1
|
Jiao X, Liang Z, Li J, Bai L, Xu J, Liu Y, Lu LY. Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination. Nat Commun 2025; 16:2260. [PMID: 40050306 PMCID: PMC11885488 DOI: 10.1038/s41467-025-57702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Chromosome synapsis is an evolutionarily conserved process essential for meiotic recombination. HORMAD1 and HORMAD2, which monitor chromosome asynapsis by localizing to unsynapsed chromosome axes, are removed from synapsed chromosome axes by TRIP13, though the biological significance of this process remains unclear. We show that when HORMAD1 and HORMAD2 are retained on synapsed chromosome axes, they recruit BRCA1, activate chromosome asynapsis checkpoint, and trigger oocyte elimination. Unexpectedly, N-terminal tagging retains HORMAD1 and HORMAD2 on synapsed chromosome axes without triggering oocyte elimination due to defective BRCA1 recruitment. Mechanistically, HORMAD1 co-immunoprecipitates with BRCA1 readily, not through the canonical closure motif-binding mode but via an interface on its HORMA domain near the N-terminus. HORMAD2 co-immunoprecipitates with BRCA1 weakly but also regulates its recruitment. Collectively, the TRIP13-dependent removal of HORMAD1 and HORMAD2 from synapsed chromosome axes is essential for female fertility, preventing aberrant chromosome asynapsis checkpoint activation and unintended oocyte elimination.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiwei Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xu
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Genetics and Metabolism Department, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yidan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Tang XM, Shi MM, Wang JC, Gu YJ, Dai YT, Yang QX, Liu J, Ren LJ, Liu XY, Yang C, Ma FF, Liu JB, Yu H, Fu D, Wang YF. TOPBP1 as a potential predictive biomarker for enhanced combinatorial efficacy of olaparib and AZD6738 in PDAC. Cell Biosci 2025; 15:17. [PMID: 39920847 PMCID: PMC11806807 DOI: 10.1186/s13578-025-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and often lethal malignancy, requiring the development of enhanced therapeutic approaches. The DNA damage response (DDR) pathway is frequently altered during PDAC development, leading to an increased occurrence of DNA damage. DNA topoisomerase II-binding protein 1 (TOPBP1) plays a supportive role in regulating the DDR pathway, and its overexpression has been linked to the tumorigenesis of various cancers. This study investigated the biological role of TOPBP1 in PDAC pathogenesis and evaluated its clinical relevance in guiding treatment regimens. We examined the relationship between TOPBP1 expression, DDR pathway modulation, and therapeutic response in PDAC cell lines, primary cells, and subcutaneous mouse models. We found that elevated TOPBP1 expression was positively correlated with increased histologic grade and reduced patient survival in PDAC. TOPBP1 knockdown increased the sensitivity of PDAC cells to olaparib treatment and improved therapeutic efficacy in both PDAC cell lines and subcutaneous mouse models. Combination treatment with olaparib and AZD6738 effectively induced P53-dependent apoptosis via inhibiting the ATR pathway and enhancing signaling through the ATM pathway, which significantly reduced the viability of pancreatic cell lines. Notably, this combination therapy was more effective in PDAC cell lines exhibiting high TOPBP1 expression, indicating that TOPBP1 may serve as a useful predictive biomarker. In conclusion, TOPBP1 is a potential marker for optimizing the olaparib and AZD6738 combination therapy in PDAC. This study highlights the clinical significance of TOPBP1 in the treatment of PDAC and emphasizes the potential implications for a broader population of patients.
Collapse
Affiliation(s)
- Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Min-Min Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jia-Cheng Wang
- Shanghai Pinghe School, Shanghai, 200127, China
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Yi-Jin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Dai
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ling-Jie Ren
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Chun Yang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Fang-Fang Ma
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ji-Bing Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
3
|
Renaudin X, Al Ahmad Nachar B, Mancini B, Gueiderikh A, Louis-Joseph N, Maczkowiak-Chartois F, Rosselli F. Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia. PLoS Genet 2024; 20:e1011474. [PMID: 39509458 PMCID: PMC11575784 DOI: 10.1371/journal.pgen.1011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Benedetta Mancini
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Anna Gueiderikh
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Noémie Louis-Joseph
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| |
Collapse
|
4
|
Thota SS, Allen GL, Grahn AK, Kay BK. Engineered FHA domains can bind to a variety of Phosphothreonine-containing peptides. Protein Eng Des Sel 2024; 37:gzae014. [PMID: 39276365 PMCID: PMC11436287 DOI: 10.1093/protein/gzae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024] Open
Abstract
Antibodies play a crucial role in monitoring post-translational modifications, like phosphorylation, which regulates protein activity and location; however, commercial polyclonal and monoclonal antibodies have limitations in renewability and engineering compared to recombinant affinity reagents. A scaffold based on the Forkhead-associated domain (FHA) has potential as a selective affinity reagent for this post-translational modification. Engineered FHA domains, termed phosphothreonine-binding domains (pTBDs), with limited cross-reactivity were isolated from an M13 bacteriophage display library by affinity selection with phosphopeptides corresponding to human mTOR, Chk2, 53BP1, and Akt1 proteins. To determine the specificity of the representative pTBDs, we focused on binders to the pT543 phosphopeptide (536-IDEDGENpTQIEDTEP-551) of the DNA repair protein 53BP1. ELISA and western blot experiments have demonstrated the pTBDs are specific to phosphothreonine, demonstrating the potential utility of pTBDs for monitoring the phosphorylation of specific threonine residues in clinically relevant human proteins.
Collapse
Affiliation(s)
- Srinivas S Thota
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Grace L Allen
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Ashley K Grahn
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| | - Brian K Kay
- Tango Biosciences, 2201 W. Campbell Park Drive, Chicago, IL 60612-4092 USA
| |
Collapse
|
5
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
6
|
Kleissl L, Weinmüllner R, Lämmermann I, Dingelmaier-Hovorka R, Jafarmadar M, El Ghalbzouri A, Stary G, Grillari J, Dellago H. PRPF19 modulates morphology and growth behavior in a cell culture model of human skin. FRONTIERS IN AGING 2023; 4:1154005. [PMID: 37214773 PMCID: PMC10196211 DOI: 10.3389/fragi.2023.1154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.
Collapse
Affiliation(s)
- Lisa Kleissl
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ingo Lämmermann
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | | | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Georg Stary
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | - Hanna Dellago
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
7
|
ATM/IKK alpha axis regulates the crosstalk between autophagy and apoptosis in selenite-treated Jurkat cells. Chem Biol Interact 2022; 367:110178. [PMID: 36113632 DOI: 10.1016/j.cbi.2022.110178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Selenium is an essential trace element. High dosage of selenite exhibits a great potential in treating leukemia. Previous study discovered selenite could promote leukemia cells apoptosis through inducing DNA damage and cell cycle arrest, while the switch mechanisms of these events and autophagy were still unclear. Current study discovered selenite promoted autophagy and apoptosis of leukemia Jurkat cells. In this process, DNA damage related ATM/IKK alpha axis was activated. This axis could stabilize pro-apoptotic P73, and promote autophagy through regulating NF-kappaB signaling pathway. Moreover, survivin-2B was also confirmed to be necessary for the ATM-induced nuclear location of IKK alpha, and therefore stood at the node position of apoptosis and autophagy cascades inside Jurkat cells. Finally, our in vivo experiments proved that selenite exhibited some anti-tumor effects on Jurkat cells-bearing mice. Moreover, alterations of ATM and IKK alpha expression observed in vivo were similar to that identified in vitro. Therefore, our findings had fully confirmed survivin-2B dependent activation of ATM/IKK alpha axis might be another crosstalk between autophagy and apoptosis of selenite-treated leukemia cells.
Collapse
|
8
|
Iranzo J, Gruenhagen G, Calle-Espinosa J, Koonin EV. Pervasive conditional selection of driver mutations and modular epistasis networks in cancer. Cell Rep 2022; 40:111272. [PMID: 36001960 DOI: 10.1016/j.celrep.2022.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer driver mutations often display mutual exclusion or co-occurrence, underscoring the key role of epistasis in carcinogenesis. However, estimating the magnitude of epistasis and quantifying its effect on tumor evolution remains a challenge. We develop a method (Coselens) to quantify conditional selection on the excess of nonsynonymous substitutions in cancer genes. Coselens infers the number of drivers per gene in different partitions of a cancer genomics dataset using covariance-based mutation models and determines whether coding mutations in a gene affect selection for drivers in any other gene. Using Coselens, we identify 296 conditionally selected gene pairs across 16 cancer types in the TCGA dataset. Conditional selection affects 25%-50% of driver substitutions in tumors with >2 drivers. Conditionally co-selected genes form modular networks, whose structures challenge the traditional interpretation of within-pathway mutual exclusivity and across-pathway synergy, suggesting a more complex scenario where gene-specific across-pathway epistasis shapes differentiated cancer subtypes.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - George Gruenhagen
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jorge Calle-Espinosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Xin Y, Wang J, Wu Y, Li Q, Dong M, Liu C, He Q, Wang R, Wang D, Jiang S, Xiao W, Tian Y, Zhang W. Identification of Nanog as a novel inhibitor of Rad51. Cell Death Dis 2022; 13:193. [PMID: 35220392 PMCID: PMC8882189 DOI: 10.1038/s41419-022-04644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
AbstractTo develop inhibitors targeting DNA damage repair pathways is important to improve the effectiveness of chemo- and radiotherapy for cancer patients. Rad51 mediates homologous recombination (HR) repair of DNA damages. It is widely overexpressed in human cancers and overwhelms chemo- and radiotherapy-generated DNA damages through enhancing HR repair signaling, preventing damage-caused cancer cell death. Therefore, to identify inhibitors of Rad51 is important to achieve effective treatment of cancers. Transcription factor Nanog is a core regulator of embryonic stem (ES) cells for its indispensable role in stemness maintenance. In this study, we identified Nanog as a novel inhibitor of Rad51. It interacts with Rad51 and inhibits Rad51-mediated HR repair of DNA damage through its C/CD2 domain. Moreover, Rad51 inhibition can be achieved by nanoscale material- or cell-penetrating peptide (CPP)-mediated direct delivery of Nanog-C/CD2 peptides into somatic cancer cells. Furthermore, we revealed that Nanog suppresses the binding of Rad51 to single-stranded DNAs to stall the HR repair signaling. This study provides explanation for the high γH2AX level in unperturbed ES cells and early embryos, and suggests Nanog-C/CD2 as a promising drug candidate applied to Rad51-related basic research and therapeutic application studies.
Collapse
|
10
|
Tang J, Casey PJ, Wang M. Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair. Life Sci Alliance 2021; 4:4/12/e202101144. [PMID: 34610973 PMCID: PMC8500237 DOI: 10.26508/lsa.202101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of isoprenylcysteine carboxylmethyltransferase reduces cancer cells’ ability to repair DNA damage by suppressing the expression of critical DNA damage repair pathway genes, hence increasing their vulnerability to DNA damaging insults such as PARP inhibitors and other DNA damage agents. DNA damage is a double-edged sword for cancer cells. On the one hand, DNA damage–induced genomic instability contributes to cancer development; on the other hand, accumulating damage compromises proliferation and survival of cancer cells. Understanding the key regulators of DNA damage repair machinery would benefit the development of cancer therapies that induce DNA damage and apoptosis. In this study, we found that isoprenylcysteine carboxylmethyltransferase (ICMT), a posttranslational modification enzyme, plays an important role in DNA damage repair. We found that ICMT suppression consistently reduces the activity of MAPK signaling, which compromises the expression of key proteins in the DNA damage repair machinery. The ensuing accumulation of DNA damage leads to cell cycle arrest and apoptosis in multiple breast cancer cells. Interestingly, these observations are more pronounced in cells grown under anchorage-independent conditions or grown in vivo. Consistent with the negative impact on DNA repair, ICMT inhibition transforms the cancer cells into a “BRCA-like” state, hence sensitizing cancer cells to the treatment of PARP inhibitor and other DNA damage–inducing agents.
Collapse
Affiliation(s)
- Jingyi Tang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore
| | - Patrick J Casey
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mei Wang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore .,Department of Biochemistry, National University of Singapore, Singapore 117596
| |
Collapse
|
11
|
Mwapagha LM, Chibanga V, Shipanga H, Parker MI. New insights from Whole Genome Sequencing: BCLAF1 deletion as a structural variant that predisposes cells towards cellular transformation. Oncol Rep 2021; 46:229. [PMID: 34490482 DOI: 10.3892/or.2021.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/16/2021] [Indexed: 11/06/2022] Open
Abstract
Cancer arises from a multi‑step cellular transformation process where some mutations may be inherited, while others are acquired during the process of malignant transformation. Aberrations in the BCL2 associated transcription factor 1 (BCLAF1) gene have previously been identified in patients with cancer and the aim of the present study was to identify structural variants (SVs) and the effects of BCLAF1 gene silencing on cell transformation. Whole‑genome sequencing was performed on DNA isolated from tumour biopsies with a histologically confirmed diagnosis of oesophageal squamous cell carcinoma (OSCC). Paired‑end sequencing was performed on the Illumina HiSeq2000, with 300 bp reads. Reads were aligned to the Homo sapiens reference genome (NCBI37) using ELAND and CASAVA software. SVs reported from the alignment were collated with gene loci, using the variant effect predictor of Ensembl. The affected genes were subsequently cross‑checked against the Genetic Association Database for disease and cancer associations. BCLAF1 deletion was identified as a noteworthy SV that could be associated with OSCC. Transient small interfering RNA‑mediated knockdown of BCLAF1 resulted in the altered expression of several downstream genes, including downregulation of the proapoptotic genes Caspase‑3 and BAX and the DNA damage repair genes exonuclease 1, ATR‑interacting protein and transcription regulator protein BACH1. BCLAF1 deficiency also attenuated P53 gene expression. Inhibition of BCLAF1 expression also resulted in increased colony formation. These results provide evidence that the abrogation of BCLAF1 expression results in the dysregulation of several cancer signalling pathways and abnormal cell proliferation.
Collapse
Affiliation(s)
- Lamech M Mwapagha
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape 7925, South Africa
| | - Vimbaishe Chibanga
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape 7925, South Africa
| | - Hendrina Shipanga
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape 7925, South Africa
| | - M Iqbal Parker
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape 7925, South Africa
| |
Collapse
|
12
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
13
|
Cheung RA, Kraft AM, Petty HR. Relocation of phosphofructokinases within epithelial cells is a novel event preceding breast cancer recurrence that accurately predicts patient outcomes. Am J Physiol Cell Physiol 2021; 321:C654-C670. [PMID: 34348486 DOI: 10.1152/ajpcell.00176.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although recurrent cancers are often aggressive, little is known about the intracellular events required for cancer recurrences. Due to this lack of mechanistic information, there is no test to predict cancer recurrences or non-recurrences during early stages of disease. In this retrospective study, we use ductal carcinoma in situ (DCIS) of the breast as a framework to better understand the mechanism of cancer recurrences using patient outcomes as the physiological observable. Conventional pathology slides were labeled with anti-phosphofructokinase type L (PFKL) and anti-phosphofructokinase/fructose-2,6-bisphosphatase type 4 (PFKFB4) reagents. PFKL and PFKFB4 were found in ductal epithelial cell nucleoli from DCIS samples of women who did not experience a cancer recurrence. In contrast, PFKL and PFKFB4 may be found near the plasma membrane in samples from patients who will develop recurrent cancer. Using machine learning to predict patient outcomes, holdout studies of individual patient micrographs for the three biomarkers PFKL, PFKFB4, and phosphorylated GLUT1 demonstrated 38.6% true negatives, 49.5% true positives, 11.9% false positives and 0% false negatives (N=101). A sub-population of recurrent samples demonstrated PFKL, PFKFB4, and phosphorylated glucose transporter 1 accumulation at the apical surface of epithelial cells, suggesting that carbohydrates can be harvested from the ducts' luminal spaces as an energy source. We suggest that PFK isotype patterns are metabolic switches representing key mechanistic steps of recurrences. Furthermore, PFK enzyme patterns within epithelial cells contribute to an accurate diagnostic test to classify DCIS patients as high or low recurrence risk.
Collapse
Affiliation(s)
- Richard A Cheung
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandra M Kraft
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Howard R Petty
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Ye H, Chu X, Cao Z, Hu X, Wang Z, Li M, Wan L, Li Y, Cao Y, Diao Z, Peng F, Liu J, Xu L. A Novel Targeted Therapy System for Cervical Cancer: Co-Delivery System of Antisense LncRNA of MDC1 and Oxaliplatin Magnetic Thermosensitive Cationic Liposome Drug Carrier. Int J Nanomedicine 2021; 16:1051-1066. [PMID: 33603368 PMCID: PMC7886386 DOI: 10.2147/ijn.s258316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND This study was aimed to prepare a novel magnetic thermosensitive cationic liposome drug carrier for the codelivery of Oxaliplatin (OXA) and antisense lncRNA of MDC1 (MDC1-AS) to Cervical cancer cells and evaluate the efficiency of this drug carrier and its antitumor effects on Cervical cancer. METHODS Thermosensitive magnetic cationic liposomes were prepared using thin-film hydration method. The OXA and MDC1-AS vectors were loaded into the codelivery system, and the in vitro OXA thermosensitive release activity, efficiency of MDC1-AS regulating MDC1, in vitro cytotoxicity, and in vivo antitumor activity were determined. RESULTS The codelivery system had desirable targeted delivery efficacy, OXA thermosensitive release, and MDC1-AS regulating MDC1. Codelivery of OXA and MDC1-AS enhanced the inhibition of cervical cancer cell growth in vitro and in vivo, compared with single drug delivery. CONCLUSION The novel codelivery of OXA and MDC1-AS magnetic thermosensitive cationic liposome drug carrier can be applied in the combined chemotherapy and gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Xiaoying Chu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Zhensheng Cao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Xuanxuan Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Zihan Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Meiqi Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Leyu Wan
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Yongping Li
- Department of Surgery, Chengdu Shuangliu District Maternal and Child Health Hospital, ChengDu, Sichuan, 610200, People’s Republic of China
| | - Yongge Cao
- Department of Stomatology, Haiyuan College, Kunming, Yunnan, 650106, People’s Republic of China
| | - Zhanqiu Diao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Fengting Peng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Jinsong Liu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Lihua Xu
- Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
15
|
Chen Q, Bian C, Wang X, Liu X, Ahmad Kassab M, Yu Y, Yu X. ADP-ribosylation of histone variant H2AX promotes base excision repair. EMBO J 2021; 40:e104542. [PMID: 33264433 PMCID: PMC7809701 DOI: 10.15252/embj.2020104542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Optimal DNA damage response is associated with ADP-ribosylation of histones. However, the underlying molecular mechanism of DNA damage-induced histone ADP-ribosylation remains elusive. Herein, using unbiased mass spectrometry, we identify that glutamate residue 141 (E141) of variant histone H2AX is ADP-ribosylated following oxidative DNA damage. In-depth studies performed with wild-type H2AX and the ADP-ribosylation-deficient E141A mutant suggest that H2AX ADP-ribosylation plays a critical role in base excision repair (BER). Mechanistically, ADP-ribosylation on E141 mediates the recruitment of Neil3 glycosylase to the sites of DNA damage for BER. Moreover, loss of this ADP-ribosylation enhances serine-139 phosphorylation of H2AX (γH2AX) upon oxidative DNA damage and erroneously causes the accumulation of DNA double-strand break (DSB) response factors. Taken together, these results reveal that H2AX ADP-ribosylation not only facilitates BER repair, but also suppresses the γH2AX-mediated DSB response.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Chunjing Bian
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Cedar‐Sinai Medical CenterLos AngelesCAUSA
| | - Xin Wang
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Xiuhua Liu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
| | - Yonghao Yu
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Xiaochun Yu
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of Hope Medical CenterDuarteCAUSA
- Present address:
Westlake UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Chitwood DG, Wang Q, Elliott K, Bullock A, Jordana D, Li Z, Wu C, Harcum SW, Saski CA. Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnol 2021; 21:4. [PMID: 33419422 PMCID: PMC7791692 DOI: 10.1186/s12896-020-00667-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10's of milligrams to over 10's of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. RESULTS Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. CONCLUSION This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Qinghua Wang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Kathryn Elliott
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Aiyana Bullock
- Department of Biological Sciences, College of Agriculture, Science & Technology, Delaware State University, Dover, DE, 19901, USA
| | - Dwon Jordana
- Department of Biological Sciences, Grambling State University, Grambling, LA, 71245, USA
| | - Zhigang Li
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Cathy Wu
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Sarah W Harcum
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
17
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Singh AK, Kapoor V, Thotala D, Hallahan DE. TAF15 contributes to the radiation-inducible stress response in cancer. Oncotarget 2020; 11:2647-2659. [PMID: 32676166 PMCID: PMC7343639 DOI: 10.18632/oncotarget.27663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Resistance to radiation therapy is a significant problem in the treatment of non-small cell lung cancer (NSCLC). There is an unmet need to discover new molecular targets for drug development in combination with standard of care cancer therapy. We found that TAF15 was radiation-inducible using phage-displayed peptide libraries. In this study, we report that overexpression of TAF15 is correlated with worsened survival in NSCLC patients. Radiation treatment led to surface induction of TAF15 in vitro and in vivo. We genetically silenced TAF15 which led to a significant reduction in proliferation of NSCLC cells. Cells depleted of TAF15 exhibited cell cycle arrest and enhanced apoptosis through activation and accumulation of p53. In combination with radiation, TAF15 knockdown led to a significant reduction in the surviving fraction of NSCLC cell lines. To determine the importance of TAF15 surface expression, we targeted TAF15 with an antibody. In combination with radiation, the anti-TAF15 antibody led to a reduction in the surviving fraction of cancer cells. These studies show that TAF15 is a radiation-inducible molecular target that is accessible to anti-cancer antibodies and enhances cell viability in response to radiation.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Myc plays an important role in Drosophila P-M hybrid dysgenesis to eliminate germline cells with genetic damage. Commun Biol 2020; 3:185. [PMID: 32322015 PMCID: PMC7176646 DOI: 10.1038/s42003-020-0923-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic damage in the germline induced by P-element mobilization causes a syndrome known as P-M hybrid dysgenesis (HD), which manifests as elevated mutation frequency and loss of germline cells. In this study, we found that Myc plays an important role in eliminating germline cells in the context of HD. P-element mobilization resulted in downregulation of Myc expression in the germline. Myc knockdown caused germline elimination; conversely, Myc overexpression rescued the germline loss caused by P-element mobilization. Moreover, restoration of fertility by Myc resulted in the production of gametes with elevated mutation frequency and reduced ability to undergo development. Our results demonstrate that Myc downregulation mediates elimination of germline cells with accumulated genetic damage, and that failure to remove these cells results in increased production of aberrant gametes. Therefore, we propose that elimination of germline cells mediated by Myc downregulation is a quality control mechanism that maintains the genomic integrity of the germline.
Collapse
|
20
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:1397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of "deleted chromosomes" and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
21
|
Vallabani NVS, Sengupta S, Shukla RK, Kumar A. ZnO nanoparticles-associated mitochondrial stress-induced apoptosis and G2/M arrest in HaCaT cells: a mechanistic approach. Mutagenesis 2019; 34:265-277. [DOI: 10.1093/mutage/gez017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/25/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Zinc oxide nanoparticles (ZnO NPs) with their wide range of consumer applications in day-to-day life received great attention to evaluate their effects in humans. This study has been attempted to elucidate the DNA damage response mechanism in a dermal model exposed to ZnO NPs through Ataxia Telangiectasia Mutated (ATM)-mediated ChK1-dependent G2/M arrest. Further, viability parameters and mechanism involved in the cell death with special reference to the consequences arising due to DNA damage were explored. Our study showed that ZnO NPs at concentrations 5 and 10 µg/ml induced significant cytotoxic effect in skin cell line. Moreover, the results confirmed generation of reactive oxygen species (ROS) induces the cell death by genotoxic insult, leading to mitochondrial membrane depolarisation and cell cycle arrest. Subsequently, ZnO NPs treatment created DNA damage as confirmed via Comet assay (increase in olive tail moment), micronucleus assay (increase in micronucleus formation), double-strand breaks (increase in ATM and Ataxia Telangiectasia and Rad3 related (ATR) expression), DNA fragmentation and cell cycle (G2/M arrest) studies. Finally, marker proteins analysis concluded the mechanistic approach by demonstrating the key marker expressions HMOX1 and HSP60 (for oxidative stress), cytochrome c, APAF1, BAX, Caspase 9, Caspase 3 and decrease in BCL2 (for activating apoptotic pathway), pATM, ATR and γH2AX (for double-strand breaks), DNA-PK (involved in DNA repair) and decrease in cell cycle regulators. In together, our data revealed the mechanism of ROS generation that triggers apoptosis and DNA damage in HaCaT cell lines exposed to ZnO NPs.
Collapse
Affiliation(s)
- N V Srikanth Vallabani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Souvik Sengupta
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh Kumar Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Shi Y, Jin J, Wang X, Ji W, Guan X. DAXX, as a Tumor Suppressor, Impacts DNA Damage Repair and Sensitizes BRCA-Proficient TNBC Cells to PARP Inhibitors. Neoplasia 2019; 21:533-544. [PMID: 31029033 PMCID: PMC6484230 DOI: 10.1016/j.neo.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Treatment options are limited for patients with triple negative breast cancer (TNBC). Understanding genes that participate in cancer progression and DNA damage response (DDR) may improve therapeutic strategies for TNBC. DAXX, a death domain-associated protein, has been reported to be critically involved in cancer progression and drug sensitivity in multiple cancer types. However, its role in breast cancer, especially for TNBC, remains unclear. Here, we demonstrated a tumor suppressor function of DAXX in TNBC proliferation, colony formation, and migration. In Mouse Xenograft Models, DAXX remarkably inhibited tumorigenicity of TNBC cells. Mechanistically, DAXX could directly bind to the promoter region of RAD51 and impede DNA damage repair, which impacted the protection mechanism of tumor cells that much depended on remaining DDR pathways for cell growth. Furthermore, DAXX-mediated inefficient DNA damage repair could sensitize BRCA-proficient TNBC cells to PARP inhibitors. Additionally, we identified that dual RAD51 and PARP inhibition with RI-1 and ABT888 significantly reduced TNBC growth both in vitro and in vivo, which provided the first evidence of combining RAD51 and PARP inhibition in BRCA-proficient TNBC. In conclusion, our data support DAXX as a modulator of DNA damage repair and suppressor of TNBC progression to sensitize tumors to the PARP inhibitor by repressing RAD51 functions. These provide an effective strategy for a better application of PARP inhibition in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Juan Jin
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
23
|
Wang B, Zhang Z, Xia S, Jiang M, Wang Y. Expression of γ-H2AX and patient prognosis in breast cancer cohort. J Cell Biochem 2019; 120:12958-12965. [PMID: 30920061 DOI: 10.1002/jcb.28567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022]
Abstract
H2AX phosphorylation is a novel marker of DNA double-stranded breaks. In the present study, we assessed the γ-H2AX expression, its association with other clinicopathologic characteristics, and the prognosis in a cohort of 97 patients with breast cancer. Ninety-seven specimens of tumor tissue and 77 adjacent normal tissues from patients with breast cancer were examined. All patients underwent modified radical mastectomy or local tumor resection without lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Patients were followed after surgery for a mean duration of 70.1 ± 18.7 months (range, 6-93 months). The γ-H2AX staining was positive in 27 (27.8%) patients. The positive rates of H2AX were 26.0% and 2.6% in tumor tissue and adjacent normal tissues, respectively. γ-H2AX positive status was negatively associated with TNM staging, with 24 positive cases (32.4%) in TNM staging I-II, while no positive cases in TNM staging III-IV (P = 0.026). Sixteen patients (16.5%) died during the follow-up. No significant association between γ-H2AX expression and patient survival was detected. The unadjusted HR (hazard ratio) for γ-H2AX positive was 0.84 (95% CI: 0.27, 2.60). In TNM staging subgroup analysis, death only occurred in γ-H2AX negative patients. Our study is the first study to demonstrate that expression of γ-H2AX is associated with TNM staging. Due to the small sample and limited follow-up time, we did not observe a significant association between γ-H2AX and patient survival. γ-H2AX expression could be a potential biomarker for cancer diagnosis and prediction, and further studies are in need.
Collapse
Affiliation(s)
- Beili Wang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi'an Xia
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mawei Jiang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Jing C, Li H, Du Y, Cao H, Liu S, Wang Z, Ma R, Feng J, Wu J. MEK inhibitor enhanced the antitumor effect of oxaliplatin and 5‑fluorouracil in MEK1 Q56P‑mutant colorectal cancer cells. Mol Med Rep 2018; 19:1092-1100. [PMID: 30535504 PMCID: PMC6323316 DOI: 10.3892/mmr.2018.9730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Mitogen‑activated protein kinase kinase (MEK) small molecule inhibitors have been investigated in preclinical or clinical trials for the treatment of cancer. In the present study the genetic test results of 120 patients with colorectal cancer (CRC) were screened and the mutation rate of MEK1 was identified to be 1.67%. MEK inhibition by U0126 significantly decreased the growth of SW48 cells that harbored the MEK1 Q56P mutation, although it did not evidently affect the growth of NCI‑H508 cells with MEK1 wild‑type. In addition, U0126 increased the sensitivity of SW48 cells to 5‑fluorouracil (5‑FU) and oxaliplatin by producing more γH2AX foci and decreasing the expression of excision repair cross‑complementation group 1 and thymidylate synthase. The results suggested that MEK inhibitors in combination with oxaliplatin/5‑FU may offer an improved therapeutic effect in patients with MEK‑mutant CRC.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Huizi Li
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanyuan Du
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Siwen Liu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
25
|
Bond MJ, Bleiler M, Harrison LE, Scocchera EW, Nakanishi M, G-Dayanan N, Keshipeddy S, Rosenberg DW, Wright DL, Giardina C. Spindle Assembly Disruption and Cancer Cell Apoptosis with a CLTC-Binding Compound. Mol Cancer Res 2018; 16:1361-1372. [PMID: 29769406 DOI: 10.1158/1541-7786.mcr-18-0178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
AK3 compounds are mitotic arrest agents that induce high levels of γH2AX during mitosis and apoptosis following release from arrest. We synthesized a potent AK3 derivative, AK306, that induced arrest and apoptosis of the HCT116 colon cancer cell line with an EC50 of approximately 50 nmol/L. AK306 was active on a broad spectrum of cancer cell lines with total growth inhibition values ranging from approximately 25 nmol/L to 25 μmol/L. Using biotin and BODIPY-linked derivatives of AK306, binding to clathrin heavy chain (CLTC/CHC) was observed, a protein with roles in endocytosis and mitosis. AK306 inhibited mitosis and endocytosis, while disrupting CHC cellular localization. Cells arrested in mitosis by AK306 showed the formation of multiple microtubule-organizing centers consisting of pericentrin, γ-tubulin, and Aurora A foci, without apparent centrosome amplification. Cells released from AK306 arrest were unable to form bipolar spindles, unlike nocodazole-released cells that reformed spindles and completed division. Like AK306, CHC siRNA knockdown disrupted spindle formation and activated p53. A short-term (3-day) treatment of tumor-bearing APC-mutant mice with AK306 increased apoptosis in tumors, but not normal mucosa. These findings indicate that targeting the mitotic CHC complex can selectively induce apoptosis and may have therapeutic value.Implication: Disruption of clathrin with a small-molecule inhibitor, AK306, selectively induces apoptosis in cancer cells by disrupting bipolar spindle formation. Mol Cancer Res; 16(9); 1361-72. ©2018 AACR.
Collapse
Affiliation(s)
- Michael J Bond
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.,Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Lauren E Harrison
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric W Scocchera
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Masako Nakanishi
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut
| | - Narendran G-Dayanan
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Santosh Keshipeddy
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | | | - Dennis L Wright
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
26
|
Wu W, Ma B, Ye H, Wang T, Wang X, Yang J, Wei Y, Zhu J, Chen L. Millepachine, a potential topoisomerase II inhibitor induces apoptosis via activation of NF-κB pathway in ovarian cancer. Oncotarget 2018; 7:52281-52293. [PMID: 27447570 PMCID: PMC5239551 DOI: 10.18632/oncotarget.10739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Millepachine (MIL) was a novel chalcone that was separated from Millettia pachycarpa Benth (Leguminosae). We found MIL induced apoptosis through activating NF-κB pathway both in SK-OV-3 and A2780S cells. Western blot showed that MIL increased the levels of IKKα, p-IKKα/β, p-IκBα and NF-κB (p65) proteins, and decreased the expression of IκBα protein. Immunohistochemistry analysis indicated that translocation of NF-κB into the nucleus increased in both ovarian cancer cells. EMSA assay proved MIL enhanced NF-κB DNA-binding activity in the nuclear. That specific NF-κB inhibitors alleviated MIL-induced apoptosis suggested NF-κB activation showed a pro-apoptotic function in SK-OV-3 and A2780S cells. Since NF-κB could be activated by double strand breaks and showed a pro-apoptotic function in the DNA damage response, SCGE assay and western blot revealed that MIL caused DNA strand breaks and significantly increased the level of p-ATM protein and further increased the levels of p-IKKα/β and NF-κB (p65) protein in SK-OV-3 and A2780S cells, while a specific ATM inhibitor could alleviated these effects. Moreover, Topoisomerase II drug screening kit and computer modeling assay were used to prove that MIL induced the production of linear DNA and inhibited the activity of topoisomerase II through binding with Topoisomerase II-Cleaved DNA complex to stabilize the complex. Taken together, our results identified that MIL exhibited anti-tumor activity through inhibiting topoisomerase II activity to induce tumor cells DNA damage, and MIL-activated NF-κB pathway showed a pro-apoptotic function in response to DNA damage.
Collapse
Affiliation(s)
- Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Buyun Ma
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Taijin Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Covino DA, Gauzzi MC, Fantuzzi L. Understanding the regulation of APOBEC3 expression: Current evidence and much to learn. J Leukoc Biol 2017; 103:433-444. [DOI: 10.1002/jlb.2mr0717-310r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Laura Fantuzzi
- National Center for Global Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
29
|
Wei S, Li L, Shu Y, Zhao K, Ji Z. Synthesis, antifungal and antitumor activity of two new types of imidazolin-2-ones. Bioorg Med Chem 2017; 25:6501-6510. [DOI: 10.1016/j.bmc.2017.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
|
30
|
Groh IAM, Esselen M. Methyleugenol and selected oxidative metabolites affect DNA-Damage signalling pathways and induce apoptosis in human colon tumour HT29 cells. Food Chem Toxicol 2017; 108:267-275. [PMID: 28818686 DOI: 10.1016/j.fct.2017.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Previously the food carcinogen methyleugenol was found to be cytotoxic and genotoxic in multiple cell lines and in primary hepatocytes. In this study, the question addressed was whether methyleugenol and the selected oxidative metabolites, 1'-hydroxymethyleugenol, methyleugenol-2',3'-epoxide and 3'-oxomethylisoeugenol trigger a DNA damage response in the human colon carcinoma HT29 cell line. Most notably investigations by flow cytometry revealed that the metabolites induce an accumulation of HT29 cells in the G2 phase of the cell cycle. DNA damage response is characterised by a time-delayed phosphorylation of ATM (ataxia-telangiectasia, mutated)/ATR (ATM- and Rad3-related) kinases and checkpoint kinase 1 after 2 h of incubation, and the tumour suppressor protein p53 only after 24 h of incubation. The test compounds induced apoptotic cell death indicated by cleavage of caspase 3 and poly-(ADP-ribose)-polymerase after a prolonged incubation time up to 72 h. In addition, activation of ATM/ATR-signalling cascade might contribute to apoptosis induction to a certain extent. However, clarification of this relationship awaits experimental confirmation.
Collapse
Affiliation(s)
- Isabel Anna Maria Groh
- Institute of Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfälische Wilhelms University of Münster, Münster, Germany.
| |
Collapse
|
31
|
Tian J, Lin Y, Yu J. E2F8 confers cisplatin resistance to ER+ breast cancer cells via transcriptionally activating MASTL. Biomed Pharmacother 2017; 92:919-926. [DOI: 10.1016/j.biopha.2017.05.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/01/2022] Open
|
32
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
33
|
Alternative Chk1-independent S/M checkpoint in somatic cells that prevents premature mitotic entry. Med Oncol 2017; 34:70. [PMID: 28349497 DOI: 10.1007/s12032-017-0932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
Genomic instability is the hallmark of cancer. Checkpoint kinase-1 (Chk1) is required for cell cycle delay after DNA damage or blocked DNA replication. Chk1-depleted tumor cells undergo premature mitosis and apoptosis. Here we analyzed the depletion of Chk1 in normal somatic cells in the absence of DNA damage in order to investigate alternative cell cycle checkpoint mechanism(s). By means of adenoviruses, flow cytometry, immunofluorescence and Western blotting, Chk1-depleted mouse embryonic fibroblasts (MEFs) were investigated. Chk1-/- MEFs arrested at the S/G2 boundary of the cell cycle with decreased protein levels of many cell cycle key players. Cyclin B1 was predominantly cytoplasmic. Interestingly, overexpression of nuclear dominant Cyclin B1 leads to nuclear translocation and premature mitosis. Chk1-/- MEFs exhibited the absence of double-strand breaks, yet cells showed delayed DNA damage recovery with pan-nuclear immunostaining pattern of Histone H2AX. Activation of this checkpoint would elicit a senescent-like phenotype. Taken together, our elaborated data revealed the existence of an additional S/M checkpoint functioning via γH2AX signaling and cytoplasmic retention of Cyclin B1 in somatic cells.
Collapse
|
34
|
Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EWF. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets 2016; 17:164-77. [PMID: 25418858 PMCID: PMC5403963 DOI: 10.2174/1389450115666141122211549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/22/2022]
Abstract
FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied cellular response through regulating the expression of genes essential for DNA damage sensing, mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic option for improving the efficacy and selectivity of DNA damage agents, particularly in genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
35
|
Govindaraj V, Krishnagiri H, Chauhan MS, Rao AJ. BRCA-1 Gene Expression and Comparative Proteomic Profile of Primordial Follicles from Young and Adult Buffalo (Bubalus bubalis) Ovaries. Anim Biotechnol 2016; 28:94-103. [DOI: 10.1080/10495398.2016.1210613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - A. J. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
36
|
Ogino M, Ichimura M, Nakano N, Minami A, Kitagishi Y, Matsuda S. Roles of PTEN with DNA Repair in Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17060954. [PMID: 27314344 PMCID: PMC4926487 DOI: 10.3390/ijms17060954] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention.
Collapse
Affiliation(s)
- Mako Ogino
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Mayuko Ichimura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Noriko Nakano
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
37
|
Xue Y, Ma G, Zhang Z, Hua Q, Chu H, Tong N, Yuan L, Qin C, Yin C, Zhang Z, Wang M. A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer. Oncotarget 2016; 6:484-93. [PMID: 25514464 PMCID: PMC4381609 DOI: 10.18632/oncotarget.2861] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022] Open
Abstract
Antisense long noncoding RNAs (lncRNAs) play important roles in regulating the expression of coding genes in post-transcriptional level. However, detailed expression profile of lncRNAs and functions of antisense lncRNAs in bladder cancer remains unclear. To investigate regulation of lncRNAs in bladder cancer and demonstrate their functions, we performed lncRNAs microarray analysis in 3 paired bladder cancer tissues. Further molecular assays were conducted to determine the potential role of identified antisense lncRNA MDC1-AS. As a result, a series of lncRNAs were differentially expressed in bladder cancer tissues in microarray screen. In a larger size of samples validation, we found that the expression levels of MDC1-AS and MDC1 was down-regulated in bladder cancer. After over-expression of MDC1-AS, increased levels of MDC1 were observed in bladder cancer cells. We also found a remarkably inhibitory role of antisense lncRNA MDC1-AS on malignant cell behaviors in bladder cancer cells EJ and T24. Subsequently, knockdown of MDC1 revealed that suppressing role of MDC1-AS was attributed to up-regulation of MDC1. In summary, we have identified a novel antisense lncRNA MDC1-AS, which may participate in bladder cancer through up-regulation of its antisense tumor-suppressing gene MDC1. Further studies should be conducted to demonstrate detailed mechanism of our findings.
Collapse
Affiliation(s)
- Yao Xue
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Qiuhan Hua
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Mahajan K, Mahajan NP. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res 2015; 43:10588-601. [PMID: 26546517 PMCID: PMC4678820 DOI: 10.1093/nar/gkv1166] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Tumor Biology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Nupam P Mahajan
- Drug Discovery Department, Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
39
|
Wang L, Luong VQ, Giannini PJ, Peng A. Mastl kinase, a promising therapeutic target, promotes cancer recurrence. Oncotarget 2015; 5:11479-89. [PMID: 25373736 PMCID: PMC4294390 DOI: 10.18632/oncotarget.2565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022] Open
Abstract
Mastl kinase promotes mitotic progression and cell cycle reentry after DNA damage. We report here that Mastl is frequently upregulated in various types of cancer. This upregulation was correlated with cancer progression in breast and oral cancer, poor patient survival in breast cancer, and tumor recurrence in head and neck squamous cell carcinoma. We further investigated the role of Mastl in tumor resistance using cell lines derived from the initial and recurrent tumors of the same head and neck squamous cell carcinoma patients. Ectopic expression of Mastl in the initial tumor cells strongly promoted cell proliferation in the presence of cisplatin by attenuating DNA damage signaling and cell death. Mastl knockdown in recurrent tumor cells re-sensitized their response to cancer therapy in vitro and in vivo. Finally, Mastl targeting specifically potentiated cancer cells to cell death in chemotherapy while sparing normal cells. Thus, this study revealed that Mastl upregulation is involved in cancer progression and tumor recurrence after initial cancer therapy, and validated Mastl as a promising target to increase the therapeutic window.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Vivian Q Luong
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Peter J Giannini
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
40
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
41
|
hPso4/hPrp19: a critical component of DNA repair and DNA damage checkpoint complexes. Oncogene 2015; 35:2279-86. [PMID: 26364595 DOI: 10.1038/onc.2015.321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/15/2022]
Abstract
Genome integrity is vital to cellular homeostasis and its forfeiture is linked to deleterious consequences-cancer, immunodeficiency, genetic disorders and premature aging. The human ubiquitin ligase Pso4/Prp19 has emerged as a critical component of multiple DNA damage response (DDR) signaling networks. It not only senses DNA damage, binds double-stranded DNA in a sequence-independent manner, facilitates processing of damaged DNA, promotes DNA end joining, regulates replication protein A (RPA2) phosphorylation and ubiquitination at damaged DNA, but also regulates RNA splicing and mitotic spindle formation in its integral capacity as a scaffold for a multimeric core complex. Accordingly, by virtue of its regulatory and structural interactions with key proteins critical for genome integrity-DNA double-strand break (DSB) repair, DNA interstrand crosslink repair, repair of stalled replication forks and DNA end joining-it fills a unique niche in restoring genomic integrity after multiple types of DNA damage and thus has a vital role in maintaining chromatin integrity and cellular functions. These properties may underlie its ability to thwart replicative senescence and, not surprisingly, have been linked to the self-renewal and colony-forming ability of murine hematopoietic stem cells. This review highlights recent advances in hPso4 research that provides a fascinating glimpse into the pleiotropic activities of a ubiquitously expressed multifunctional E3 ubiquitin ligase.
Collapse
|
42
|
Strauss C, Kornowski M, Benvenisty A, Shahar A, Masury H, Ben-Porath I, Ravid T, Arbel-Eden A, Goldberg M. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. Oncotarget 2015; 5:9396-409. [PMID: 25238049 PMCID: PMC4253442 DOI: 10.18632/oncotarget.2414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genomic instability, a hallmark of cancer, is commonly caused by failures in the DNA damage response. Here we conducted a bioinformatical screen to reveal DNA damage response genes that are upregulated by estrogen and highly mutated in breast and ovarian cancers. This screen identified 53 estrogen-dependent cancer genes, some of which are novel. Notably, the screen retrieved 9 DNA helicases as well as 5 nucleases. DNA2, which functions as both a helicase and a nuclease and plays a role in DNA repair and replication, was retrieved in the screen. Mutations in DNA2, found in estrogen-dependent cancers, are clustered in the helicase and nuclease domains, suggesting activity impairment. Indeed, we show that mutations found in ovarian cancers impair DNA2 activity. Depletion of DNA2 in cells reduces their tumorogenicity in mice. In human, high expression of DNA2 correlates with poor survival of estrogen receptor-positive patients but not of estrogen receptor-negative patients. We also demonstrate that depletion of DNA2 in cells reduces proliferation, while addition of estrogen restores proliferation. These findings suggest that cells responding to estrogen will proliferate despite being impaired in DNA2 activity, potentially promoting genomic instability and triggering cancer development.
Collapse
Affiliation(s)
- Carmit Strauss
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Maya Kornowski
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avraham Benvenisty
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Amit Shahar
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Hadas Masury
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Tommer Ravid
- Department of Biochemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ayelet Arbel-Eden
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem, 91010, Israel
| | - Michal Goldberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
43
|
Inhibition of RAC1 GTPase sensitizes pancreatic cancer cells to γ-irradiation. Oncotarget 2015; 5:10251-70. [PMID: 25344910 PMCID: PMC4279370 DOI: 10.18632/oncotarget.2500] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy is a staple treatment for pancreatic cancer. However, owing to the intrinsic radioresistance of pancreatic cancer cells, radiation therapy often fails to increase survival of pancreatic cancer patients. Radiation impedes cancer cells by inducing DNA damage, which can activate cell cycle checkpoints. Normal cells possess both a G1 and G2 checkpoint. However, cancer cells are often defective in G1 checkpoint due to mutations/alterations in key regulators of this checkpoint. Accordingly, our results show that normal pancreatic ductal cells respond to ionizing radiation (IR) with activation of both checkpoints whereas pancreatic cancer cells respond to IR with G2/M arrest only. Overexpression/hyperactivation of Rac1 GTPase is detected in the majority of pancreatic cancers. Rac1 plays important roles in survival and Ras-mediated transformation. Here, we show that Rac1 also plays a critical role in the response of pancreatic cancer cells to IR. Inhibition of Rac1 using specific inhibitor and dominant negative Rac1 mutant not only abrogates IR-induced G2 checkpoint activation, but also increases radiosensitivity of pancreatic cancer cells through induction of apoptosis. These results implicate Rac1 signaling in the survival of pancreatic cancer cells following IR, raising the possibility that this pathway contributes to the intrinsic radioresistance of pancreatic cancer.
Collapse
|
44
|
Gan Y, Tan J, Yang J, Zhou Y, Dai Y, He L, Yao K, Tang Y. Knockdown of HMGN5 suppresses the viability and invasion of human urothelial bladder cancer 5637 cells in vitro and in vivo. Med Oncol 2015; 32:136. [PMID: 25796505 DOI: 10.1007/s12032-015-0594-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 01/02/2023]
Abstract
The high-mobility group nucleosome-binding domain 5 (HMGN5) is a new and typical member of HMGN protein family. Numerous studies confirmed that HMGN5 was highly expressed in several kinds of malignant tumors, but its role in cancer progression of urothelial bladder cancer (UBC) has not been fully clarified. This study aimed to further investigate the oncogenic role of HMGN5 in UBC 5637 cells employing in vitro and in vivo models and to explore the mechanism [corrected].RNA interference was used to down-regulate HMGN5 expression in 5637 cells by a shRNA expression lentiviral vector. Then cell viability, apoptosis and cell cycle distribution, invasion were detected by MTT assay, flow cytometry and transwell assay, respectively. Tumor growth was also evaluated in nude mice. As a result, successful transfection was confirmed using fluorescence microscopy and HMGN5 was efficiently inhibited. HMGN5 knockdown suppressed invasion, and induced G1/S cell cycle arrestbut not apoptosis and thus contributed to decreased cell viability in UBC 5637 cells [corrected]. Consistent with the cell cycle arrest, the protein expression levels of cyclin D1 were decreased. In vivo study further showed that HMGN5 knockdown affected the tumorigenesis of 5637 cells in nude mice. Western blot also demonstrated that the expression of E-cadherin was enhanced, while the expression of VEGF-C was decreased in 5637 cells depleted of HMGN5 [corrected].In conclusion, we provide both in vivo and in vitro evidence that HMGN5 contribute to the growth and invasion of UBC 5637 cell line and HMGN5 could be exploited as a target for therapy in UBC.
Collapse
Affiliation(s)
- Yu Gan
- Department of Urology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang L, Guo Q, Fisher LA, Liu D, Peng A. Regulation of polo-like kinase 1 by DNA damage and PP2A/B55α. Cell Cycle 2015; 14:157-66. [PMID: 25483054 PMCID: PMC4615057 DOI: 10.4161/15384101.2014.986392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022] Open
Abstract
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Qingyuan Guo
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Laura A Fisher
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Dongxu Liu
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Aimin Peng
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| |
Collapse
|
46
|
Wang B, Zhang L, Qiu F, Fang W, Deng J, Zhou Y, Lu J, Yang L. A Newfound association between MDC1 functional polymorphism and lung cancer risk in Chinese. PLoS One 2014; 9:e106794. [PMID: 25198518 PMCID: PMC4157800 DOI: 10.1371/journal.pone.0106794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/02/2014] [Indexed: 12/18/2022] Open
Abstract
Mediator of DNA damage checkpoint protein 1 (MDC1) plays an early and core role in Double-Strand Break Repair (DDR) and ataxia telangiectasia-mutated (ATM) mediated response to DNA double-strand breaks (DSBs), and thus involves the pathogenesis of several DNA damage-related diseases such as cancer. We hypothesized that the single nucleotide polymorphisms (SNPs) of MDC1 which have potencies on affecting MDC1 expression or function were associated with risk of lung cancer. In a two-stage case-control study, we tested the association between 5 putatively functional SNPs of MDC1 and lung cancer risk in a southern Chinese population, and validated the promising association in an eastern Chinese population. We found the SNP rs4713354A>C that is located in the 5′-untranslated region of MDC1 was significantly associated with lung cancer risk in both populations (P = 0.001), with an odds ratio as 1.33(95% confidence interval = 1.14–1.55) for the rs4713354C (CA+CC) genotypes compared to the rs4713354AA genotype. The correct sixth sentence is: The gene-based analysis rested with these SNPs suggested the MDC1 as a susceptible gene for lung cancer (P = 0.057) [corrected]. Moreover, by querying the gene expression database, we further found that the rs4713354C genotypes confer a significantly lower mRNA expression of MDC1 than the rs4713354AA genotype in 260 cases of lymphoblastoid cells (P = 0.002). Our data suggested that the SNP rs4713354A>C of MDC1 may be a functional genetic biomarker for susceptibility to lung cancer in Chinese.
Collapse
Affiliation(s)
- Bo Wang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Fang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jieqiong Deng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Yifeng Zhou
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
47
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|
48
|
Zhang D, Wang H, Sun M, Yang J, Zhang W, Han S, Xu B. Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis 2014; 35:1691-7. [PMID: 24451148 PMCID: PMC4123640 DOI: 10.1093/carcin/bgu022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/27/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Speckle-type POZ protein (SPOP) is an adaptor of the cullin 3-based ubiquitin ligase responsible for the degradation of oncoproteins frequently overexpressed in many tumor cells. Altered expression and somatic mutations of SPOP have been observed in various tumor types with chromosomal aberrations, indicating a role of SPOP in maintaining genome stability, although a detailed mechanism remains unclear. Here, we show that SPOP is a component of the DNA damage response (DDR). SPOP is recruited to DNA double-strand break sites and it forms nuclear foci after DNA damage. SPOP foci colocalize with γ-H2AX foci and are predominantly dependent on the activity of the ataxia-telangiectasia mutated (ATM) kinase. Furthermore, SPOP interacts with ATM in response to DNA damage. Finally, we demonstrate that knocking down of SPOP resulted in an impaired DDR and a hypersensitivity to ionizing irradiation. Together, we highlight a critical role of SPOP in the DDR.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University Medical College, Xi’An, Shaanxi 710061, China
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mianen Sun
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Suxia Han
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University Medical College, Xi’An, Shaanxi 710061, China
| | - Bo Xu
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Oncology, Southern Research Institute, Birmingham, AL 35205, USA and
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
49
|
A novel function of HER2/Neu in the activation of G2/M checkpoint in response to γ-irradiation. Oncogene 2014; 34:2215-26. [PMID: 24909175 DOI: 10.1038/onc.2014.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/21/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
In response to γ-irradiation (IR)-induced DNA damage, activation of cell cycle checkpoints results in cell cycle arrest, allowing time for DNA repair before cell cycle re-entry. Human cells contain G1 and G2 cell cycle checkpoints. While G1 checkpoint is defective in most cancer cells, commonly due to mutations and/or alterations in the key regulators of G1 checkpoint (for example, p53, cyclin D), G2 checkpoint is rarely impaired in cancer cells, which is important for cancer cell survival. G2 checkpoint activation involves activation of ataxia telangiectasia-mutated (ATM)/ATM- and rad3-related (ATR) signalings, which leads to the inhibition of Cdc2 kinase and subsequent G2/M cell cycle arrest. Previous studies from our laboratory show that G2 checkpoint activation following IR exposure of MCF-7 breast cancer cells is dependent on the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signaling. As HER receptor tyrosine kinases (RTKs), which have important roles in cell proliferation and survival, have been shown to activate ERK1/2 signaling in response to various stimuli, we investigated the role of HER RTKs in IR-induced G2/M checkpoint response in breast cancer cells. Results of the present studies indicate that IR exposure resulted in a striking increase in the phosphorylation of HER1, HER2, HER3 and HER4 in MCF-7 cells, indicative of activation of these proteins. Furthermore, specific inhibition of HER2 using an inhibitor, short hairpin RNA and dominant-negative mutant HER2 abolished IR-induced activation of ATM/ATR signaling, phosphorylation of Cdc2-Y15 and subsequent induction of G2/M arrest. Moreover, the inhibition of HER2 also abrogated IR-induced ERK1/2 phosphorylation. In contrast, inhibition of HER1 using specific inhibitors or decreasing expression of HER3 or HER4 using short hairpin RNAs did not block the induction of G2/M arrest following IR. These results suggest an important role of HER2 in the activation of G2/M checkpoint response following IR.
Collapse
|
50
|
Tane S, Kubota M, Okayama H, Ikenishi A, Yoshitome S, Iwamoto N, Satoh Y, Kusakabe A, Ogawa S, Kanai A, Molkentin JD, Nakamura K, Ohbayashi T, Takeuchi T. Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes. J Biol Chem 2014; 289:18033-44. [PMID: 24821722 DOI: 10.1074/jbc.m113.541953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.
Collapse
Affiliation(s)
- Shoji Tane
- From the School of Life Sciences, Faculty of Medicine
| | - Misae Kubota
- Mitsubishi Kagaku Institute of Life Sciences, Machida 194-8511, Japan, and
| | | | - Aiko Ikenishi
- From the School of Life Sciences, Faculty of Medicine
| | | | | | - Yukio Satoh
- From the School of Life Sciences, Faculty of Medicine
| | - Aoi Kusakabe
- Mitsubishi Kagaku Institute of Life Sciences, Machida 194-8511, Japan, and
| | - Satoko Ogawa
- Mitsubishi Kagaku Institute of Life Sciences, Machida 194-8511, Japan, and
| | - Ayumi Kanai
- From the School of Life Sciences, Faculty of Medicine
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Howard Hughes Medical Institute, Cincinnati, Ohio 45229
| | - Kazuomi Nakamura
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Takashi Takeuchi
- From the School of Life Sciences, Faculty of Medicine, Mitsubishi Kagaku Institute of Life Sciences, Machida 194-8511, Japan, and
| |
Collapse
|