeton University, NJ, USA
| | - Krzysztof Z. Gajos
- Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, Massachusetts, USA
| | - Sheraz Khan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoopum S. Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Wang H, Ullah Z, Gazit E, Brozgol M, Tan T, Hausdorff JM, Shull PB, Ponger P. Step Width Estimation in Individuals With and Without Neurodegenerative Disease via a Novel Data-Augmentation Deep Learning Model and Minimal Wearable Inertial Sensors. IEEE J Biomed Health Inform 2025; 29:81-94. [PMID: 39331558 DOI: 10.1109/jbhi.2024.3470310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Step width is vital for gait stability, postural balance control, and fall risk reduction. However, estimating step width typically requires either fixed cameras or a full kinematic body suit of wearable inertial measurement units (IMUs), both of which are often too expensive and time-consuming for clinical application. We thus propose a novel data-augmented deep learning model for estimating step width in individuals with and without neurodegenerative disease using a minimal set of wearable IMUs. Twelve patients with neurodegenerative, clinically diagnosed Spinocerebellar ataxia type 3 (SCA3) performed over ground walking trials, and seventeen healthy individuals performed treadmill walking trials at various speeds and gait modifications while wearing IMUs on each shank and the pelvis. Results demonstrated step width mean absolute errors of 3.3 0.7 cm and 2.9 0.5 cm for the neurodegenerative and healthy groups, respectively, which were below the minimal clinically important difference of 6.0 cm. Step width variability mean absolute errors were 1.5 cm and 0.8 cm for neurodegenerative and healthy groups, respectively. Data augmentation significantly improved accuracy performance in the neurodegenerative group, likely because they exhibited larger variations in walking kinematics as compared with healthy subjects. These results could enable clinically meaningful and accurate portable step width monitoring for individuals with and without neurodegenerative disease, potentially enhancing rehabilitative training, assessment, and dynamic balance control in clinical and real-life settings.
Collapse
|
10
|
Beichert L, Seemann J, Kessler C, Traschütz A, Müller D, Dillmann-Jehn K, Ricca I, Satolli S, Basak NA, Coarelli G, Timmann D, Gagnon C, van de Warrenburg BPC, Ilg W, Synofzik M, Schüle R. Patient-Relevant Digital-Motor Outcomes for Clinical Trials in Hereditary Spastic Paraplegia Type 7: A Multicenter PROSPAX Study. Neurology 2024; 103:e209887. [PMID: 39621946 PMCID: PMC11606240 DOI: 10.1212/wnl.0000000000209887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES With targeted treatment trials on the horizon, identification of sensitive and valid outcome measures becomes a priority for >100 spastic ataxias. While digital-motor measures, assessed using wearable sensors, are considered prime outcome candidates for spastic ataxias, genotype-specific validation studies are lacking. We here aimed to identify candidate digital-motor outcomes for spastic paraplegia type 7 (SPG7)-one of the most common spastic ataxias-that (1) reflect patient-relevant health aspects, even in mild, trial-relevant disease stages; (2) are suitable for a multicenter setting; and (3) assess mobility also during uninstructed walking simulating real life. METHODS This cross-sectional multicenter study (7 centers, 6 countries) analyzed defined laboratory-based walking and uninstructed "supervised free walking" in patients with SPG7 and healthy controls using 3 wearable sensors (Opal APDM). For the extracted digital gait measures, we assessed effect sizes for the discrimination of patients and controls (Cliff δ) and Spearman correlations with measures of functional mobility and overall disease severity (Spastic Paraplegia Rating Scale [SPRS], including mobility subscore SPRSmobility; Scale for the Assessment and Rating of Ataxia [SARA]) and the activities of daily living subscore of the Friedreich Ataxia Rating Scale (FARS-ADL). RESULTS Gait was analyzed in 65 patients with SPG7 and 50 healthy controls. Among 30 hypothesis-based gait measures, 18 demonstrated at least moderate effect size (δ > 0.5) in discriminating patients from controls and 17 even in mild disease stages (SPRSmobility ≤ 9, n = 41). Spatiotemporal variability measures such as spatial variability measure SPcmp (ρ = 0.67, p < 0.0001) and stride time CV (ρ = 0.67, p < 0.0001) showed the largest correlations with functional mobility (SPRSmobility)-as with overall disease severity (SPRS, SARA) and activities of daily living (FARS-ADL). The correlations of variability measures with SPRSmobility could be confirmed in mild disease stages (e.g., SPcmp: ρ = 0.50, p < 0.0001) and in "supervised free walking" (e.g., stride time CV: ρ = -0.57, p < 0.0001). DISCUSSION We here identified trial-ready digital-motor candidate outcomes for the spastic ataxia SPG7 with proven multicenter applicability, ability to discriminate patients from controls, and correlation with measures of patient-relevant health aspects-even in mild disease stages. If validated longitudinally, these sensor outcomes might inform future natural history and treatment trials in SPG7 and other spastic ataxias.
Collapse
Affiliation(s)
- Lukas Beichert
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Jens Seemann
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Christoph Kessler
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Doreen Müller
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Katrin Dillmann-Jehn
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Ivana Ricca
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Sara Satolli
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Nazli A Basak
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Giulia Coarelli
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Dagmar Timmann
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Cynthia Gagnon
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Bart P C van de Warrenburg
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Winfried Ilg
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| | - Rebecca Schüle
- Division Translational Genomics of Neurodegenerative Diseases (L.B., A.T., D.M., M.S.), Hertie-Institute for Clinical Brain Research and Center for Neurology, and German Center for Neurodegenerative Diseases (DZNE) (L.B., A.T., D.M., K.D.-J., M.S., R.S.), University of Tübingen; Section Computational Sensomotorics (J.S., W.I.), Hertie Institute for Clinical Brain Research; Centre for Integrative Neuroscience (CIN) (J.S., W.I.); Department of Neurodegenerative Diseases (C.K.), Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen; Center for Neurology and Hertie Institute for Clinical Brain Research (K.D.-J., R.S.), University Hospital Tübingen, Germany; Molecular Medicine (I.R., S.S.), IRCCS Fondazione Stella Maris, Pisa, Italy; Koç University (N.A.B.), Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey; Sorbonne Université (G.C.), Paris Brain Institute, INSERM, CNRS, APHP, France; Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (D.T.), University Hospital Essen, University of Duisburg-Essen, Germany; Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN) (C.G.), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean; Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean (C.G.); Faculté de médecine et des sciences de la santé (C.G.), Université de Sherbrooke, Québec, Canada; Department of Neurology (B.P.C.v.d.W.), Radboud University Medical Center, Nijmegen, the Netherlands; and Division of Neurodegenerative Diseases (R.S.), Department of Neurology, Heidelberg University Hospital, Germany
| |
Collapse
|
11
|
Yamasaki Y, Arai T, Takaishi S, Takamura H, Maruki H. Increased stride time variability is associated with a higher risk of falls in patients with ataxia after stroke. Physiother Theory Pract 2024; 40:2916-2924. [PMID: 39612266 DOI: 10.1080/09593985.2023.2286334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Patients presenting with ataxia are at high risk of falling, however, there are limited studies evaluating fall factors restricted to patients presenting with ataxia due to stroke. PURPOSE This study aimed to examine the characteristics of patients with ataxia after stroke based on their motor function to identify variables associated with fall occurrence. METHODS We divided 33 participants who presented with ataxia after stroke into fall and non-fall groups. Data on motor function, cognitive function, and daily functionality were extracted from their admission records. Walking ability was measured as comfortable walking speed and Stride Time Variability (STV). Independent sample t-tests, Mann - Whitney U tests, and multiple logistic regression analysis were performed. RESULTS There were significant differences between fallers and non-fallers in the STV (p < .001), Mini-Balance Evaluations Systems Test score (p < .014) and Scale for Assessment and Rating of Ataxia score assessment (p < .028). In the multiple logistic regression analysis, only STV was associated with an increased risk of falls (p < .02). The area under the receiver operating characteristic curve was 0.839; the cutoff value of gait cycle variability for falls was 6.345% (sensitivity, 80.0%; specificity, 74.0%). CONCLUSION Increased stride time variability is a useful indicator that sensitively captures fall risk in patients with ataxia after stroke.
Collapse
Affiliation(s)
- Yuichiro Yamasaki
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
| | - Tomoyuki Arai
- Department of Physical Therapy, Faculty of Health & Medical Care, Saitama Medical University Graduate School of Medicine, Saitama, Japan
| | - Shinjiro Takaishi
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
| | - Hiroshi Takamura
- Department of Physical Therapy, Health Science University, Fujikawaguchiko Yamanashi, Japan
| | - Hideyuki Maruki
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
- Saitama Medical University orthopaedic surgery, Moroyama-Town, Saitama, Japan
| |
Collapse
|
12
|
Alsakhawi RS, Elshafey MA, Alkhouli MN. Utilization of Motor Imagery Training for Improvement of Balance of Ataxic Children after Medulloblastoma Resection. Sci Rep 2024; 14:29500. [PMID: 39604382 PMCID: PMC11603029 DOI: 10.1038/s41598-024-78900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigated the effects of training using motor imagery on balance, gait parameters, and ataxia severity in children after they underwent medulloblastoma tumour resection. Fifty participated children, aged seven-nine years and diagnosed with cerebellar ataxia after medulloblastoma resection were selected from the Tumor Hospital of Cairo University. Two groups of patients were randomly divided: the study group and the control group. The control group received a physical therapy program, whereas the study group received training in motor imagery along with a traditional physical therapy program. Each group was assessed using the Scale for the Assessment and Rating of Ataxia (SARA), Pediatric Berg Balance Scale (PBBS), and kinematic gait analysis using the Kinovea software. Significant improvements were noted in balance, ataxia, and spatial and temporal gait parameters in both groups, which favoured the study group (P > 0.05). Training in motor imagery is an effective rehabilitation treatment for medulloblastoma resection and may be applied in combination with an appropriate physical therapy.Trial registration: ClinicalTrials.gov identifier, NCT05992207, 08-07-2023.
Collapse
Affiliation(s)
- Reham Saeed Alsakhawi
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
- The Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Ali Elshafey
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamed Nader Alkhouli
- The Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Delta University for Science and Technology, International Coastal Road, Gamsa, Egypt
| |
Collapse
|
13
|
Goto R, Oba K, Bando K, Todoroki K, Yoshida J, Nishida D, Mizuno K, Mizusawa H, Takahashi Y. Gait rhythm analysis as a new continuous scale for cerebellar ataxia: Power law and lognormal components represent the ataxic gait quantity. Neurosci Res 2024; 208:39-43. [PMID: 38986955 DOI: 10.1016/j.neures.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
We estimated the severity of cerebellar ataxia by analyzing gait rhythm. We measured the step times in patients with pure cerebellar ataxia and healthy controls and then analyzed the distribution of the ratios of adjacent times. Gait rhythm displayed the best adaptation when expressed as the sum of the power law and lognormal distributions in both groups, and the groups could be distinguished by the exponent of the power law distribution, reflecting the fractal property of gait rhythm. Gait rhythm might reflect different features of impairment in patients with cerebellar ataxia, making it a useful continuous scale for cerebellar ataxia.
Collapse
Affiliation(s)
- Ryoji Goto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Koichiro Oba
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Kyota Bando
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Kyoko Todoroki
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Junichiro Yoshida
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Daisuke Nishida
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan; Department of Rehabilitation Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Katsuhiro Mizuno
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan; Department of Rehabilitation Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan.
| |
Collapse
|
14
|
Tang W, van Ooijen PMA, Sival DA, Maurits NM. Automatic two-dimensional & three-dimensional video analysis with deep learning for movement disorders: A systematic review. Artif Intell Med 2024; 156:102952. [PMID: 39180925 DOI: 10.1016/j.artmed.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
The advent of computer vision technology and increased usage of video cameras in clinical settings have facilitated advancements in movement disorder analysis. This review investigated these advancements in terms of providing practical, low-cost solutions for the diagnosis and analysis of movement disorders, such as Parkinson's disease, ataxia, dyskinesia, and Tourette syndrome. Traditional diagnostic methods for movement disorders are typically reliant on the subjective assessment of motor symptoms, which poses inherent challenges. Furthermore, early symptoms are often overlooked, and overlapping symptoms across diseases can complicate early diagnosis. Consequently, deep learning has been used for the objective video-based analysis of movement disorders. This study systematically reviewed the latest advancements in automatic two-dimensional & three-dimensional video analysis using deep learning for movement disorders. We comprehensively analyzed the literature published until September 2023 by searching the Web of Science, PubMed, Scopus, and Embase databases. We identified 68 relevant studies and extracted information on their objectives, datasets, modalities, and methodologies. The study aimed to identify, catalogue, and present the most significant advancements, offering a consolidated knowledge base on the role of video analysis and deep learning in movement disorder analysis. First, the objectives, including specific PD symptom quantification, ataxia assessment, cerebral palsy assessment, gait disorder analysis, tremor assessment, tic detection (in the context of Tourette syndrome), dystonia assessment, and abnormal movement recognition were discussed. Thereafter, the datasets used in the study were examined. Subsequently, video modalities and deep learning methodologies related to the topic were investigated. Finally, the challenges and opportunities in terms of datasets, interpretability, evaluation methods, and home/remote monitoring were discussed.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; Data Science Center in Health, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| | - Peter M A van Ooijen
- Data Science Center in Health, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Deborah A Sival
- Department of Pediatric Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
15
|
Torri F, Vadi G, Meli A, Loprieno S, Schirinzi E, Lopriore P, Ricci G, Siciliano G, Mancuso M. The use of digital tools in rare neurological diseases towards a new care model: a narrative review. Neurol Sci 2024; 45:4657-4668. [PMID: 38856822 PMCID: PMC11422437 DOI: 10.1007/s10072-024-07631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Rare neurological diseases as a whole share peculiar features as motor and/or cognitive impairment, an elevated disability burden, a frequently chronic course and, in present times, scarcity of therapeutic options. The rarity of those conditions hampers both the identification of significant prognostic outcome measures, and the development of novel therapeutic approaches and clinical trials. Collection of objective clinical data through digital devices can support diagnosis, care, and therapeutic research. We provide an overview on recent developments in the field of digital tools applied to rare neurological diseases, both in the care setting and as providers of outcome measures in clinical trials in a representative subgroup of conditions, including ataxias, hereditary spastic paraplegias, motoneuron diseases and myopathies.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Vadi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Adriana Meli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Sara Loprieno
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
16
|
Barcellos I, Hansen C, Strobel GK, Geritz J, Munhoz RP, Moscovich M, Maetzler W, Teive HAG. Spatiotemporal Gait Analysis of Patients with Spinocerebellar Ataxia Types 3 and 10 Using Inertial Measurement Units: A Comparative Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2109-2121. [PMID: 38869768 DOI: 10.1007/s12311-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Given the high morbidity related to the progression of gait deficits in spinocerebellar ataxias (SCA), there is a growing interest in identifying biomarkers that can guide early diagnosis and rehabilitation. Spatiotemporal parameter (STP) gait analysis using inertial measurement units (IMUs) has been increasingly studied in this context. This study evaluated STP profiles in SCA types 3 and 10, compared them to controls, and correlated them with clinical scales. IMU portable sensors were used to measure STPs under four gait conditions: self-selected pace (SSP), fast pace (FP), fast pace checking-boxes (FPCB), and fast pace with serial seven subtractions (FPS7). Compared to healthy subjects, both SCA groups had higher values for step time, variability, and swing time, with lower values for gait speed, cadence, and step length. We also found a reduction in speed gain capacity in both SCA groups compared to controls and an increase in speed dual-task cost in the SCA10 group. However, there were no significant differences between the SCA groups. Swing time, mean speed, and step length were correlated with disease severity, risk of falling and functionality in both clinical groups. In the SCA3 group, fear of falling was correlated with cadence. In the SCA10 group, results of the Montreal cognitive assessment test were correlated with step time, mean speed, and step length. These results show that individuals with SCA3 and SCA10 present a highly variable, short-stepped, slow gait pattern compared to healthy subjects, and their gait quality worsened with a fast pace and dual-task involvement.
Collapse
Affiliation(s)
- Igor Barcellos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil.
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Giovanna Klüppel Strobel
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Johanna Geritz
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Renato P Munhoz
- Gloria and Morton Shulman Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Mariana Moscovich
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Hélio Afonso Ghizoni Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Mincheva G, Felipo V, Moreno-Manzano V, Benítez-Páez A, Llansola M. Extracellular vesicles from mesenchymal stem cells alter gut microbiota and improve neuroinflammation and motor impairment in rats with mild liver damage. Neurotherapeutics 2024; 21:e00445. [PMID: 39242290 PMCID: PMC11585882 DOI: 10.1016/j.neurot.2024.e00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Gut microbiota perturbation and motor dysfunction have been reported in steatosis patients. Rats with mild liver damage (MLD) show motor dysfunction mediated by neuroinflammation and altered GABAergic neurotransmission in the cerebellum. The extracellular vesicles (EV) from mesenchymal stem cells (MSC) have emerged as a promising therapeutic proxy whose molecular basis relies partly upon TGFβ action. This study aimed to assess if MSC-EVs improve motor dysfunction in rats with mild liver damage and analyze underlying mechanisms, including the role of TGFβ, cerebellar neuroinflammation and gut microbiota. MLD in rats was induced by carbon tetrachloride administration and EVs from normal (C-EVs) or TGFβ-siRNA treated MSCs (T-EV) were injected. Motor coordination, locomotor gait, neuroinflammation and TNF-α-activated pathways modulating GABAergic neurotransmission in the cerebellum, microbiota composition in feces and microbial-derived metabolites in plasma were analyzed. C-EVs reduced glial and TNFα-P2X4-BDNF-TrkB pathway activation restoring GABAergic neurotransmission in the cerebellum and improving motor coordination and all the altered gait parameters. T-EVs also improved motor coordination and some gait parameters, but the mechanisms involved differed from those of C-EVs. MLD rats showed increased content of some Bacteroides species in feces, correlating with decreased kynurenine aside from motor alterations. These alterations were all normalized by C-EVs, whereas T-EVs only restored kynurenine levels. Our results support the value of MSC-EVs on improving motor dysfunction in MLD and unveil a possible mechanism by which altered microbiota may contribute to neuroinflammation and motor impairment. Some of the underlying mechanisms are TGFβ-dependent.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Centro de Investigación Principe Felipe, Valencia, Spain; Microbiome, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC). Paterna-Valencia, Spain..
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
18
|
Bertuccelli M, Bisiacchi P, Del Felice A. Disentangling Cerebellar and Parietal Contributions to Gait and Body Schema: A Repetitive Transcranial Magnetic Stimulation Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1848-1858. [PMID: 38438828 PMCID: PMC11489286 DOI: 10.1007/s12311-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
The overlap between motor and cognitive signs resulting from posterior parietal cortex (PPC) and cerebellar lesions can mask their relative contribution in the sensorimotor integration process. This study aimed to identify distinguishing motor and cognitive features to disentangle PPC and cerebellar involvement in two sensorimotor-related functions: gait and body schema representation. Thirty healthy volunteers were enrolled and randomly assigned to PPC or cerebellar stimulation. Sham stimulation and 1 Hz-repetitive-Transcranial-Magnetic-Stimulation were delivered over P3 or cerebellum before a balance and a walking distance estimation task. Each trial was repeated with eyes open (EO) and closed (EC). Eight inertial measurement units recorded spatiotemporal and kinematic variables of gait. Instability increased in both groups after real stimulation: PPC inhibition resulted in increased instability in EC conditions, as evidenced by increased ellipse area and range of movement in medio-lateral and anterior-posterior (ROMap) directions. Cerebellar inhibition affected both EC (increased ROMap) and EO stability (greater displacement of the center of mass). Inhibitory stimulation (EC vs. EO) affected also gait spatiotemporal variability, with a high variability of ankle and knee angles plus different patterns in the two groups (cerebellar vs parietal). Lastly, PPC group overestimates distances after real stimulation (EC condition) compared to the cerebellar group. Stability, gait variability, and distance estimation parameters may be useful clinical parameters to disentangle cerebellar and PPC sensorimotor integration deficits. Clinical differential diagnosis efficiency can benefit from this methodological approach.
Collapse
Affiliation(s)
- Margherita Bertuccelli
- Department of Neuroscience, Section of Neurology, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Patrizia Bisiacchi
- Department of Neuroscience, Section of Neurology, University of Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Neurology, University of Padova, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
19
|
Vallortigara J, Greenfield J, Hunt B, Hoffman D, Booth S, Morris S, Giunti P. Comparison of specialist ataxia centres with non-specialist services in terms of treatment, care, health services resource utilisation and costs in the UK using patient-reported data. BMJ Open 2024; 14:e084865. [PMID: 39242169 PMCID: PMC11381710 DOI: 10.1136/bmjopen-2024-084865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES This study aims to assess the patient-reported benefits and the costs of coordinated care and multidisciplinary care at specialist ataxia centres (SACs) in the UK compared with care delivered in standard neurological clinics. DESIGN A patient survey was distributed between March and May 2019 to patients with ataxia or carers of patients with ataxia through the Charity Ataxia UK's mailing list, website, magazine and social media to gather information about the diagnosis, management of the ataxias in SAC and non-specialist settings, utilisation of various healthcare services and patients' satisfaction. We compared mean resource use for each contact type and health service costs per patient, stratifying patients by whether they were currently attending a SAC or never attended one. SETTING Secondary care including SACs and general neurology clinics. PARTICIPANTS We had 277 participants in the survey, aged 16 years old and over, diagnosed with ataxia and living in the UK. PRIMARY OUTCOME MEASURES Patient experience and perception of the two healthcare services settings, patient level of satisfaction, difference in healthcare services use and costs. RESULTS Patients gave positive feedback about the role of SAC in understanding their condition (96.8% of SAC group), in coordinating referrals to other healthcare specialists (86.6%), and in offering opportunities to take part in research studies (85.2%). Participants who attended a SAC reported a better management of their symptoms and a more personalised care received compared with participants who never attended a SAC (p<0.001). Costs were not significantly different in between those attending a SAC and those who did not. We identified some barriers for patients in accessing the SACs, and some gaps in the care provided, for which we made some recommendations. CONCLUSIONS This study provides useful information about ataxia patient care pathways in the UK. Overall, the results showed significantly higher patient satisfaction in SAC compared with non-SAC, at similar costs. The findings can be used to inform policy recommendations on how to improve treatment and care for people with these very rare and complex neurological diseases. Improving access to SAC for patients across the UK is one key policy recommendation of this study.
Collapse
Affiliation(s)
- Julie Vallortigara
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | | | | | - Suzanne Booth
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Paola Giunti
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Beichert L, Ilg W, Kessler C, Traschütz A, Reich S, Santorelli FM, Başak AN, Gagnon C, Schüle R, Synofzik M. Digital Gait Outcomes for Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS): Discriminative, Convergent, and Ecological Validity in a Multicenter Study (PROSPAX). Mov Disord 2024; 39:1544-1555. [PMID: 38847438 DOI: 10.1002/mds.29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With treatment trials on the horizon, this study aimed to identify candidate digital-motor gait outcomes for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), capturable by wearable sensors with multicenter validity, and ideally also ecological validity during free walking outside laboratory settings. METHODS Cross-sectional multicenter study (four centers), with gait assessments in 36 subjects (18 ARSACS patients; 18 controls) using three body-worn sensors (Opal, APDM) in laboratory settings and free walking in public spaces. Sensor gait measures were analyzed for discriminative validity from controls, and for convergent (ie, clinical and patient relevance) validity by correlations with SPRSmobility (primary outcome) and Scale for the Assessment and Rating of Ataxia (SARA), Spastic Paraplegia Rating Scale (SPRS), and activities of daily living subscore of the Friedreich Ataxia Rating Scale (FARS-ADL) (exploratory outcomes). RESULTS Of 30 hypothesis-based digital gait measures, 14 measures discriminated ARSACS patients from controls with large effect sizes (|Cliff's δ| > 0.8) in laboratory settings, with strongest discrimination by measures of spatiotemporal variability Lateral Step Deviation (δ = 0.98), SPcmp (δ = 0.94), and Swing CV (δ = 0.93). Large correlations with the SPRSmobility were observed for Swing CV (Spearman's ρ = 0.84), Speed (ρ = -0.63), and Harmonic Ratio V (ρ = -0.62). During supervised free walking in a public space, 11/30 gait measures discriminated ARSACS from controls with large effect sizes. Large correlations with SPRSmobility were here observed for Swing CV (ρ = 0.78) and Speed (ρ = -0.69), without reductions in effect sizes compared with laboratory settings. CONCLUSIONS We identified a promising set of digital-motor candidate gait outcomes for ARSACS, applicable in multicenter settings, correlating with patient-relevant health aspects, and with high validity also outside laboratory settings, thus simulating real-life walking with higher ecological validity. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lukas Beichert
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Christoph Kessler
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Selina Reich
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | | - Ayşe Nazli Başak
- Koç University, Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Rebecca Schüle
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Eliseeva E, Malik MY, Minichiello L. Ablation of TrkB from Enkephalinergic Precursor-Derived Cerebellar Granule Cells Generates Ataxia. BIOLOGY 2024; 13:637. [PMID: 39194574 DOI: 10.3390/biology13080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In ataxia disorders, motor incoordination (ataxia) is primarily linked to the dysfunction and degeneration of cerebellar Purkinje cells (PCs). In spinocerebellar ataxia 6 (SCA6), for example, decreased BDNF-TrkB signalling appears to contribute to PC dysfunction and ataxia. However, abnormal BDNF-TrkB signalling in granule cells (GCs) may contribute to PC dysfunction and incoordination in ataxia disorders, as TrkB receptors are also present in GCs that provide extensive input to PCs. This study investigated whether dysfunctional BDNF-TrkB signalling restricted to a specific subset of cerebellar GCs can generate ataxia in mice. To address this question, our research focused on TrkbPenk-KO mice, in which the TrkB receptor was removed from enkephalinergic precursor-derived cerebellar GCs. We found that deleting Ntrk2, encoding the TrkB receptor, eventually interfered with PC function, leading to ataxia symptoms in the TrkbPenk-KO mice without affecting their cerebellar morphology or levels of selected synaptic markers. These findings suggest that dysfunctional BDNF-TrkB signalling in a subset of cerebellar GCs alone is sufficient to trigger ataxia symptoms and may contribute to motor incoordination in disorders like SCA6.
Collapse
Affiliation(s)
- Elena Eliseeva
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Mohd Yaseen Malik
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | |
Collapse
|
22
|
Fortunati M, Febbi M, Negro M, Gennaro F, D’Antona G, Crisafulli O. Lower-Limb Exoskeletons for Gait Training in Parkinson's Disease: The State of the Art and Future Perspectives. Healthcare (Basel) 2024; 12:1636. [PMID: 39201194 PMCID: PMC11353983 DOI: 10.3390/healthcare12161636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Gait dysfunction (GD) is a common impairment of Parkinson's disease (PD), which negatively impacts patients' quality of life. Among the most recent rehabilitation technologies, a lower-limb powered exoskeleton (LLEXO) arises as a useful instrument for gait training in several neurological conditions, including PD. However, some questions relating to methods of use, achievable results, and usefulness compared to traditional rehabilitation methodologies still require clear answers. Therefore, in this review, we aim to summarise and analyse all the studies that have applied an LLEXO to train gait in PD patients. Literature research on PubMed and Scopus retrieved five articles, comprising 46 PD participants stable on medications (age: 71.7 ± 3.7 years, 24 males, Hoehn and Yahr: 2.1 ± 0.6). Compared to traditional rehabilitation, low-profile lower-limb exoskeleton (lp-LLEXO) training brought major improvements towards walking capacity and gait speed, while there are no clear major benefits regarding the dual-task gait cost index and freezing of gait symptoms. Importantly, the results suggest that lp-LLEXO training is more beneficial for patients with an intermediate-to-severe level of disease severity (Hoehn and Yahr > 2.5). This review could provide a novel framework for implementing LLEXO in clinical practise, highlighting its benefits and limitations towards gait training.
Collapse
Affiliation(s)
- Matteo Fortunati
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Massimiliano Febbi
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- Laboratory for Rehabilitation, Medicine and Sport (LARM), 00133 Rome, Italy
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Giuseppe D’Antona
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Oscar Crisafulli
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| |
Collapse
|
23
|
Ilg W, Milne S, Schmitz-Hübsch T, Alcock L, Beichert L, Bertini E, Mohamed Ibrahim N, Dawes H, Gomez CM, Hanagasi H, Kinnunen KM, Minnerop M, Németh AH, Newman J, Ng YS, Rentz C, Samanci B, Shah VV, Summa S, Vasco G, McNames J, Horak FB. Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1566-1592. [PMID: 37955812 PMCID: PMC11269489 DOI: 10.1007/s12311-023-01625-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.
Collapse
Affiliation(s)
- Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany.
| | - Sarah Milne
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
- Physiotherapy Department, Monash Health, Clayton, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Frankston, VIC, Australia
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Lukas Beichert
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | | | - Helen Dawes
- NIHR Exeter BRC, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane Newman
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Clara Rentz
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Susanna Summa
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - James McNames
- APDM Precision Motion, Clario, Portland, OR, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| |
Collapse
|
24
|
Atella TC, Medina JM, Atella GC, Allodi S, Kluck GEG. Neuroprotective Effects of Metformin Through AMPK Activation in a Neurotoxin-Based Model of Cerebellar Ataxia. Mol Neurobiol 2024; 61:5102-5116. [PMID: 38165584 DOI: 10.1007/s12035-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Cerebellar ataxia is a heterogeneous group of neural disorders clinically characterized by cerebellar dysfunction. The diagnosis of patients with progressive cerebellar ataxia is complex due to the direct correlation with other neuron diseases. Although there is still no cure for this pathological condition, some metabolic, hereditary, inflammatory, and immunological factors affecting cerebellar ataxia are being studied and may become therapeutic targets. Advances in studying the neuroanatomy, pathophysiology, and molecular biology of the cerebellum (CE) contribute to a better understanding of the mechanisms behind the development of this disorder. In this study, Wistar rats aged 30 to 35 days were injected intraperitoneally with 3-acetylpyridine (3-AP) and/or metformin (for AMP-activated protein kinase (AMPK) enzyme activation) and euthanized in 24 hours and 4 days after injection. We analyzed the neuromodulatory role of the AMPK on cerebellar ataxia induced by the neurotoxin 3-AP in the brain stem (BS) and CE, after pre-treatment for 7 and 15 days with metformin, a pharmacological indirect activator of AMPK. The results shown here suggest that AMPK activation in the BS and CE leads to a significant reduction in neuroinflammation in these regions. AMPK was able to restore the changes in fatty acid composition and pro-inflammatory cytokines caused by 3-AP, suggesting that the action of AMPK seems to result in a possible neuroprotection on the cerebellar ataxia model.
Collapse
Affiliation(s)
- Tainá C Atella
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George E G Kluck
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario, L8L 2X2, Canada.
| |
Collapse
|
25
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
26
|
Sudnawa KK, Li W, Calamia S, Kanner CH, Bain JM, Abdelhakim AH, Geltzeiler A, Mebane CM, Provenzano FA, Sands TT, Fee RJ, Montes J, Shen Y, Chung WK. Heterogeneity of comprehensive clinical phenotype and longitudinal adaptive function and correlation with computational predictions of severity of missense genotypes in KIF1A-associated neurological disorder. Genet Med 2024; 26:101169. [PMID: 38785164 PMCID: PMC11298291 DOI: 10.1016/j.gim.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Pathogenic variants in kinesin family member 1A (KIF1A) are associated with KIF1A-associated neurological disorder. We report the clinical phenotypes and correlate genotypes of individuals with KIF1A-associated neurological disorder. METHODS Medical history and adaptive function were assessed longitudinally. In-person evaluations included neurological, motor, ophthalmologic, and cognitive assessments. RESULTS We collected online data on 177 individuals. Fifty-seven individuals were also assessed in-person. Most individuals had de novo heterozygous missense likely pathogenic/pathogenic KIF1A variants. The most common characteristics were hypotonia, spasticity, ataxia, seizures, optic nerve atrophy, cerebellar atrophy, and cognitive impairment. Mean Vineland adaptive behavior composite score (VABS-ABC) was low (M = 62.9, SD = 19.1). The mean change in VABS-ABC over time was -3.1 (SD = 7.3). The decline in VABS-ABC was associated with the age at first assessment and abnormal electroencephalogram/seizure. There was a positive correlation between evolutionary scale model (ESM) score for the variants and final VABS-ABC (P = .003). Abnormal electroencephalogram/seizure, neuroimaging result, and ESM explain 34% of the variance in final VABS-ABC (P < .001). CONCLUSION In-person assessment confirmed caregiver report and identified additional visual deficits. Adaptive function declined over time consistent with both the neurodevelopmental and neurodegenerative nature of the condition. Using ESM score assists in predicting phenotype across a wide range of unique variants.
Collapse
Affiliation(s)
- Khemika K Sudnawa
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Wenxing Li
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - Sean Calamia
- Department of Pediatrics, Columbia University, New York, NY
| | - Cara H Kanner
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jennifer M Bain
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Aliaa H Abdelhakim
- Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
| | - Alexa Geltzeiler
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY
| | - Tristan T Sands
- Departments of Neurology and Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Robert J Fee
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
27
|
Bonanno M, De Pasquale P, De Marchis C, Lombardo Facciale A, Paladina G, Fonti B, Quartarone A, Calabrò RS. Might patients with cerebellar ataxia benefit from the Computer Assisted Rehabilitation ENvironment (CAREN)? A pilot study focusing on gait and balance. Front Bioeng Biotechnol 2024; 12:1385280. [PMID: 39011156 PMCID: PMC11247328 DOI: 10.3389/fbioe.2024.1385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction: Ataxia is a neurological symptom that causes decreased balance, loss of coordination, and gait alterations. Innovative rehabilitation devices like virtual reality (VR) systems can provide task-oriented, repetitive and intensive training with multisensorial feedback, thus promoting neuroplastic processes. Among these VR technologies, the Computer Assisted Rehabilitation ENvironment (CAREN) associates a split belt treadmill on a 6-degrees of freedom platform with a 180° VR screen and a Vicon motion capture system to monitor patients' movements during training sessions. Methods: Eight patients affected by cerebellar ataxia were enrolled and received 20 sessions of CAREN training in addition to standard rehabilitation treatment. Each patient was evaluated at the beginning and at the end of the study with 3D gait analysis and clinical scales to assess balance, gait function and risk of falls. Results: We found improvements in kinematic, kinetic, and electromyographic parameters (as per pre-post- CAREN training), as well as in clinical outcomes, such as balance and risk of falls in ataxic patients. In addition, we found that trunk rotation improved, after CAREN intervention, approximating to the normative values. Discussion: Our results suggested that CAREN might be useful to improve specific biomechanical parameters of gait in ataxic patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartolo Fonti
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | |
Collapse
|
28
|
Scataglini S, Abts E, Van Bocxlaer C, Van den Bussche M, Meletani S, Truijen S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3686. [PMID: 38894476 PMCID: PMC11175331 DOI: 10.3390/s24113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
(1) Background: Marker-based 3D motion capture systems (MBS) are considered the gold standard in gait analysis. However, they have limitations for which markerless camera-based 3D motion capture systems (MCBS) could provide a solution. The aim of this systematic review and meta-analysis is to compare the accuracy, validity, and reliability of MCBS and MBS. (2) Methods: A total of 2047 papers were systematically searched according to PRISMA guidelines on 7 February 2024, in two different databases: Pubmed (1339) and WoS (708). The COSMIN-tool and EBRO guidelines were used to assess risk of bias and level of evidence. (3) Results: After full text screening, 22 papers were included. Spatiotemporal parameters showed overall good to excellent accuracy, validity, and reliability. For kinematic variables, hip and knee showed moderate to excellent agreement between the systems, while for the ankle joint, poor concurrent validity and reliability were measured. The accuracy and concurrent validity of walking speed were considered excellent in all cases, with only a small bias. The meta-analysis of the inter-rater reliability and concurrent validity of walking speed, step time, and step length resulted in a good-to-excellent intraclass correlation coefficient (ICC) (0.81; 0.98). (4) Discussion and conclusions: MCBS are comparable in terms of accuracy, concurrent validity, and reliability to MBS in spatiotemporal parameters. Additionally, kinematic parameters for hip and knee in the sagittal plane are considered most valid and reliable but lack valid and accurate measurement outcomes in transverse and frontal planes. Customization and standardization of methodological procedures are necessary for future research to adequately compare protocols in clinical settings, with more attention to patient populations.
Collapse
Affiliation(s)
- Sofia Scataglini
- 4D4ALL Laboratory, Department of Rehabilitation Sciences and Physiotherapy, Center for Health and Technology (CHaT), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium; (E.A.); (C.V.B.); (M.V.d.B.); (S.M.); (S.T.)
| | | | | | | | | | | |
Collapse
|
29
|
Trabassi D, Castiglia SF, Bini F, Marinozzi F, Ajoudani A, Lorenzini M, Chini G, Varrecchia T, Ranavolo A, De Icco R, Casali C, Serrao M. Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia. SENSORS (BASEL, SWITZERLAND) 2024; 24:3613. [PMID: 38894404 PMCID: PMC11175240 DOI: 10.3390/s24113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
Collapse
Affiliation(s)
- Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.B.); (F.M.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.B.); (F.M.)
| | - Arash Ajoudani
- Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; (A.A.); (M.L.)
| | - Marta Lorenzini
- Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; (A.A.); (M.L.)
| | - Giorgia Chini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; (G.C.); (T.V.); (A.R.)
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; (D.T.); (C.C.); (M.S.)
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| |
Collapse
|
30
|
Grimmitt AB, Whelan ME, Martini DN, Hoogkamer W. Walking with increased step length variability increases the metabolic cost of walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596299. [PMID: 38854143 PMCID: PMC11160611 DOI: 10.1101/2024.05.28.596299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Older adults and neurological populations tend to walk with slower speeds, more gait variability, and a higher metabolic cost. This higher metabolic cost could be related to their increased gait variability, but this relationship is still unclear. The purpose of this study was to determine how increased step length variability affects the metabolic cost of waking. Eighteen healthy young adults completed a set of 5-minute trials of treadmill walking at 1.20 m/s while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0, 5 and 10% (coefficient of variation). Actual step lengths and their variability were tracked with reflective markers on the feet, while metabolic cost was measured using indirect calorimetry. Changes in metabolic cost across habitual walking (no projections) and the three variability conditions were analyzed using a linear mixed effects model. Metabolic power was largest in the 10% condition (4.30 ± 0.23 W/kg) compared to 0% (4.16 ± 0.18 W/kg) and habitual (3.98 ± 0.25 W/kg). The participant's actual step length variability did not match projected conditions for 0% (3.10%) and 10% (7.03%). For every 1% increase in step length variability, there is an 0.7% increase in metabolic cost. Our results demonstrate an association between the metabolic cost of walking and gait step length variability. This suggests that increased gait variability contributes to a portion of the increased cost of walking seen in older adults and neurological populations.
Collapse
Affiliation(s)
- Adam B Grimmitt
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Maeve E Whelan
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Douglas N Martini
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| |
Collapse
|
31
|
Németh AH, Antoniades CA, Dukart J, Minnerop M, Rentz C, Schuman BJ, van de Warrenburg B, Willemse I, Bertini E, Gupta AS, de Mello Monteiro CB, Almoajil H, Quinn L, Perlman SB, Horak F, Ilg W, Traschütz A, Vogel AP, Dawes H. Using Smartphone Sensors for Ataxia Trials: Consensus Guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:912-923. [PMID: 38015365 PMCID: PMC11102363 DOI: 10.1007/s12311-023-01608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains. Guidance was developed by means of a literature review and a two stage Delphi study conducted by an Expert panel, which surveyed members of AGI WG4, representing clinical, research, industry and patient-led experts, and consensus meetings by the Expert panel to agree on standard criteria and map current literature to these criteria. Seven publications were identified that investigated ataxias using internal smartphone sensors. The Delphi 1 survey ascertained current practice, and systems in use or under development. Wide variations in smartphones sensor use for assessing ataxia were identified. The Delphi 2 survey identified seven measures that were strongly endorsed as priorities in assessing 3/4 domains, namely gait/posture, upper limb, and speech performance. The Expert panel recommended 15 standard criteria to be fulfilled in studies. Evaluation of current literature revealed that none of the studies met all criteria, with most being early-phase validation studies. Our guidance highlights the importance of consensus, identifies priority measures and standard criteria, and will encourage further research into the use of internal smartphone sensors to measure ataxia digital-motor biomarkers.
Collapse
Affiliation(s)
- Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chrystalina A Antoniades
- Neurometrology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | - Clara Rentz
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525, Nijmegen, Netherlands
| | - Ilse Willemse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept Neurosciences, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlos Bandeira de Mello Monteiro
- Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Hajar Almoajil
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Damman, Saudi Arabia
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | | | - Fay Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases", Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, Melbourne, Australia
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Neurology, University Hospital Tübingen, Tübingen, Germany
- Redenlab Inc, Melbourne, Australia
| | - Helen Dawes
- NIHR Exeter Biomedical Research Centre, Medical School, Faculty of Health and Life Sciences, College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, UK.
| |
Collapse
|
32
|
Suzuki M, Hirano S, Otte K, Schmitz-Hübsch T, Izumi M, Tamura M, Kuroiwa R, Sugiyama A, Mori M, Röhling HM, Brandt AU, Murata A, Paul F, Kuwabara S. Digital Motor Biomarkers of Cerebellar Ataxia Using an RGB-Depth Camera-Based Motion Analysis System. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1031-1041. [PMID: 37721679 DOI: 10.1007/s12311-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to identify quantitative biomarkers of motor function for cerebellar ataxia by evaluating gait and postural control using an RGB-depth camera-based motion analysis system. In 28 patients with degenerative cerebellar ataxia and 33 age- and sex-matched healthy controls, motor tasks (short-distance walk, closed feet stance, and stepping in place) were selected from a previously reported protocol, and scanned using Kinect V2 and customized software. The Clinical Assessment Scale for the Assessment and Rating of Ataxia (SARA) was also evaluated. Compared with the normal control group, the cerebellar ataxia group had slower gait speed and shorter step lengths, increased step width, and mediolateral trunk sway in the walk test (all P < 0.001). Lateral sway increased in the stance test in the ataxia group (P < 0.001). When stepping in place, the ataxia group showed higher arrhythmicity of stepping and increased stance time (P < 0.001). In the correlation analyses, the ataxia group showed a positive correlation between the total SARA score and arrhythmicity of stepping in place (r = 0.587, P = 0.001). SARA total score (r = 0.561, P = 0.002) and gait subscore (ρ = 0.556, P = 0.002) correlated with mediolateral truncal sway during walking. These results suggest that the RGB-depth camera-based motion analyses on mediolateral truncal sway during walking and arrhythmicity of stepping in place are useful digital motor biomarkers for the assessment of cerebellar ataxia, and could be utilized in future clinical trials.
Collapse
Affiliation(s)
- Masahide Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan.
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan.
| | - Karen Otte
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Michiko Izumi
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Ryota Kuroiwa
- Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Japan
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Hanna M Röhling
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Atsushi Murata
- Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| |
Collapse
|
33
|
Seemann J, Daghsen L, Cazier M, Lamy JC, Welter ML, Giese MA, Synofzik M, Durr A, Ilg W, Coarelli G. Digital Gait Measures Capture 1-Year Progression in Early-Stage Spinocerebellar Ataxia Type 2. Mov Disord 2024; 39:788-797. [PMID: 38419144 DOI: 10.1002/mds.29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jens Seemann
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Lina Daghsen
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Matthieu Cazier
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Jean-Charles Lamy
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Marie-Laure Welter
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Martin A Giese
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| |
Collapse
|
34
|
Buekers J, Delgado-Ortiz L, Megaritis D, Polhemus A, Breuls S, Buttery SC, Chynkiamis N, Demeyer H, Gimeno-Santos E, Hume E, Koch S, Williams P, Wuyts M, Hopkinson NS, Vogiatzis I, Troosters T, Frei A, Garcia-Aymerich J. Gait differences between COPD and healthy controls: systematic review and meta-analysis. Eur Respir Rev 2024; 33:230253. [PMID: 38657998 PMCID: PMC11040389 DOI: 10.1183/16000617.0253-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Despite the importance of gait as a determinant of falls, disability and mortality in older people, understanding of gait impairment in COPD is limited. This study aimed to identify differences in gait characteristics during supervised walking tests between people with COPD and healthy controls. METHODS We searched 11 electronic databases, supplemented by Google Scholar searches and manual collation of references, in November 2019 and updated the search in July 2021. Record screening and information extraction were performed independently by one reviewer and checked for accuracy by a second. Meta-analyses were performed in studies not considered at a high risk of bias. RESULTS Searches yielded 21 085 unique records, of which 25 were included in the systematic review (including 1015 people with COPD and 2229 healthy controls). Gait speed was assessed in 17 studies (usual speed: 12; fast speed: three; both speeds: two), step length in nine, step duration in seven, cadence in six, and step width in five. Five studies were considered at a high risk of bias. Low-quality evidence indicated that people with COPD walk more slowly than healthy controls at their usual speed (mean difference (MD) -19 cm·s-1, 95% CI -28 to -11 cm·s-1) and at a fast speed (MD -30 cm·s-1, 95% CI -47 to -13 cm·s-1). Alterations in other gait characteristics were not statistically significant. CONCLUSION Low-quality evidence shows that people with COPD walk more slowly than healthy controls, which could contribute to an increased falls risk. The evidence for alterations in spatial and temporal components of gait was inconclusive. Gait impairment appears to be an important but understudied area in COPD.
Collapse
Affiliation(s)
- Joren Buekers
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Laura Delgado-Ortiz
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Ashley Polhemus
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Sofie Breuls
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sara C Buttery
- National Lung and Heart Institute, Imperial College London, London, UK
| | - Nikolaos Chynkiamis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
- Thorax Research Foundation and First Department of Respiratory Medicine, National and Kapodistrian University of Athens, Sotiria General Chest Hospital, Athens, Greece
| | - Heleen Demeyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Elena Gimeno-Santos
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital Clinic of Barcelona - August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emily Hume
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Sarah Koch
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Parris Williams
- National Lung and Heart Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, London, UK
| | - Marieke Wuyts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle, Newcastle upon Tyne, UK
- Thorax Research Foundation and First Department of Respiratory Medicine, National and Kapodistrian University of Athens, Sotiria General Chest Hospital, Athens, Greece
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Anja Frei
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
35
|
Shurupova MA, Latanov AV. Oculomotor Impairments in Children After Posterior Fossa Tumors Treatment. CEREBELLUM (LONDON, ENGLAND) 2024; 23:444-454. [PMID: 37000368 DOI: 10.1007/s12311-023-01553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Posterior fossa tumors (PFT) are the most common pediatric brain tumors, and the study of the somatic and cognitive status of PFT survivors still remains a critical problem. Since cerebellar damage can affect eye movement centers located in the vermis and hemispheres, such patients suffer from disturbances in visual perception, visual-spatial functions, reading, etc. Our investigation aimed at describing oculomotor impairments in PFT survivors linked to core oculomotor functions assessed through eye tracking method: gaze holding, reflexive saccades, and organization of voluntary saccades and their dependency on age at tumor diagnosis. Also, we investigated the relationship between oculomotor functions and ataxia measured with International Cooperative Ataxia Rating Scale (ICARS). A total of 110 children (patients and age-matched healthy controls, aged 9-17 years old) participated in the study. We found that the earlier the child had a tumor, the more impaired gaze holding (p = 0.0031) and fewer isometric saccades (p = 0.035) were observed at the time of examination. The above-mentioned functions in healthy controls improved with age. Visual scanning was also impaired compared to controls but was not related to age at diagnosis. A positive correlation between ICARS scores and number of hypermetric saccades (r = 0.309, p = 0.039), but no correlation with the number of hypometric saccades (r = - 0.008, p = 0.956). Furthermore, number of hypometric saccades did not differ between patients and controls (p = 0.238). Thus, primarily hypermetric saccades can be considered a prominent oculomotor symptom of cerebellar tumors. Our study provides basis for new methods of PFT diagnosis and rehabilitation procedure evaluation, both playing essential roles in modern pediatric neurooncology.
Collapse
Affiliation(s)
- Marina A Shurupova
- Neurocognitive Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, 117997, Moscow, Russia.
- Department of Neurobiology, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
- Department of Rehabilitation, Federal Center of Brain research and Neurotechnologies of the Federal Medical Biological Agency, 117513, Moscow, Russia.
| | - Alexander V Latanov
- Department of Neurobiology, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
36
|
Cirnigliaro L, Pettinato F, Valle MS, Casabona A, Fiumara A, Vecchio M, Amico V, Rizzo R, Jaeken J, Barone R, Cioni M. Instrumented assessment of gait disturbance in PMM2-CDG adults: a feasibility analysis. Orphanet J Rare Dis 2024; 19:39. [PMID: 38308356 PMCID: PMC10837865 DOI: 10.1186/s13023-024-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG. However, no specific gait assessment for PMM2-CDG is available. This study analyses gait-related parameters in PMM2-CDG patients using a standardized clinical assessment and instrumented gait analysis (IGA). RESULTS Seven adult patients with a molecular diagnosis of PMM2-CDG were followed-up from February 2021 to December 2022 and compared to a group of healthy control (HC) subjects, matched for age and sex. Standardized assessment of disease severity including ataxia and peripheral neuropathy along with isometric muscle strength and echo-biometry measurements at lower limbs were performed. IGA spatiotemporal parameters were obtained by means of a wearable sensor in basal conditions. PMM2-CDG patients displayed lower gait speed, stride length, cadence and symmetry index, compared to HC. Significant correlations were found among the used clinical scales and between disease severity (NCRS) scores and the gait speed measured by IGA. Variable reduction of knee extension strength and a significant decrease of lower limb muscle thickness with conserved echo intensity were found in PMM2-CDG compared to HC. CONCLUSIONS The study elucidates different components of gait disturbance in PMM2-CDG patients and shows advantages of using wearable sensor-based IGA in this frame. IGA parameters may potentially serve as quantitative measures for follow-up or outcome quantification in PMM2-CDG.
Collapse
Affiliation(s)
- Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Referral Centre for Inherited Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123, Catania, Italy
- Rehabilitation Unit, AOU Policlinico-San Marco, 95123, Catania, Italy
| | - Valerio Amico
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy.
- Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
37
|
Iseki C, Suzuki S, Fukami T, Yamada S, Hayasaka T, Kondo T, Hoshi M, Ueda S, Kobayashi Y, Ishikawa M, Kanno S, Suzuki K, Aoyagi Y, Ohta Y. Fluctuations in Upper and Lower Body Movement during Walking in Normal Pressure Hydrocephalus and Parkinson's Disease Assessed by Motion Capture with a Smartphone Application, TDPT-GT. SENSORS (BASEL, SWITZERLAND) 2023; 23:9263. [PMID: 38005649 PMCID: PMC10674367 DOI: 10.3390/s23229263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
We aimed to capture the fluctuations in the dynamics of body positions and find the characteristics of them in patients with idiopathic normal pressure hydrocephalus (iNPH) and Parkinson's disease (PD). With the motion-capture application (TDPT-GT) generating 30 Hz coordinates at 27 points on the body, walking in a circle 1 m in diameter was recorded for 23 of iNPH, 23 of PD, and 92 controls. For 128 frames of calculated distances from the navel to the other points, after the Fourier transforms, the slopes (the representatives of fractality) were obtained from the graph plotting the power spectral density against the frequency in log-log coordinates. Differences in the average slopes were tested by one-way ANOVA and multiple comparisons between every two groups. A decrease in the absolute slope value indicates a departure from the 1/f noise characteristic observed in healthy variations. Significant differences in the patient groups and controls were found in all body positions, where patients always showed smaller absolute values. Our system could measure the whole body's movement and temporal variations during walking. The impaired fluctuations of body movement in the upper and lower body may contribute to gait and balance disorders in patients.
Collapse
Affiliation(s)
- Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.K.); (K.S.)
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-2331, Japan; (T.K.); (Y.O.)
| | - Shou Suzuki
- Department of Informatics, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan; (S.S.); (T.F.)
| | - Tadanori Fukami
- Department of Informatics, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan; (S.S.); (T.F.)
| | - Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
- Interfaculty Initiative in Information Studies, Institute of Industrial Science, The University of Tokyo, Tokyo 113-8654, Japan
- Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Tatsuya Hayasaka
- Department of Anesthesiology, Yamagata University School of Medicine, Yamagata 990-2331, Japan;
| | - Toshiyuki Kondo
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-2331, Japan; (T.K.); (Y.O.)
| | - Masayuki Hoshi
- Department of Physical Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakaemachi, Fukushima 960-8516, Japan;
| | - Shigeo Ueda
- Shin-Aikai Spine Center, Katano Hospital, Katano 576-0043, Japan;
| | - Yoshiyuki Kobayashi
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, Kashiwa 277-0882, Japan;
| | - Masatsune Ishikawa
- Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
- Rakuwa Villa Ilios, Rakuwakai Healthcare System, Kyoto 607-8062, Japan
| | - Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.K.); (K.S.)
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.K.); (K.S.)
| | | | - Yasuyuki Ohta
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata 990-2331, Japan; (T.K.); (Y.O.)
| |
Collapse
|
38
|
Teran-Pineda D, Thurnhofer-Hemsi K, Domínguez E. Human Gait Activity Recognition Using Multimodal Sensors. Int J Neural Syst 2023; 33:2350058. [PMID: 37779221 DOI: 10.1142/s0129065723500582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Human activity recognition is an application of machine learning with the aim of identifying activities from the gathered activity raw data acquired by different sensors. In medicine, human gait is commonly analyzed by doctors to detect abnormalities and determine possible treatments for the patient. Monitoring the patient's activity is paramount in evaluating the treatment's evolution. This type of classification is still not enough precise, which may lead to unfavorable reactions and responses. A novel methodology that reduces the complexity of extracting features from multimodal sensors is proposed to improve human activity classification based on accelerometer data. A sliding window technique is used to demarcate the first dominant spectral amplitude, decreasing dimensionality and improving feature extraction. In this work, we compared several state-of-art machine learning classifiers evaluated on the HuGaDB dataset and validated on our dataset. Several configurations to reduce features and training time were analyzed using multimodal sensors: all-axis spectrum, single-axis spectrum, and sensor reduction.
Collapse
Affiliation(s)
- Diego Teran-Pineda
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| | - Karl Thurnhofer-Hemsi
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| | - Enrique Domínguez
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| |
Collapse
|
39
|
Ebrahimi A, Kamyab A, Hosseini S, Ebrahimi S, Ashkani-Esfahani S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem Res Int 2023; 2023:5510874. [PMID: 37946741 PMCID: PMC10632062 DOI: 10.1155/2023/5510874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Coenzyme Q10 (CoQ10), commonly known as ubiquinone, is a vitamin-like component generated in mitochondrial inner membranes. This molecule is detected broadly in different parts of the human body in various quantities. This molecule can be absorbed by the digestive system from various nutritional sources as supplements. CoQ10 exists in three states: in a of reduced form (ubiquinol), in a semiquinone radical form, and in oxidized ubiquinone form in different organs of the body, playing a crucial role in electron transportation and contributing to energy metabolism and oxygen utilization, especially in the musculoskeletal and nervous systems. Since the early 1980s, research about CoQ10 has become the interest for two reasons. First, CoQ10 deficiency has been found to have a link with cardiovascular, neurologic, and cancer disorders. Second, this molecule has an antioxidant and free-radical scavenger nature. Since then, several investigations have indicated that the drug may benefit patients with cardiovascular, neuromuscular, and neurodegenerative illnesses. CoQ10 may protect the neurological system from degeneration and degradation due to its antioxidant and energy-regulating activity in mitochondria. This agent has shown its efficacy in preventing and treating neurological diseases such as migraine, Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia. This study reviews the literature to highlight this agent's potential therapeutic effects in the mentioned neurological disorders.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sahar Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Ebrahimi
- Department of Medical Ethics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
40
|
Vallortigara J, Greenfield J, Hunt B, Hoffman D, Reinhard C, Graessner H, Federico A, Quoidbach V, Morris S, Giunti P. Patient pathways for rare diseases in Europe: ataxia as an example. Orphanet J Rare Dis 2023; 18:328. [PMID: 37848998 PMCID: PMC10583310 DOI: 10.1186/s13023-023-02907-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Progressive ataxias are rare and complex neurological disorders that represent a challenge for the clinicians to diagnose and manage them. This study explored the patient pathways of individuals attending specialist ataxia centres (SAC) compared with non-specialist settings. We investigated specifically how diagnosis was reached, the access to healthcare services, treatments, and care satisfaction. The focus of this study was on early intervention, coordination of treatment to understand the care provision in different countries. METHODS A patient survey was done in the UK, Germany and Italy to gather information about diagnosis and management of the ataxias in specialist (SAC) and non-specialist settings, utilisation of other primary and secondary health care services, and patients' satisfaction of received treatment. RESULTS Patients gave positive feedback about the role of SAC in understanding their condition, ways to manage their ataxia (p < 0.001; UK) and delivering care adapted to their needs (p < 0.001; UK), in coordinating referrals to other healthcare specialists, and in offering opportunities to take part in research studies. Similar barriers for patients were identified in accessing the SACs among the selected countries, UK, Germany, and Italy. CONCLUSIONS This study provides crucial information about the ataxia patients care pathways in three European countries. Overall, the results showed a trend in patients' satisfaction being better in SAC compared to non-SAC. The outcomes can be used now for policy recommendations on how to improve treatment and care for people with these very rare and complex neurological diseases across Europe.
Collapse
Affiliation(s)
- Julie Vallortigara
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK
| | | | | | | | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Holm Graessner
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Italy and European Academy of Neurology, Siena, Italy
| | | | - Steve Morris
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square House, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
41
|
Guffanti D, Lemus D, Vallery H, Brunete A, Hernando M, Horemans H. Performance of a Mobile 3D Camera to Evaluate Simulated Pathological Gait in Practical Scenarios. SENSORS (BASEL, SWITZERLAND) 2023; 23:6944. [PMID: 37571727 PMCID: PMC10422615 DOI: 10.3390/s23156944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Three-dimensional (3D) cameras used for gait assessment obviate the need for bodily markers or sensors, making them particularly interesting for clinical applications. Due to their limited field of view, their application has predominantly focused on evaluating gait patterns within short walking distances. However, assessment of gait consistency requires testing over a longer walking distance. The aim of this study is to validate the accuracy for gait assessment of a previously developed method that determines walking spatiotemporal parameters and kinematics measured with a 3D camera mounted on a mobile robot base (ROBOGait). Walking parameters measured with this system were compared with measurements with Xsens IMUs. The experiments were performed on a non-linear corridor of approximately 50 m, resembling the environment of a conventional rehabilitation facility. Eleven individuals exhibiting normal motor function were recruited to walk and to simulate gait patterns representative of common neurological conditions: Cerebral Palsy, Multiple Sclerosis, and Cerebellar Ataxia. Generalized estimating equations were used to determine statistical differences between the measurement systems and between walking conditions. When comparing walking parameters between paired measures of the systems, significant differences were found for eight out of 18 descriptors: range of motion (ROM) of trunk and pelvis tilt, maximum knee flexion in loading response, knee position at toe-off, stride length, step time, cadence; and stance duration. When analyzing how ROBOGait can distinguish simulated pathological gait from physiological gait, a mean accuracy of 70.4%, a sensitivity of 49.3%, and a specificity of 74.4% were found when compared with the Xsens system. The most important gait abnormalities related to the clinical conditions were successfully detected by ROBOGait. The descriptors that best distinguished simulated pathological walking from normal walking in both systems were step width and stride length. This study underscores the promising potential of 3D cameras and encourages exploring their use in clinical gait analysis.
Collapse
Affiliation(s)
- Diego Guffanti
- Centro de Investigación en Mecatrónica y Sistemas Interactivos—MIST, Universidad Indoamérica, Av. Machala y Sabanilla, Quito 170103, Ecuador
- Universidad UTE, Av. Mariscal Sucre, Quito 170129, Ecuador
| | - Daniel Lemus
- Department of Rehabilitation Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (D.L.); (H.V.); (H.H.)
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Heike Vallery
- Department of Rehabilitation Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (D.L.); (H.V.); (H.H.)
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Alberto Brunete
- Centre for Automation and Robotics (CAR UPM-CSIC), Universidad Politécnica de Madrid, 28012 Madrid, Spain; (A.B.); (M.H.)
| | - Miguel Hernando
- Centre for Automation and Robotics (CAR UPM-CSIC), Universidad Politécnica de Madrid, 28012 Madrid, Spain; (A.B.); (M.H.)
| | - Herwin Horemans
- Department of Rehabilitation Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (D.L.); (H.V.); (H.H.)
| |
Collapse
|
42
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
43
|
Hii CST, Gan KB, Zainal N, Mohamed Ibrahim N, Azmin S, Mat Desa SH, van de Warrenburg B, You HW. Automated Gait Analysis Based on a Marker-Free Pose Estimation Model. SENSORS (BASEL, SWITZERLAND) 2023; 23:6489. [PMID: 37514783 PMCID: PMC10384445 DOI: 10.3390/s23146489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/30/2023]
Abstract
Gait analysis is an essential tool for detecting biomechanical irregularities, designing personalized rehabilitation plans, and enhancing athletic performance. Currently, gait assessment depends on either visual observation, which lacks consistency between raters and requires clinical expertise, or instrumented evaluation, which is costly, invasive, time-consuming, and requires specialized equipment and trained personnel. Markerless gait analysis using 2D pose estimation techniques has emerged as a potential solution, but it still requires significant computational resources and human involvement, making it challenging to use. This research proposes an automated method for temporal gait analysis that employs the MediaPipe Pose, a low-computational-resource pose estimation model. The study validated this approach against the Vicon motion capture system to evaluate its reliability. The findings reveal that this approach demonstrates good (ICC(2,1) > 0.75) to excellent (ICC(2,1) > 0.90) agreement in all temporal gait parameters except for double support time (right leg switched to left leg) and swing time (right), which only exhibit a moderate (ICC(2,1) > 0.50) agreement. Additionally, this approach produces temporal gait parameters with low mean absolute error. It will be useful in monitoring changes in gait and evaluating the effectiveness of interventions such as rehabilitation or training programs in the community.
Collapse
Affiliation(s)
- Chang Soon Tony Hii
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Kok Beng Gan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nasharuddin Zainal
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Shahrul Azmin
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Siti Hajar Mat Desa
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
- Department of Nursing, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Huay Woon You
- Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
44
|
Saadi SM, Cali E, Khalid LB, Yousaf H, Zafar G, Khan HN, Sher M, Vona B, Abdullah U, Malik NA, Klar J, Efthymiou S, Dahl N, Houlden H, Toft M, Baig SM, Fatima A, Iqbal Z. Genetic Investigation of Consanguineous Pakistani Families Segregating Rare Spinocerebellar Disorders. Genes (Basel) 2023; 14:1404. [PMID: 37510308 PMCID: PMC10379343 DOI: 10.3390/genes14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.
Collapse
Affiliation(s)
- Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lubaba Bintee Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Ghazala Zafar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Muhammad Sher
- Department of Allied Health Sciences, Iqra National University Swat Campus, Swat 19200, Pakistan
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Naveed Altaf Malik
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, N-0318 Oslo, Norway
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
45
|
Pau M, Porta M, Pau C, Tacconi P, Sanna A. Quantitative Characterization of Gait Patterns in Individuals with Spinocerebellar Ataxia 38. Bioengineering (Basel) 2023; 10:788. [PMID: 37508815 PMCID: PMC10376738 DOI: 10.3390/bioengineering10070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar ataxia 38 (SCA 38) is a rare autosomal neurological disease whose clinical features include, among others, severe gait disturbances that have not yet been fully characterized. In this study, we employed a computerized 3D gait analysis to obtain spatio-temporal parameters of gait and the kinematics in the sagittal plane in the hip, knee, and ankle joints of seven individuals with SCA 38, which were then compared with those of twenty unaffected individuals matched for age, sex, and anthropometric features. The results show that, in comparison with unaffected individuals, those with SCA 38 are characterized by a significantly reduced speed, stride length, and duration of the swing phase, as well as an increased step width and stance and double support phase durations. The point-by-point comparison of the angular trends at the hip, knee, and ankle joints revealed significant alterations during most part of the stance phase for hip joint and at pre-swing/swing phases for knee and ankle joints. For these latter joints, a significantly reduced dynamic range of motion was also found. Such findings provide some new insights into hip and knee kinematics for this specific form of ataxia and may be useful for monitoring the disease's progression and designing specific, tailored rehabilitative interventions.
Collapse
Affiliation(s)
- Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09124 Cagliari, Italy
| | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09124 Cagliari, Italy
| | - Chiara Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09124 Cagliari, Italy
| | - Paolo Tacconi
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, 09126 Cagliari, Italy
| | - Angela Sanna
- U.O.C. Neurology, S.S. Trinità Hospital, ASL Cagliari, 09121 Cagliari, Italy
| |
Collapse
|
46
|
Bonanno M, De Nunzio AM, Quartarone A, Militi A, Petralito F, Calabrò RS. Gait Analysis in Neurorehabilitation: From Research to Clinical Practice. Bioengineering (Basel) 2023; 10:785. [PMID: 37508812 PMCID: PMC10376523 DOI: 10.3390/bioengineering10070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
When brain damage occurs, gait and balance are often impaired. Evaluation of the gait cycle, therefore, has a pivotal role during the rehabilitation path of subjects who suffer from neurological disorders. Gait analysis can be performed through laboratory systems, non-wearable sensors (NWS), and/or wearable sensors (WS). Using these tools, physiotherapists and neurologists have more objective measures of motion function and can plan tailored and specific gait and balance training early to achieve better outcomes and improve patients' quality of life. However, most of these innovative tools are used for research purposes (especially the laboratory systems and NWS), although they deserve more attention in the rehabilitation field, considering their potential in improving clinical practice. In this narrative review, we aimed to summarize the most used gait analysis systems in neurological patients, shedding some light on their clinical value and implications for neurorehabilitation practice.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Alessandro Marco De Nunzio
- Department of Research and Development, LUNEX International University of Health, Exercise and Sports, Avenue du Parc des Sports, 50, 4671 Differdange, Luxembourg
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Annalisa Militi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Francesco Petralito
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98123 Messina, Italy
| |
Collapse
|
47
|
Li Y, Yu N, Zhang C, Song Q, Wang J, Sun W. Test-retest reliability of kinematic and kinetic parameters during dual-task stair walking in the elderly. Front Physiol 2023; 14:1177159. [PMID: 37228826 PMCID: PMC10203527 DOI: 10.3389/fphys.2023.1177159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Objective: This study aims to evaluate the test-retest reliability of kinematics and kinetics during single and dual-task stair walking in the elderly. Methods: Fifteen healthy elderly adults were recruited. Kinematic and kinetic parameters were measured using an infrared motion analysis system (Vicon, Oxford Metrics Ltd., Oxford, United Kingdom) and force platforms (Switzerland, Kistler 9287BA and 9281CA). Participants were tested under single-task and dual-task (serial 3 subtractions or carrying a cup of water) conditions. Each participant completed two sessions on two separate days with a 1-week interval. Intraclass correlation coefficients (ICC), Pearson correlation coefficient (r), and Bland-Altman plot were used to assess the reliability of stair walking. Results: When ascending stairs, the ICC of kinematics and kinetics ranged from fair to excellent (ICC = 0.500-0.979) in the single and dual tasks, except for step length (ICC = 0.394) in the single task. The r value of kinematics and kinetics ranged from 0.704 to 0.999. When descending stairs, the ICC of kinematics and kinetics ranged from good to excellent (ICC = 0.661-0.963), except for min hip moment (ICC = 0.133) and min ankle moment (ICC = 0.057) in the manual task. The r value of kinematics and kinetics ranged from 0.773 to 0.960 in the single and dual tasks. In the Bland-Altman plots, all the zero values and most of the dots fell in the 95% confidence interval, and the mean difference was found to be close to zero for all the parameters during stair walking. Conclusion: These results obtained from this study show the good test-retest reliability of step cadence, step speed, and step width during single- and dual-task stair walking in the elderly, and the poor reliability of step length during ascending stairs. All the kinetic parameters, including min hip moment, max knee moment, and min ankle moment, had good test-retest reliability during single- and dual-task stair walking, but min hip moment and min ankle moment had poor reliability during manual-task descending stair. These results may help researchers in the assessment of biomechanics of dual-task stair walking in the elderly and to interpret the effect of interventions in this population.
Collapse
Affiliation(s)
- Yue Li
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Ning Yu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Cui Zhang
- Shandong Institute of Sports Science, Jinan, China
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Jiangna Wang
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Wei Sun
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
48
|
Ciceri T, Malerba G, Gatti A, Diella E, Peruzzo D, Biffi E, Casartelli L. Context expectation influences the gait pattern biomechanics. Sci Rep 2023; 13:5644. [PMID: 37024572 PMCID: PMC10079826 DOI: 10.1038/s41598-023-32665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Beyond classical aspects related to locomotion (biomechanics), it has been hypothesized that walking pattern is influenced by a combination of distinct computations including online sensory/perceptual sampling and the processing of expectations (neuromechanics). Here, we aimed to explore the potential impact of contrasting scenarios ("risky and potentially dangerous" scenario; "safe and comfortable" scenario) on walking pattern in a group of healthy young adults. Firstly, and consistently with previous literature, we confirmed that the scenario influences gait pattern when it is recalled concurrently to participants' walking activity (motor interference). More intriguingly, our main result showed that participants' gait pattern is also influenced by the contextual scenario when it is evoked only before the start of walking activity (motor expectation). This condition was designed to test the impact of expectations (risky scenario vs. safe scenario) on gait pattern, and the stimulation that preceded walking activity served as prior. Noteworthy, we combined statistical and machine learning (Support-Vector Machine classifier) approaches to stratify distinct levels of analyses that explored the multi-facets architecture of walking. In a nutshell, our combined statistical and machine learning analyses converge in suggesting that walking before steps is not just a paradox.
Collapse
Affiliation(s)
- Tommaso Ciceri
- Department of Information Engineering, University of Padova, Padua, PD, Italy
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Giorgia Malerba
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Alice Gatti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy
| | - Eleonora Diella
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Emilia Biffi
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy.
| | - Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| |
Collapse
|
49
|
De Luca F, Roda E, Ratto D, Desiderio A, Venuti MT, Ramieri M, Bottone MG, Savino E, Rossi P. Fighting secondary triple-negative breast cancer in cerebellum: A powerful aid from a medicinal mushrooms blend. Biomed Pharmacother 2023; 159:114262. [PMID: 36657301 DOI: 10.1016/j.biopha.2023.114262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is the second most common cause of brain metastasis onset in patients, with the cerebellum accounting for the 33% of cases. In the current study, using a 4T1 triple-negative mouse BC model, we revealed that an orally administered medicinal mushrooms (MM) blend, rich in β-glucans, played a direct and specific anti-cancer action on cerebellar metastases, also bettering locomotor performances. The neuroprotective effect of the MM blend plays through (i) a direct and specific inhibition of cerebellar metastatization pattern typical of TNBC (with an induced reduction of about 50% of metastases density) and (ii) the regulation of apoptosis and proliferation-related genes, as suggested by expression changes of specific molecular markers, i.e. PCNA, p53, Bcl2, BAX, CASP9, CASP3, Hsp70 and AIF. Therefore, inhibiting the metastatization process, triggering a significant apoptosis increase, and lessening cell proliferation, this MM supplement, employed as adjuvant treatment in association with conventional therapy, could represent a promising approach, in the field of Integrative Oncology, for patients' management in both prevention and treatment of brain metastases from BC.
Collapse
Affiliation(s)
- Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy.
| | - Daniela Ratto
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Anthea Desiderio
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy.
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Martino Ramieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy.
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
50
|
Multimodal Mobility Assessment Predicts Fall Frequency and Severity in Cerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2023; 22:85-95. [PMID: 35122222 PMCID: PMC9883327 DOI: 10.1007/s12311-021-01365-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/01/2023]
Abstract
This cohort study aims to evaluate the predictive validity of multimodal clinical assessment and quantitative measures of in- and off-laboratory mobility for fall-risk estimation in patients with cerebellar ataxia (CA).Occurrence, severity, and consequences of falling were prospectively assessed for 6 months in 93 patients with hereditary (N = 36) and sporadic or secondary (N = 57) forms of CA and 63 healthy controls. Participants completed a multimodal clinical and functional fall risk assessment, in-laboratory gait examination, and a 2-week inertial sensor-based daily mobility monitoring. Multivariate logistic regression analyses were performed to evaluate the predictive capacity of all clinical and in- and off-laboratory mobility measures with respect to fall (1) status (non-faller vs. faller), (2) frequency (occasional vs. frequent falls), and (3) severity (benign vs. injurious fall) of patients. 64% of patients experienced one or recurrent falls and 65% of these severe fall-related injuries during prospective assessment. Mobility impairments in patients corresponded to a mild-to-moderate ataxic gait disorder. Patients' fall status and frequency could be reliably predicted (78% and 81% accuracy, respectively), primarily based on their retrospective fall status. Clinical scoring of ataxic symptoms and in- and off-laboratory gait and mobility measures improved classification and provided unique information for the prediction of fall severity (84% accuracy).These results encourage a stepwise approach for fall risk assessment in patients with CA: fall history-taking readily and reliably informs the clinician about patients' general fall risk. Clinical scoring and instrument-based mobility measures provide further in-depth information on the risk of recurrent and injurious falling.
Collapse
|