1
|
Ahn YJ, Lim JW, Kim H. Lutein inhibits IL‑6 expression by inducing PPAR‑γ activation and SOCS3 expression in cerulein‑stimulated pancreatic acinar cells. Mol Med Rep 2022; 26:302. [PMID: 35946453 PMCID: PMC9434989 DOI: 10.3892/mmr.2022.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute pancreatitis is a severe inflammatory disease of the pancreas. In experimental acute pancreatitis, cerulein induces the expression of interleukin-6 (IL-6) by activating Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 in pancreatic acinar cells. Ligands of peroxisome proliferator activated receptor-γ (PPAR-γ) and suppressor of cytokine signaling (SOCS) 3 inhibit IL-6 expression by suppressing JAK2/STAT3 in cerulein-stimulated pancreatic acinar AR42J cells. Lutein, an oxygenated carotenoid, upregulates and activates PPAR-γ to regulate inflammation in a renal injury model. The present study aimed to determine whether lutein activated PPAR-γ and induced SOCS3 expression in unstimulated AR42J cells, and whether lutein inhibited activation of JAK2/STAT3 and IL-6 expression via activation of PPAR-γ and SOCS3 expression in cerulein-stimulated AR42J cells. The anti-inflammatory mechanism of lutein was determined using reverse transcription-quantitative PCR, western blot analysis and enzyme-linked immunosorbent assay in AR42J cells stimulated with or without cerulein. In another experiment, cells were treated with lutein and the PPAR-γ antagonist GW9662 or the PPAR-γ agonist troglitazone prior to cerulein stimulation to determine the involvement of PPAR-γ activation. The results indicated that lutein increased PPAR-γ and SOCS3 levels in unstimulated cells. Cerulein increased phospho-specific forms of JAK2 and STAT3, and mRNA and protein expression of IL-6, but decreased SOCS3 levels in AR42J cells. Cerulein-induced alterations were suppressed by lutein or troglitazone. GW9662 alleviated the inhibitory effect of lutein on JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated cells. In conclusion, lutein inhibited the activation of JAK2/STAT3 and reduced IL-6 levels via PPAR-γ-mediated SOCS3 expression in pancreatic acinar cells stimulated with cerulein.
Collapse
Affiliation(s)
- Yu Jin Ahn
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyong Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Jung KH, Son MK, Yan HH, Fang Z, Kim J, Kim SJ, Park JH, Lee JE, Yoon Y, Seo MS, Han BS, Ko S, Suh YJ, Lim JH, Lee D, Teo Z, Wee JWK, Tan NS, Hong S. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a. EMBO Mol Med 2020; 12:e11222. [PMID: 32638512 PMCID: PMC7411571 DOI: 10.15252/emmm.201911222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Pancreatitis is the inflammation of the pancreas. However, little is known about the genes associated with pancreatitis severity. Our microarray analysis of pancreatic tissues from mild and severe acute pancreatitis mice models identified angiopoietin-like 4 (ANGPTL4) as one of the most significantly upregulated genes. Clinically, ANGPTL4 expression was also increased in the serum and pancreatic tissues of pancreatitis patients. The deficiency in ANGPTL4 in mice, either by gene deletion or neutralizing antibody, mitigated pancreatitis-associated pathological outcomes. Conversely, exogenous ANGPTL4 exacerbated pancreatic injury with elevated cytokine levels and apoptotic cell death. High ANGPTL4 enhanced macrophage activation and infiltration into the pancreas, which increased complement component 5a (C5a) level through PI3K/AKT signaling. The activation of the C5a receptor led to hypercytokinemia that accelerated acinar cell damage and furthered pancreatitis. Indeed, C5a neutralizing antibody decreased inflammatory response in LPS-activated macrophages and alleviated pancreatitis severity. In agreement, there was a significant positive correlation between C5a and ANGPTL4 levels in pancreatitis patients. Taken together, our study suggests that targeting ANGPTL4 is a potential strategy for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Mi Kwon Son
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Hong Hua Yan
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Zhenghuan Fang
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Juyoung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soo Jung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Jung Hee Park
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ji Eun Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young‐Chan Yoon
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Myeong Seong Seo
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Beom Seok Han
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soyeon Ko
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young Ju Suh
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Joo Han Lim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Don‐Haeng Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ziqiang Teo
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Jonathan Wei Kiat Wee
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Nguan Soon Tan
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingapore CitySingapore
| | - Soon‐Sun Hong
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| |
Collapse
|
3
|
Song EA, Lim JW, Kim H. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2017; 88:60-68. [PMID: 28483666 DOI: 10.1016/j.biocel.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- Eun Ah Song
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
PPARγ regulates exocrine pancreas lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1921-1928. [PMID: 27663184 DOI: 10.1016/j.bbalip.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
AIM Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. MATERIALS AND METHODS We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. RESULTS Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. CONCLUSION PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP.
Collapse
|
5
|
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas frequently associated with metabolic causes, contributing factors, or consequences, including hypertriglyceridemia, obesity, and disorders of intermediary metabolism, respectively. To date, there is no specific therapy for this disease. Future optimal therapy should correct both inflammatory and metabolic components of the disease. Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that control inflammatory and metabolic pathways via ligand-dependent and ligand-independent mechanisms. There are 3 known subtypes, PPAR-α, PPAR-β/δ, and PPAR-γ, which are differentially expressed in various tissues. The PPARs interact closely with other transcription factors such as nuclear factor κB and signal tranducers and activators of transcription that have pivotal roles in the pathobiology of AP. In this comprehensive review, we summarize the role of PPARs in AP, highlighting important in vitro and in vivo experimental findings. Finally, we propose future research directions as well as potential translational use of PPAR agonists in the treatment of AP.
Collapse
|
6
|
Jiang F, Zhang Z, Zhang Y, Pan X, Yu L, Liu S. L-Carnitine Ameliorates Cancer Cachexia in Mice Partly via the Carnitine Palmitoyltransferase-Associated PPAR-γ Signaling Pathway. Oncol Res Treat 2015; 38:511-6. [PMID: 26452216 DOI: 10.1159/000439550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND L-Carnitine has been demonstrated to ameliorate cachectic symptoms. In the present study, we sought to investigate the role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway in the ameliorative effects of L-carnitine on cancer cachexia in a colon-26 tumor-bearing mouse model. METHODS The cachectic mice received L-carnitine (p.o.) or etomoxir (i.p.), or pioglitazone hydrochloride (p.o.) or GW9662 (i.p.). The physiological cachexia parameters, biochemical parameters, and serum cytokines were measured. The expression levels of representative molecules in the PPAR-γ signaling pathway were measured by using quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot analysis. RESULTS Oral administration of L-carnitine at 9 mg/kg/day improved the cachexia parameters and biochemical parameters in cancer cachectic mice. The elevated serum concentrations of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) were decreased by L-carnitine. These ameliorative effects of L-carnitine were lessened by the carnitine palmitoyltransferase I (CPT I) inhibitor, etomoxir. The mRNA and protein expression levels of PPAR-α and PPAR-γ were decreased in the livers of cancer cachectic mice and increased after L-carnitine administration, which attenuated the increased mRNA expression levels of sterol-regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Similar to pioglitazone, L-carnitine augmented the phosphorylation of PPAR-γ and attenuated the expression levels of phospho-p65 and cyclooxygenase (COX)-2. Additionally, the above-mentioned effects of L-carnitine were reversed by GW9662. CONCLUSION L-Carnitine exerts its ameliorative effects in cancer cachexia in association with the PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
7
|
PPARG in Human Adipogenesis: Differential Contribution of Canonical Transcripts and Dominant Negative Isoforms. PPAR Res 2014; 2014:537865. [PMID: 24790595 PMCID: PMC3981527 DOI: 10.1155/2014/537865] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/30/2022] Open
Abstract
The nuclear receptor PPARγ is a key regulator of adipogenesis, and alterations of its function are associated with different pathological processes related to metabolic syndrome. We recently identified two PPARG transcripts encoding dominant negative PPARγ isoforms. The existence of different PPARG variants suggests that alternative splicing is crucial to modulate PPARγ function, underlying some underestimated aspects of its regulation. Here we investigate PPARG expression in different tissues and cells affected in metabolic syndrome and, in particular, during adipocyte differentiation of human mesenchymal stem cells. We defined the transcript-specific expression pattern of PPARG variants encoding both canonical and dominant negative isoforms and identified a novel PPARG transcript, γ1ORF4. Our analysis indicated that, during adipogenesis, the transcription of alternative PPARG variants is regulated in a time-specific manner through differential usage of distinct promoters. In addition, our analysis describes—for the first time—the differential contribution of three ORF4 variants to this process, suggesting a still unexplored role for these dominant negative isoforms during adipogenesis. Therefore, our results highlight crucial aspects of PPARG regulation, suggesting the need of further investigation to rule out the differential impact of all PPARG transcripts in both physiologic and pathologic conditions, such as metabolism-related disorders.
Collapse
|
8
|
Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011; 82:1335-51. [PMID: 21843512 DOI: 10.1016/j.bcp.2011.07.100] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023]
Abstract
15-deoxy-Δ(12,14)-prostagandin J(2) (15d-PGJ2) is produced in the inflamed cells and tissues as a consequence of upregulation of cyclooxygenase-2 (COX-2). 15d-PGJ2 is known to be the endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) with multiple physiological properties. Though one of the terminal products of the COX-2-catalyzed reactions, this cyclopentenone prostaglandin exerts potent anti-inflammatory actions, in part, by antagonizing the activities of pro-inflammatory transcription factors, such as NF-κB, STAT3, and AP-1, while stimulating the anti-inflammatory transcription factor Nrf2. These effects are not necessarily dependent on its activation of PPARγ, but often involves direct interaction with the above signaling molecules and their regulators. The locally produced 15d-PGJ2 is also involved in the resolution of inflammatory responses. Thus, 15d-PGJ2, especially formed during the late phase of inflammation, might inhibit cytokine secretion and other events by antigen-presenting cells like dendritic cells or macrophages. 15d-PGJ2 can also affect the priming and effector functions of T lymphocytes and induce their apoptotic cell death. These represent a negative feedback explaining how once-initiated immunologic and inflammatory responses are switched off and terminated. In this context, 15d-PGJ2 and its synthetic derivatives have therapeutic potential for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Young-Joon Surh
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul 151-742, South Korea.
| | | | | | | | | | | | | |
Collapse
|
9
|
Electrophilic PPARγ Ligands Attenuate IL-1β and Silica-Induced Inflammatory Mediator Production in Human Lung Fibroblasts via a PPARγ-Independent Mechanism. PPAR Res 2011; 2011:318134. [PMID: 21765824 PMCID: PMC3135061 DOI: 10.1155/2011/318134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/04/2011] [Accepted: 03/25/2011] [Indexed: 12/24/2022] Open
Abstract
Acute and chronic lung inflammation is associated with numerous important disease pathologies including asthma, chronic obstructive pulmonary disease and silicosis. Lung fibroblasts are a novel and important target of anti-inflammatory therapy, as they orchestrate, respond to, and amplify inflammatory cascades and are the key cell in the pathogenesis of lung fibrosis. Peroxisome proliferator-activated receptor gamma (PPARγ) ligands are small molecules that induce anti-inflammatory responses in a variety of tissues. Here, we report for the first time that PPARγ ligands have potent anti-inflammatory effects on human lung fibroblasts. 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO) and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) inhibit production of the inflammatory mediators interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), COX-2, and prostaglandin (PG)E2 in primary human lung fibroblasts stimulated with either IL-1β or silica. The anti-inflammatory properties of these molecules are not blocked by the PPARγ antagonist GW9662 and thus are largely PPARγ independent. However, they are dependent on the presence of an electrophilic carbon. CDDO and 15d-PGJ2, but not rosiglitazone, inhibited NF-κB activity. These results demonstrate that CDDO and 15d-PGJ2 are potent attenuators of proinflammatory responses in lung fibroblasts and suggest that these molecules should be explored as the basis for novel, targeted anti-inflammatory therapies in the lung and other organs.
Collapse
|
10
|
Xu P, Xu K, Wang J, Jiang JP, Chen LQ. Pioglitazone: a promising therapeutic tool in sodium taurocholate-induced severe acute pancreatitis. Dig Dis Sci 2011; 56:1082-9. [PMID: 20824499 DOI: 10.1007/s10620-010-1393-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/11/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Studies suggest that peroxisome proliferator-activated receptor γ(PPARγ) ligands may represent a therapeutic option in acute pancreatitis, yet most of them have been prophylactic administrated. AIMS To evaluate the therapeutic effect of pioglitazone in rats with severe acute pancreatitis induced by sodium taurocholate. METHODS Severe acute pancreatitis (SAP) was induced in male Sprague-Dawley rats by the retrograde injection of 5% sodium taurocholate into the pancreatic duct. After SAP was induced, pioglitazone was injected intraperitoneally and its role on the severity of inflammatory response and pancreatic injury was investigated. Amylase activity, inflammatory cytokines production, pathological changes of pancreas, PPARγ mRNA expression, and the survival rate were examined. RESULTS Treatment with pioglitazone decreased the level of amylase activity, proinflammatory factors IL-6 and TNF-α, ameliorated pancreatic histological score, and upregulated the expression of PPARγ mRNA. The survival rate in the early stage of severe acute pancreatitis was also improved. CONCLUSIONS Pioglitazone can be used as a therapeutic drug and relieve the damages caused by SAP, which suggests PPARγ ligand-pioglitazone offers a potent approach for the treatment of severe acute pancreatitis.
Collapse
Affiliation(s)
- Ping Xu
- Department of Gastroenterology, Branch Hospital of the First People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201600, Shanghai, China.
| | | | | | | | | |
Collapse
|
11
|
Fouche G, Nieuwenhuizen N, Maharaj V, van Rooyen S, Harding N, Nthambeleni R, Jayakumar J, Kirstein F, Emedi B, Meoni P. Investigation of in vitro and in vivo anti-asthmatic properties of Siphonochilus aethiopicus. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:843-849. [PMID: 21075193 DOI: 10.1016/j.jep.2010.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/28/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Asthma is a chronic inflammatory disease of the lungs, characterized by increased sensitivity to bronchoconstriction associated with infiltration of immune cells, mucus hypersecretion and structural remodelling of the airways. In South Africa, the indigenous plant Siphonochilus aethiopicus, is used by traditional health practitioners to treat colds, wheezing of the chest, coughs, influenza, sinus problems and mild asthma. In this study we aimed to investigate the potential anti-inflammatory and anti-allergic properties of S. aethiopicus in vitro and its efficacy in a mouse model of allergic asthma. MATERIALS AND METHODS The dried and powdered S. aethiopicus plant material was extracted separately with organic solvents (diethyl ether, ethanol) and water. Dried extracts as well as a purified furanoterpenoid compound present in the extracts were screened in vitro in a glucocorticoid and histamine H(1) receptor binding assay and a phosphodiesterase IV enzyme inhibition assay. Extracts were also evaluated for efficacy against ovalbumin (OVA)-induced allergic airway disease in mice. RESULTS Biological assaying of extracts of the plant and the isolated furanoterpenoid showed significant in vitro inhibition of glucocorticoid and histamine H(1) receptor binding and phosphodiesterase IV activity, supporting a possible anti-inflammatory, anti-allergic and bronchodilatory effect. Administration of S. aethiopicus extracts to OVA-sensitized and challenged mice significantly reduced lung inflammation and the percentage of eosinophils in bronchoalveolar lavage fluid but did not influence airway hyperreactivity. CONCLUSION This study provides evidence that S. aethiopicus has anti-inflammatory and anti-allergic properties in vitro and in vivo. These findings may support anecdotal accounts of its effectiveness against asthma, sinusitis, colds and flu.
Collapse
Affiliation(s)
- Gerda Fouche
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Köester A, Pin CL. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009; 137:1795-804. [PMID: 19664632 DOI: 10.1053/j.gastro.2009.07.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 07/09/2009] [Accepted: 07/30/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Fibroblast growth factor 21 (FGF21) acts as a hormonal regulator during fasting and is involved in lipid metabolism. Fgf21 gene expression is regulated by peroxisome proliferator-activated receptor (PPAR)-dependent pathways, which are enhanced during pancreatitis. Therefore, the aim of this study was to investigate FGF21's role in pancreatic injury. METHODS Fgf21 expression was quantified during cerulein-induced pancreatitis (CIP) or following mechanical or thapsigargin-induced stress through Northern blot analysis, in situ hybridization, and quantitative reverse transcription polymerase chain reaction. FGF21 protein was quantified by Western blot analysis. Isolated acinar cells or AR42J acinar cells were treated with recombinant FGF21 protein, and extracellular regulated kinase 1/2 activation was examined. The severity of CIP was compared between wild-type mice and mice overexpressing FGF21 (FGF21Tg) or harboring a targeted deletion of Fgf21 (Fgf21(-/-)). RESULTS Acinar cell Fgf21 expression markedly increased during CIP and following injury in vitro. Purified FGF21 activated the extracellular regulated kinase 1/2 pathway in pancreatic acinar cells. The severity of CIP is inversely correlated to FGF21 expression because FGF21Tg mice exhibited decreased serum amylase and decreased pancreatic stellate cell activation, whereas Fgf21(-/-) mice had increased serum amylase and tissue damage. The expression of Fgf21 was also inversely correlated to expression of Early growth response 1, a proinflammatory and profibrotic transcription factor. CONCLUSIONS These studies suggest a novel function for Fgf21 as an immediate response gene protecting pancreatic acini from overt damage.
Collapse
|
13
|
Chen C, Xu S, Wang WX, Ding YM, Yu KH, Wang B, Chen XY. Rosiglitazone attenuates the severity of sodium taurocholate-induced acute pancreatitis and pancreatitis-associated lung injury. Arch Med Res 2009; 40:79-88. [PMID: 19237016 DOI: 10.1016/j.arcmed.2008.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 11/10/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS In addition to the effect of regulating adipocyte differentiation and insulin sensitivity, peroxisome proliferator activated receptor-gamma (PPAR-gamma) ligands also exhibit anti-inflammatory effect. However, the mechanisms concerning how PPAR-gamma ligands affect acute pancreatitis and pancreatitis-associated lung injury have not been fully elucidated. This study investigated the effect of rosiglitazone, a PPAR-gamma ligand, on acute pancreatitis and pancreatitis-associated lung injury in the rat pancreatitis model induced by sodium taurocholate. METHODS Acute pancreatitis was induced by retrograde infusion of 5% sodium taurocholate (1 mL/kg) into the bile-pancreatic duct. Rosiglitazone (6 mg/kg) was administered via the femoral vein 30 min prior to the infusion of sodium taurocholate. The severity of pancreatitis was evaluated by serum amylase level, myeloperoxidase activity, and pathology. Pancreatitis-associated lung injury was evaluated by myeloperoxidase activity, the magnitude of pulmonary edema and pathology. Intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-alpha mRNA expression were studied using reverse transcriptase polymerase chain reaction. ICAM-1 protein expression was studied using Western blot analysis. RESULTS Prophylactic administration of rosiglitazone attenuated (1) serum amylase level; (2) myeloperoxidase activity of pancreatic and pulmonary tissue; (3) expression of tumor necrosis factor-alpha and ICAM-1 in pancreas and lung; (4) pancreas and lung pathological damage. CONCLUSIONS Our study demonstrated that rosiglitazone exerts a protective effect against sodium taurocholate-induced pancreatic and pulmonary injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ivashchenko CY, Duan SZ, Usher MG, Mortensen RM. PPAR-gamma knockout in pancreatic epithelial cells abolishes the inhibitory effect of rosiglitazone on caerulein-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G319-26. [PMID: 17463185 DOI: 10.1152/ajpgi.00056.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists, such as the thiazolidinediones (TZDs), decrease acute inflammation in both pancreatic cell lines and mouse models of acute pancreatitis. Since PPAR-gamma agonists have been shown to exert some of their actions independent of PPAR-gamma, the role of PPAR-gamma in pancreatic inflammation has not been directly tested. Furthermore, the differential role of PPAR-gamma in endodermal derivatives (acini, ductal cells, and islets) as opposed to the endothelial or inflammatory cells is unknown. To determine whether the effects of a TZD, rosiglitazone, on caerulein-induced acute pancreatitis are dependent on PPAR-gamma in the endodermal derivatives, we created a cell-type specific knock out of PPAR-gamma in pancreatic acini, ducts, and islets. PPAR-gamma knockout animals show a greater response in some inflammatory genes after caerulein challenge. The anti-inflammatory effect of rosiglitazone on edema, macrophage infiltration, and expression of the proinflammatory cytokines is significantly decreased in pancreata of the knockout animals compared with control animals. However, rosiglitazone retains its effect in the lungs of the pancreatic-specific PPAR-gamma knockout animals, likely due to direct anti-inflammatory effect on lung parenchyma. These data show that the PPAR-gamma in the pancreatic epithelia and islets is important in suppressing inflammation and is required for the anti-inflammatory effects of TZDs in acute pancreatitis.
Collapse
Affiliation(s)
- C Y Ivashchenko
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
15
|
Sun K, Li M, Konopleva M, Konoplev S, Stephens LC, Kornblau SM, Frolova O, Wilkins DEC, Ma W, Welniak LA, Andreeff M, Murphy WJ. The synthetic triterpenoid, CDDO, suppresses alloreactive T cell responses and reduces murine early acute graft-versus-host disease mortality. Biol Blood Marrow Transplant 2007; 13:521-9. [PMID: 17448911 PMCID: PMC4559277 DOI: 10.1016/j.bbmt.2006.12.453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/24/2006] [Indexed: 11/28/2022]
Abstract
Acute graft-versus-host disease (aGVHD) still remains one of the life-threatening complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation of alloreactive donor T cell responses, as well as cytokine secretion is a potential therapeutic approach for the prevention of aGVHD. The synthetic triterpenoid, CDDO (2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid), exhibits potent antitumor activity and has also been shown to mediate anti-inflammatory and immunomodulatory effects. We therefore wanted to assess the effects of CDDO on early lethal aGVHD. In this study, we found that CDDO significantly inhibited in vitro mixed lymphocyte responses and preferentially promoted the apoptosis of proliferating but not resting alloreactive T cells. Using a full major histocompatibility complex (MHC)-disparate murine aGVHD model, we found that the administration of CDDO immediately after transplantation significantly decreased liver pathology as determined by histologic assessment and prolonged survival in mice. Importantly, administration of CDDO did not adversely impair donor myeloid reconstitution as determined by peripheral blood cell count and the extent of donor chimerism. These findings indicate that CDDO has a significant immunomodulatory effects in vitro and on early lethal aGVHD development, particularly affecting the liver, in a murine allo-HSCT model.
Collapse
Affiliation(s)
- Kai Sun
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada
| | - Minghui Li
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada
| | - Marina Konopleva
- Section of Molecular Hematology & Therapy, Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Sergej Konoplev
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - L. Clifton Stephens
- Section of Veterinary Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Steven M. Kornblau
- Section of Molecular Hematology & Therapy, Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Olga Frolova
- Section of Molecular Hematology & Therapy, Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Weihong Ma
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada
| | - Lisbeth A. Welniak
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada
| | - Michael Andreeff
- Section of Molecular Hematology & Therapy, Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - William J. Murphy
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada
| |
Collapse
|
16
|
Fortunato F, Berger I, Gross ML, Rieger P, Buechler MW, Werner J. Immune-compromised state in the rat pancreas after chronic alcohol exposure: the role of peroxisome proliferator-activated receptor γ. J Pathol 2007; 213:441-52. [DOI: 10.1002/path.2243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|