1
|
López-Gálvez R, Orenes-Piñero E, Rivera-Caravaca JM, Pérez-Sanz F, Ramos-Bratos MP, Roca MI, Mandaglio-Collados D, López-García C, Gil-Pérez P, Esteve-Pastor MA, Marín F. Microbial Insights: The Role of Diet in Modulating Gut Microbiota and Metabolites After Acute Coronary Syndrome. Mol Nutr Food Res 2025:e70046. [PMID: 40260991 DOI: 10.1002/mnfr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Acute coronary syndrome (ACS) is a leading cause of global mortality, largely due to atherosclerosis influenced by lifestyle factors like diet. Gut microbiota impacts lipid metabolism, inflammation, and endothelial function, all vital in atherosclerosis. Dysbiosis increases intestinal permeability, causing inflammation and plaque instability, elevating cardiac event risk. This study investigates the impact of dietary improvements on gut microbiota and metabolite release in recent ACS patients versus healthy individuals. A cohort of 29 recent ACS patients receiving lipid-lowering therapy and dietary advice was analyzed alongside 56 healthy controls. Dietary habits, serum, and stool samples were collected at admission and after 3 months. Metagenomic analysis of stool and metabolomic analysis of serum were conducted. The results showed bacterial dysbiosis in ACS patients, characterized by a reduction in beneficial genera and an increase in potentially pro-inflammatory bacteria. After 3 months of dietary improvements, three metabolites with anti-inflammatory properties were significantly upregulated. The findings highlight the association between gut microbiota dysbiosis, fatty diets, and inflammation in ACS patients. The observed increase in anti-inflammatory metabolites following dietary changes underscore the following dietary interventions in modulating gut microbiota and improving cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Raquel López-Gálvez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
- Faculty of Nursing, University of Murcia, Murcia, Spain
| | - Fernando Pérez-Sanz
- Department of Bioinformatics, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
| | - María Pilar Ramos-Bratos
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Marta Isabel Roca
- Unidad Analítica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Darío Mandaglio-Collados
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Cecilia López-García
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Pablo Gil-Pérez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - María Asunción Esteve-Pastor
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| |
Collapse
|
2
|
Yang J, Shang P, Liu Z, Wang J, Zhang B, Zhang H. Ligilactobacillus salivarius regulating translocation of core bacteria to enrich mouse intrinsic microbiota of heart and liver in defense of heat stress. Front Immunol 2025; 16:1540548. [PMID: 40276518 PMCID: PMC12018310 DOI: 10.3389/fimmu.2025.1540548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The aim of this study was to elucidate the intrinsic microbiota residing in the heart and liver, which was enriched with Ligilactobacillus salivarius supplementation and its roles in defending anti-oxidation of heat stress. The specific pathogen free (SPF) mice were employed to perform the study. Genomic sequencing showed that the intrinsic microbes in the heart and liver of SPF mice, which were primarily of the genera Burkholderia and Ralstonia, functioned in organic metabolism, environmental information processing, cellular processes, and genetic information processing. Lactobacillus sp. were found in the liver but not in the heart. The heart had a lower bacterial abundance than the liver. A culturomic assay of the heart flushing liquid indicated that the dominant species of bacteria were Ralstonia pickettii, Ralstonia sp._3PA37C10, Ralstonia insidiosa, Burkholderia lata, unclassified _g_ Ralstonia, and unclassified _p_ Pseudomonadota. Intrinsic bacteria exist in the heart due to their inhibitory action against pathogenic Escherichia coli. After, the mice were supplemented with Ligilactobacillus salivarius to optimize the microbiota levels. The dominant bacterial phyla in the liver and heart were Bacillota, Bacteroidota, Pseudomonadota, Thermodesulfobacteriota, andActinomycetota, which comprised 98.2% of total bacteria. The genus Lactobacillus was also abundant. Core bacteria such as Lactobacillus reuteri are translocated from the intestine to the heart and liver. The enriched bacterial composition up-regulated anti-oxidation capacities in the heart and liver. The levels of reactive oxygen species and superoxide dismutase (SOD) were significantly improved compared to those in control (P < 0.01). In conclusion, intrinsic bacteria present in the heart and liver alleviate infection by pathogens, environmental and genetic information processing, and cellular processes during heat stress exposure. Diet with Ligilactobacillus salivarius supplementation regulated the translocation of core bacteria to the heart and liver, improved bacterial composition, and induced a higher anti-oxidative capacity under heat stress.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Shang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Zongliang Liu
- College of Animal Science and Technology, Aihui Agricultural University, Hefei, Anhui, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Bo Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Nisar MF, Yan T, Cai Y, Wan C. Immuno-oncological Challenges and Chemoresistance in Veterinary Medicine: Probiotics as a New Strategic Tool. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10468-8. [PMID: 39954194 DOI: 10.1007/s12602-025-10468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Cancer has the highest death rates due to increased immuno-oncological (IO) challenges and chemoresistance caused by gut dysbiosis, whereas administration of probiotics may reverse these responses against anticancer therapies. Recently, immunotherapeutics have extensively been focused for significant advancements in pharmacological drug discovery and clinical outcomes. Mammals have intestinal epithelial cells, mucosal immune cells, and indigenous gut microbiota which may reshape immunotherapeutics efficacy. These include use of T-cell immune checkpoint inhibitors (ICPI), genetically engineered T-cells, tumor vaccines, monoclonal antibodies (mAbs), and anti-B- and T-cell antibodies. Immunotherapeutics for cancer treatment became popular in both veterinary and human health care systems due to their strong inhibitory actions against PD-1 and CTLA-4 to check tumorigenesis. IO issues in animals also need special attention, where caninized mAbs targeting CD-20 and CD-52 have been clinically used in treating canine B-cell and T-cell lymphomas, respectively. Probiotics appeared as strong immunotherapeutics that might be shaping the epigenetics of the organisms specifically in animal breeding practices for desired features, but limited literature regarding the immunomodulatory effects in humans and animals is available. In addition, considering the important role of probiotics in humans and veterinary medicine, a new perspective on the probiotic-mediated modulation of ncRNAs (miRNAs, lncRNAs, circRNAs) is also highlighted and would be a new therapeutic tool. This review provides insight into the cellular processes and pharmacological activities for treating veterinary infectious diseases and covers small drug molecules as ncRNA-modulators in veterinary medicine.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Tingdong Yan
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Xie S, Liu M, Li W. Impact of Radiotherapy on Endocrine Function and Gut Microbiota in Cervical Cancer Patients Undergoing Ovarian Transposition. Int J Womens Health 2024; 16:2319-2331. [PMID: 39742347 PMCID: PMC11687098 DOI: 10.2147/ijwh.s494268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Objective This study aims to investigate the effects of radiotherapy on ovarian function, endocrine function, and gut microbiota in cervical cancer patients who underwent ovarian transposition, compared to those who did not. Methods This study included 100 cervical cancer patients treated from January to June 2024, divided into a control group (50 cases, radical surgery and radiotherapy) and an observation group (50 cases, ovarian transposition surgery plus radiotherapy). Radiotherapy protocols included conventional, intensity-modulated, or conformal radiotherapy, with 6MVX rays delivering 100-200 cGy per session, 5 sessions per week for 6 weeks. In the observation group, the ovarian region was shielded with a lead plate. Outcomes measured included ovarian and endocrine function, quality of life, adverse reactions, and gut microbiota composition. DNA was extracted from fecal samples for 16S rRNA sequencing and bioinformatics analysis, including α- and β-diversity, taxonomic composition, and LEfSe analysis. Results Before radiotherapy, no significant differences in serum sex hormone levels were observed between the groups. After radiotherapy, the control group showed greater increases in FSH and LH and a more pronounced decrease in estradiol (E2) levels. Ovarian function preservation was significantly higher in the observation group (28.00% vs 0.00%). The observation group also had a higher Kupperman score 6 months post-surgery (28.01±10.22 vs 21.91±7.38). Adverse reaction rates were comparable. Gut microbiota analysis revealed differences in taxonomic composition, with higher Firmicutes (66.5% vs 65.56%) and Faecalibacterium (7.0% vs 2.7%) in the observation group, while Proteobacteria (4.1% vs 13.9%) and Shigella (2.7% vs 8.5%) were more abundant in the control group. LEfSe analysis identified notable species differences, including higher Peptoniphilus and Actinomyces in the observation group. Conclusion Ovarian transposition surgery effectively preserves ovarian function in cervical cancer patients. Changes in gut microbiota during radiotherapy may influence endocrine outcomes, warranting further research.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, People’s Republic of China
| | - Miaomiao Liu
- Hengshui Maternal and Child Health Hospital Internal Medicine, Hengshui, People’s Republic of China
| | - Wei Li
- Emergency Room, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Alhamlan FS, Albadawi IA, Al-Qahtani AA, Awartani KA, Obeid DA, Tulbah AM. Cervicovaginal and gastrointestinal microbiomes in gynecological cancers and their roles in therapeutic intervention. Front Microbiol 2024; 15:1489942. [PMID: 39664050 PMCID: PMC11631898 DOI: 10.3389/fmicb.2024.1489942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer remains a significant global health concern, and understanding factors that regulate cancer development is important. The microbiome, with its potential role in cancer development, progression, and treatment, has garnered increasing attention in recent years. The cervicovaginal and gastrointestinal microbiomes in females constitute complex biological ecosystems. Although the gut microbiome has been extensively studied, little is known about the cervicovaginal microbiome. The microbiome plays a crucial role in maintaining local microenvironments and tissue homeostasis, but dysbiosis can disrupt this fine balance and contribute to pathological ramifications leading to cancer. This review explores the current understanding of the microbiome's correlation with gynecological cancers and highlights the potential of microbiome-based interventions to improve outcomes in these cancers. In addition, this review underscores the gaps and limitations in the literature, such as findings in specific ethnicities compared with understudied ethnicities. In addition, discrepancies in molecular techniques and terminology (microbiome vs. microbiota) used in the literature are addressed. Emerging evidence linking gynecological cancers and dysbiosis underscores microbiota as a potential target for cancer prevention and therapy. Manipulating the microbiome, such as through the use of probiotics, prebiotics, antibiotics, or vaginal and fecal transplantation, has demonstrated benefits in the treatment of chronic and inflammatory conditions. Further translational research in this field is needed to integrate the benefits of beneficial microorganisms in the fight against gynecological cancers.
Collapse
Affiliation(s)
- Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ismail A. Albadawi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Gynecology Oncology, Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalid A. Awartani
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Reproductive Medicine, Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dalia A. Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma M. Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Liu Y, Lin XX, Hu SS, Zheng ED, Ye Y, Xu BB, Wu LC. The microbiota comparative analysis of the characteristics between colorectal adenomatous polyps and normal mucosal intestinal. Eur J Gastroenterol Hepatol 2024; 36:1305-1313. [PMID: 39166388 DOI: 10.1097/meg.0000000000002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
OBJECTIVE The aim of this study is to systematically examine and compare the characteristics distinguishing colorectal adenomatous polyps from normal mucosal intestinal microbiota. METHODS A total of 30 specimens were obtained from patients diagnosed with colorectal adenomatous polyps (adenoma group) who underwent endoscopic removal at Wenzhou People's Hospital between September 2021 and November 2021. Concurrently, 30 normal mucosal specimens were collected from patients without adenomatous polyps (control group). Subsequently, microbiome total DNA extraction was carried out, followed by PCR amplification targeting the V3-V4 region of the 16S rDNA. High-throughput sequencing was conducted using the Illumina MiSeq platform. Subsequent to sequencing, bioinformatics analysis was used to assess the diversity, composition, and functional aspects of the intestinal microbiota in both study groups. RESULTS A notable dissimilarity in the microbiota structure was identified, specifically within the transverse colon, between these two groups ( P < 0.05). Species composition analysis revealed that Escherichia , Fusobacterium , and Bacteroides were predominant bacteria in both groups, with Escherichia and Enterobacter displaying significant differences at the genera level between the control group and the adenoma group ( P < 0.05). Correlation analysis and functional prediction demonstrated substantial disparities in interactions among dominant intestinal microbial genera within patients from both groups. Additionally, it was discovered that the intestinal microbiomes in patients in the adenoma group exhibited a significantly higher pathogenic potential. CONCLUSION Upon conducting a comprehensive analysis, it was discerned that the microbiota present in the transverse colon of the control group exhibited distinctive characteristics that may contribute to the maintenance of intestinal health.
Collapse
Affiliation(s)
- Ya Liu
- Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Domínguez Rojo N, Blanco Benítez M, Cava R, Fuentes JM, Canales Cortés S, González Polo RA. Convergence of Neuroinflammation, Microbiota, and Parkinson's Disease: Therapeutic Insights and Prospects. Int J Mol Sci 2024; 25:11629. [PMID: 39519181 PMCID: PMC11545862 DOI: 10.3390/ijms252111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder. Recent evidence reveals connections between neuroinflammatory processes and intestinal microbiota alterations in the progression of this pathology. This comprehensive review explores the intricate relationships between them, highlighting their combined impact on PD. Neuroinflammation, characterized by immune activation in the central nervous system, is increasingly acknowledged as a critical factor in the development of PD. Concurrently, alterations in the gut microbiota composition have been linked to PD, suggesting a potential modulatory role in disease progression. Thus, bidirectional communication along the gut-brain axis has become pivotal in comprehending the pathogenesis of PD. Furthermore, we explore emerging therapeutic strategies that target these interconnected pathways, providing insights into potential avenues for PD treatment. The elucidation of these intricate relationships establishes a promising foundation for innovative therapeutic strategies aimed at altering disease progression and improving the quality of life for individuals affected by PD.
Collapse
Affiliation(s)
- Nerea Domínguez Rojo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (N.D.R.); (M.B.B.); (J.M.F.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Mercedes Blanco Benítez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (N.D.R.); (M.B.B.); (J.M.F.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Ramón Cava
- Tradinnoval Research Group, INBIO G+C, Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Extremadura, 10003 Cáceres, Spain;
| | - José Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (N.D.R.); (M.B.B.); (J.M.F.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Saray Canales Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (N.D.R.); (M.B.B.); (J.M.F.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| | - Rosa Ana González Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain; (N.D.R.); (M.B.B.); (J.M.F.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Gao J, Xu K, Yin J, Brecchia G. Editorial: Effects of dietary nutrients on intestinal microbiome: insights into gastrointestinal diseases in animals. Front Cell Infect Microbiol 2024; 14:1466495. [PMID: 39403203 PMCID: PMC11471727 DOI: 10.3389/fcimb.2024.1466495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Jing Gao
- Hunan Academy of Forestry, National Engineering Research Center for Oil Tea, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
11
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
12
|
Escudero-Bautista S, Omaña-Covarrubias A, Nez-Castro AT, López-Pontigo L, Pimentel-Pérez M, Chávez-Mejía A. Impact of Gut Microbiota on Aging and Frailty: A Narrative Review of the Literature. Geriatrics (Basel) 2024; 9:110. [PMID: 39311235 PMCID: PMC11417718 DOI: 10.3390/geriatrics9050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Aging is a natural, complex, and individual process that focuses on the progressive decay of the body and a decrease in cell function that begins in approximately the sixth decade of life and ends with death. Current scientific evidence shows that the aging process is mostly related to genetic load and varies because of the environment. Therefore, aging can be adjusted through the intervention of factors that control homeostasis in genetic, biochemical, and immunological processes, including those involving the gut microbiota. Indeed, the diversity of the gut microbiota decreases during aging, based on the presence of modifications in the hormonal, immunological, and operational processes of the gastrointestinal tract. These modifications lead to a state of dysbiosis. However, altering bacterial communities remains complicated due to the great diversity of factors that influence their modification. Alterations caused by the aging process are known to foster dysbiosis and correspond to conditions that determine the degree of frailty in senior citizens. Consequently, the microbial structure can be used as a biomarker for geriatric care in the promotion of healthy aging.
Collapse
Affiliation(s)
- Selene Escudero-Bautista
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Arianna Omaña-Covarrubias
- Department of Nutrition, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Ana Teresa Nez-Castro
- Department of Nutrition, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Lydia López-Pontigo
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Maribel Pimentel-Pérez
- Department of Gerontology, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico (L.L.-P.); (M.P.-P.)
| | - Alonso Chávez-Mejía
- Department of Medicine, School of Medical Science, Autonomous University of the State of Hidalgo, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| |
Collapse
|
13
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
14
|
Zhang Y, Yang FJ, Jiang QR, Gao HJ, Song X, Zhu HQ, Zhou X, Lu J. Association between gut microbiota and hepatocellular carcinoma and biliary tract cancer: A mendelian randomization study. World J Clin Cases 2024; 12:3497-3504. [PMID: 38983434 PMCID: PMC11229907 DOI: 10.12998/wjcc.v12.i18.3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND An increasing number of studies have begun to discuss the relationship between gut microbiota and diseases, yet there is currently a lack of corresponding articles describing the association between gut microbiota and hepatocellular carcinoma (HCC) and biliary tract cancer (BTC). This study aims to explore the relationship between them using Mendelian randomization (MR) analysis method. AIM To assess the relationship between gut microbiota and HCC and BTC. METHODS We obtained Genome-wide association study (GWAS) data for the gut microbiome from the intestinal microbiota genomic library (MiBioGen, https://mibiogen.gcc.rug.nl/). Additionally, we accessed data pertaining to HCC and BTC from the IEU open GWAS platform (https://gwas.mrcieu.ac.uk/). Our analysis employed fundamental instrumental variable analysis methods, including inverse-variance weighted, MR and Egger. To ensure the dependability of the results, we subjected the results to tests for multiple biases and heterogeneity. RESULTS During our investigation, we discovered 11 gut microbiota linked to an increased risk to BTC and HCC. The former included the genus Eubacterium hallii group (P = 0.017), Candidatus Soleaferrea (P = 0.034), Flavonifractor (P = 0.021), Lachnospiraceae FCS020 (P = 0.034), the order Victivallales (P = 0.018), and the class Lentisphaeria (P = 0.0.18). The latter included the genus Desulfovibrio (P = 0.042), Oscillibacter (P = 0.023), the family Coriobacteriaceae (P = 0.048), the order Coriobacteriales (P = 0.048), and the class Coriobacteriia (P = 0.048). Furthermore, in BTC, we observed 2 protective gut microbiota namely the genus Dorea (P = 0.041) and Lachnospiraceae ND3007 group (P = 0.045). All results showed no evidence of multiplicity or heterogeneity. CONCLUSION This study explores a causal link between gut microbiota and HCC and BTC. These insights may enhance the mechanistic knowledge of microbiota-related HCC and BTC pathways, potentially informing therapeutic strategies.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Fa-Ji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Qi-Rong Jiang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Heng-Jun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Hua-Qiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
15
|
Zhang A, Wang J, Hu Y, Qiu Y, Dong C. Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress. Int J Biol Macromol 2024; 271:131982. [PMID: 38724335 DOI: 10.1016/j.ijbiomac.2024.131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
16
|
Li J, Xie F, Wang X, Zhang W, Cheng C, Wu X, Li M, Huo X, Gao X, Wang W. Distribution characteristics of gastric mucosal colonizing microorganisms in different glandular regions of Bactrian camels and their relationship with local mucosal immunity. PLoS One 2024; 19:e0300316. [PMID: 38814894 PMCID: PMC11139325 DOI: 10.1371/journal.pone.0300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 06/01/2024] Open
Abstract
Bactrian camels inhabiting desert and semi-desert regions of China are valuable animal models for studying adaptation to desert environments and heat stress. In this study, 16S rRNA technology was employed to investigate the distribution characteristics and differences of mucosal microorganisms in the anterior gland area, posterior gland area, third gland area, cardia gland area, gastric fundic gland area and pyloric gland area of 5-peak adult healthy Bactrian camels. We aimed to explore the possible reasons for the observed microbial distribution from the aspects of histological structure and mucosal immunity. Bacteroides and Fibrobacteria accounted for 59.54% and 3.22% in the gland area, respectively, and 52.37% and 1.49% in the wrinkled stomach gland area, respectively. The gland area showed higher abundance of Bacteroides and Fibrobacteria than the wrinkled stomach gland area. Additionally, the anterior gland area, posterior gland area, third gland area, and cardia gland area of Bactrian camels mainly secreted acidic mucus, while the gastric fundic gland area mainly secreted neutral mucus and the pyloric region mainly secreted a mixture of acidic and neutral mucus. The results of immunohistochemistry techniques demonstrated that the number of IgA+ cells in the anterior glandular area, posterior glandular area, third glandular area, and cardia gland area was significantly higher than that in the fundic and pyloric gland area (p < 0.05), and the difference in IgA+ between the fundic and pyloric gland area was not significant (p > 0.05). The study revealed a large number of bacteria that can digest and degrade cellulose on the mucosa of the gastric gland area of Bactrian camels. The distribution of IgA+ cells, the structure of the mucosal tissue in the glandular region, and the composition of the mucus secreted on its surface may have a crucial influence on microbial fixation and differential distribution.
Collapse
Affiliation(s)
- Jianfei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Fie Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xueyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Cuicui Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Min Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xingmin Huo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| |
Collapse
|
17
|
Kumar SS, Fathima A, Srihari P, Jamma T. Host-gut microbiota derived secondary metabolite mediated regulation of Wnt/β-catenin pathway: a potential therapeutic axis in IBD and CRC. Front Oncol 2024; 14:1392565. [PMID: 38706602 PMCID: PMC11066261 DOI: 10.3389/fonc.2024.1392565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The intestinal tract encompasses one of the largest mucosal surfaces with a well-structured layer of intestinal epithelial cells supported by a network of underlying lamina propria immune cells maintaining barrier integrity. The commensal microflora in this environment is a major contributor to such functional outcomes due to its prominent role in the production of secondary metabolites. Of the several known metabolites of gut microbial origin, such as Short Chain Fatty Acids (SCFAs), amino acid derivatives, etc., secondary bile acids (BAs) are also shown to exhibit pleiotropic effects maintaining gut homeostasis in addition to their canonical role in dietary lipid digestion. However, dysbiosis in the intestine causes an imbalance in microbial diversity, resulting in alterations in the functionally effective concentration of these secondary metabolites, including BAs. This often leads to aberrant activation of the underlying lamina propria immune cells and associated signaling pathways, causing intestinal inflammation. Sustained activation of these signaling pathways drives unregulated cell proliferation and, when coupled with genotoxic stress, promotes tumorigenesis. Here, we aimed to discuss the role of secondary metabolites along with BAs in maintaining immune-gut homeostasis and regulation of inflammation-driven tumorigenesis with emphasis on the classical Wnt/β-Catenin signaling pathway in colon cancer.
Collapse
Affiliation(s)
| | | | | | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Hyderabad, Telangana State, India
| |
Collapse
|
18
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
19
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
20
|
Fu J, Qin Y, Xiao L, Dai X. Causal relationship between gut microflora and dementia: a Mendelian randomization study. Front Microbiol 2024; 14:1306048. [PMID: 38287957 PMCID: PMC10822966 DOI: 10.3389/fmicb.2023.1306048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Background Numerous pertinent investigations have demonstrated a correlation between gut microflora (GM) and the occurrence of dementia. However, a causal connection between GM and dementia and its subtypes has not yet been clarified. Objective To explore the causal association between GM and dementia, including its subtypes, a two-sample Mendelian randomization (TSMR) analysis was used. Methods Our data comes from the Genome-Wide Association Study (GWAS). The principal approach employed for the Mendelian randomization study was the inverse-variance weighted method, supplemented by four methods: MR-Egger, weighted median, simple mode, and weighted mode. This was followed by Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out as sensitivity analysis validation. Results Twenty-one GMs associated with any dementia, Alzheimer's disease, vascular dementia, Lewy body dementia, Parkinson's disease, and dementia under other disease classifications were derived from the analysis, and 21 passed sensitivity tests. Conclusion We confirmed the causal relationship between GM and dementia and its subtypes, derived specific flora associated with increased or decreased risk of dementia, and provided new ideas for preventive, diagnostic, and therapeutic interventions for dementia mediated by gut microbiota.
Collapse
Affiliation(s)
- Jinjie Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Qin
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lingyong Xiao
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoyu Dai
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
21
|
Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106768. [PMID: 38041968 DOI: 10.1016/j.aquatox.2023.106768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023]
Abstract
The red swamp crayfish (Procambarus clarkii) is an important farming species in China and there is a high degree of overlap between the main crayfish production areas and areas contaminated with the heavy metal lead (Pb), thus putting crayfish farming at potential risk of Pb contamination. To assess the toxic effects of Pb on crayfish, in this study they were exposed to different concentrations of Pb (0, 0.1, 1, 10, 50 mg/L) for 72 h, and 0.1 mg/L represents the level of Pb in the contaminated water. Histomorphology and activities of antioxidant or immune-related enzymes suggest that the damage of Pb to the hepatopancreas and intestine was dose- and time-dependent, with the intestine being more sensitive to Pb than the hepatopancreas. Notably, after a short period (24 h) of stress at low concentrations (0.1 mg/L) of Pb, the malondialdehyde (MDA) content and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GSH-Px) in the intestine of crayfish showed significant changes, indicating that low concentrations of Pb were also highly detrimental to crayfish. High-throughput sequencing of the intestinal microbial community indicated that Pb exposure led to a disturbance in the relative abundance of intestinal bacteria, increasing the abundance of pathogenic bacteria (Bosea, Cloacibacterium, Legionella spp.) and decreasing the abundance of potentially beneficial bacteria (Chitinibacter, Chitinilyticum, Paracoccus, Microbacterium, Demequina, and Acinetobacter spp.). In conclusion, Pb damages the hepatopancreas and intestinal barrier of crayfish, leading to the destruction of their anti-stress ability and immune response, and at the same time disrupts the homeostasis of intestinal microbes, resulting in adverse effects on the gut. This study contributed to the assessment of the ecotoxicity of the heavy metal Pb to the crustacean aquatic animals.
Collapse
Affiliation(s)
- Yulong Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Yunyin Fu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Guoliang Ruan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Liu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| | - Qian Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| |
Collapse
|
22
|
Loria-Kohen V, Montiel Fernández N, López-Plaza B, Aparicio A. [Anorexia nervosa, microbiota and brain]. NUTR HOSP 2023; 40:46-50. [PMID: 37929904 DOI: 10.20960/nh.04955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Anorexia nervosa (AN) is a psychiatric disease with a high prevalence and comorbidities, characterized by a low response rate to treatment. It is considered as a multifactorial disease. In recent years, the focus has been placed on the presence of intestinal dysbiosis and its possible involvement as a causal factor as well as an alternative treatment. The objective of this work has been to review the current state of knowledge of alterations in the intestinal microbiota identified in patients with AN and the possibility of using probiotics as a therapeutic alternative. Significant changes in the diversity of species associated with weight loss have been described that could favor the perpetuation of the disorder, and that would explain many of the nutritional, gastrointestinal, psychological, and cognitive alterations present in these patients. The use of probiotics, still little studied in patients with AN, sheds some light on this matter to improve the treatment response, always hand in hand with conventional treatments.
Collapse
Affiliation(s)
- Viviana Loria-Kohen
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030)
| | - Natalia Montiel Fernández
- Máster Universitario en Nutrición Clínica. Universidad Europea. Facultad de Ciencias Biomédicas y de la Salud
| | - Bricia López-Plaza
- Instituto de Investigación Sanitaria La Paz (IdiPAZ). Hospital Universitario La Paz
| | - Aránzazu Aparicio
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030). IdISSC
| |
Collapse
|
23
|
Wu Y, Zeng Y, Ren Y, Yu J, Zhang Q, Xiao X. Insights into RNA N6-methyladenosine in Glucose and Lipid Metabolic Diseases and Their Therapeutic Strategies. Endocrinology 2023; 165:bqad170. [PMID: 37950364 DOI: 10.1210/endocr/bqad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The incidence of glucose and lipid metabolism diseases, including type 2 diabetes, obesity, metabolic syndrome, and nonalcoholic fatty liver disease, is rising, which places an enormous burden on people around the world. However, the mechanism behind these disorders remains incompletely understood. N6-methyladenosine (m6A) is 1 type of posttranscriptional RNA modification, and research has shown that it plays a crucial role in several metabolic diseases. m6A methylation is reversibly and dynamically regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Dysregulation of RNA m6A modification is related to different metabolic processes. Targeting RNA m6A methylation is a potential treatment strategy for these chronic metabolic diseases. This review discusses studies on RNA m6A modification in metabolic diseases and existing therapeutic drugs, with the aim of providing a concise perspective on its potential applications in managing metabolic disorders.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
24
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
25
|
Sinisterra-Loaiza L, Alonso-Lovera P, Cardelle-Cobas A, Miranda JM, Vázquez BI, Cepeda A. Compliance with Nutritional Recommendations and Gut Microbiota Profile in Galician Overweight/Obese and Normal-Weight Individuals. Nutrients 2023; 15:3418. [PMID: 37571355 PMCID: PMC10420825 DOI: 10.3390/nu15153418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Different research studies have identified specific groups or certain dietary compounds as the onset and progression of obesity and suggested that gut microbiota is a mediator between these compounds and the inflammation associated with pathology. In this study, the objective was to evaluate the dietary intake of 108 overweight (OW), obese (OB), and normal-weight (NW) individuals and to analyze their gut microbiota profile to determine changes and associations with Body Mass Index (BMI) and diet. When individuals were compared by BMI, significant differences in fiber and monounsaturated fatty acids (MUFAs) intake were observed, showing higher adequacy for the NW group. The analysis of gut microbiota showed statistical differences for 18 ASVs; Anaerostipes and Faecalibacterium decreased in the OW/OB group, whereas the genus Oscillospira increased; the genus was also found in the LEFSe analysis as a biomarker for OW/OB. Roseburia faecis was found in a significantly higher proportion of NW individuals and identified as a biomarker for the NW group. Correlation analysis showed that adequation to nutritional recommendation for fiber indicated a higher abundance of Prevotella copri, linearly correlated with F. prausnitzii, Bacteroides caccae, and R. faecis. The same correlation was found for the adequation for MUFAs, with these bacteria being more abundant when the intake was adjusted to or below the recommendations.
Collapse
Affiliation(s)
| | | | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain; (L.S.-L.); (P.A.-L.); (J.M.M.); (B.I.V.); (A.C.)
| | | | | | | |
Collapse
|
26
|
Minoretti P, Sigurtà C, Fachinetti A, Cerone E, Rotta F, Emanuele E. A Preliminary Study of Gut Microbiota in Airline Pilots: Comparison With Construction Workers and Fitness Instructors. Cureus 2023; 15:e39841. [PMID: 37397653 PMCID: PMC10314802 DOI: 10.7759/cureus.39841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
INTRODUCTION The term "WORKbiota" has been used to describe the impact of occupational exposure and work types on human microbiota composition. Airline pilots, construction workers, and fitness instructors encompass three diverse professional groups, each with distinct work environments and lifestyle factors that may significantly influence their intestinal "WORKbiota." OBJECTIVES The current preliminary investigation was aimed to compare the relative abundance of specific gut microbes among airline pilots, construction workers, and fitness instructors to shed light on any significant differences. By scrutinizing these diverse professional groups, our objective was to enhance our understanding of how occupational factors influence gut microbiota while identifying possible implications for occupational medicine. METHODS A convenience sample consisting of 60 men representing three different professional domains - airline pilots, construction workers, and fitness instructors (with 20 individuals in each group) - was selected during regular outpatient occupational health consultations. The abundance of selected gut microbiota constituents, including Escherichia coli, Methanobrevibacter smithii, Akkermansia muciniphila, Faecalibacterium prausnitzii, Lactobacillus spp., Bifidobacterium spp., and Bacteroides spp., was quantified using quantitative SYBR Green quantitative real-time polymerase chain reaction (qRT-PCR) in stool samples. RESULTS There were no significant variations among the groups concerning Escherichia coli, Methanobrevibacter smithii, Bifidobacterium spp., and Bacteroides spp. However, Lactobacillus spp. and Faecalibacterium prausnitzii were significantly more abundant in the microbiota of fitness instructors compared to both airline pilots and construction workers, with no significant differences observed between the latter two groups. Notably, the abundance of Akkermansia muciniphila demonstrated a progressive decline from fitness instructors to construction workers and ultimately to airline pilots, who exhibited the lowest levels. CONCLUSION Airline pilots' gut microbiota was characterized by a lower abundance of health-promoting bacterial species, including Lactobacillus spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila. Future research is essential to determine whether targeted interventions, such as probiotic and prebiotic supplementation, could potentially enhance gut microbiota composition and overall health in particular occupational groups.
Collapse
Affiliation(s)
| | - Camilla Sigurtà
- Aviation Medicine, Cavok Medical Center, Lonate Pozzolo, ITA
| | - Anna Fachinetti
- Aviation Medicine, Cavok Medical Center, Lonate Pozzolo, ITA
| | | | - Fabio Rotta
- Aviation Medicine, Studio Minoretti, Oggiono, ITA
| | | |
Collapse
|
27
|
He Z, Xu H, Li C, Yang H, Mao Y. Intermittent fasting and immunomodulatory effects: A systematic review. Front Nutr 2023; 10:1048230. [PMID: 36925956 PMCID: PMC10011094 DOI: 10.3389/fnut.2023.1048230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction strategy of periodic food restriction and fixed eating windows, could beneficially modify individuals by losing body weight, regulating glucose or lipid metabolism, reducing blood pressure, and modulating the immune system. Specific effects of IF and its mechanisms have not yet been assessed collectively. Thus, this systematic review aims to summarize and compare clinical trials that explored the immunomodulatory effects of IF. Methods After screening, 28 studies were included in this systematic review. Results In addition to weight loss, IF could benefit health subjects by strengthening their circadian rhythms, migrating immune cells, lower inflammatory factors, and enriching microbials. In addition of the anti-inflammatory effect by regulating macrophages, protection against oxidative stress with hormone secretion and oxidative-related gene expression plays a key beneficial role for the influence of IF on obese subjects. Discussion Physiological stress by surgery and pathophysiological disorders by endocrine diseases may be partly eased with IF. Moreover, IF might be used to treat anxiety and cognitive disorders with its cellular, metabolic and circadian mechanisms. Finally, the specific effects of IF and the mechanisms pertaining to immune system in these conditions require additional studies.
Collapse
Affiliation(s)
- Zhangyuting He
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
28
|
Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Probiotic Supplements on Oncology Patients' Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084265. [PMID: 33920572 PMCID: PMC8074215 DOI: 10.3390/ijerph18084265] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
Cancer affects more than 19.3 million people and has become the second leading cause of death worldwide. Chemo- and radiotherapy, the most common procedures in these patients, often produce unpleasant treatment-related side effects that have a direct impact on the quality of life of these patients. However, innovative therapeutic strategies such as probiotics are being implemented to manage these complications. Thus, this study aimed to evaluate the efficacy of probiotics supplements as a therapeutic strategy in adult oncology treatment-related side effects. A systematic review of randomized controlled trials was conducted in PubMed, Scielo, ProQuest and OVID databases up to and including January 2021, following the PRISMA guidelines. The quality of the included studies was assessed by the Jadad Scale. Twenty clinical trials published between 1988 and 2020 were included in this review. Seventeen studies (85%) revealed predominantly positive results when using probiotics to reduce the incidence of treatment-related side effects in oncology patients, while three studies (15%) reported no impact in their findings. This study sheds some light on the significance of chemotherapy and radiotherapy in altering the composition of gut microbiota, where probiotic strains may play an important role in preventing or mitigating treatment-related side effects.
Collapse
|