1
|
Stooke-Vaughan GA, Kim S, Yen ST, Son K, Banavar SP, Giammona J, Kimelman D, Campàs O. The physical roles of different posterior tissues in zebrafish axis elongation. Nat Commun 2025; 16:1839. [PMID: 39984461 PMCID: PMC11845790 DOI: 10.1038/s41467-025-56334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Shaping embryonic tissues requires spatiotemporal changes in genetic and signaling activity as well as in tissue mechanics. Studies linking specific molecular perturbations to changes in the tissue physical state remain sparse. Here we study how specific genetic perturbations affecting different posterior tissues during zebrafish body axis elongation change their physical state, the resulting large-scale tissue flows, and posterior elongation. Using a custom analysis software to reveal spatiotemporal variations in tissue fluidity, we show that dorsal tissues are most fluid at the posterior end, rigidify anterior of this region, and become more fluid again yet further anteriorly. In the absence of notochord (noto mutants) or when the presomitic mesoderm is substantially reduced (tbx16 mutants), dorsal tissues elongate normally. Perturbations of posterior-directed morphogenetic flows in dorsal tissues (vangl2 mutants) strongly affect the speed of elongation, highlighting the essential role of dorsal cell flows in delivering the necessary material to elongate the axis.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kevin Son
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ, USA
| | - James Giammona
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Wopat S, Adhyapok P, Daga B, Crawford JM, Norman J, Bagwell J, Peskin B, Magre I, Fogerson SM, Levic DS, Di Talia S, Kiehart DP, Charbonneau P, Bagnat M. Notochord segmentation in zebrafish controlled by iterative mechanical signaling. Dev Cell 2024; 59:1860-1875.e5. [PMID: 38697108 PMCID: PMC11265980 DOI: 10.1016/j.devcel.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Priyom Adhyapok
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - James Norman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Brianna Peskin
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Indrasen Magre
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Physics, Duke University, Durham, NC 27708, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Sung CY, Kadiyala U, Blanchard O, Yourston L, Walker D, Li L, Fu J, Yang Q. Substrate Rigidity Modulates Segmentation Clock Dynamics in Isolated Presomitic Mesoderm Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601712. [PMID: 39005461 PMCID: PMC11244955 DOI: 10.1101/2024.07.02.601712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The segmentation clock, a genetic oscillator in the presomitic mesoderm (PSM), is known to be influenced by biochemical signals, yet its potential regulation by mechanical cues remains unclear. The complex PSM microenvironment has made it challenging to isolate the effects of mechanical perturbations on clock behavior. Here we investigated how mechanical stimuli affect clock oscillations by culturing zebrafish PSM cells on PDMS micropost arrays with tunable rigidities (0.6-1200 kPa). We observed an inverse sigmoidal relationship between surface rigidity and both the percentage of oscillating cells and the number of oscillation cycles, with a switching threshold between 3-6 kPa. The periods of oscillating cells showed a consistently broad distribution across rigidity changes. Moreover, these cells exhibited distinct biophysical properties, such as reduced motility, contractility, and sustained circularity. These findings highlight the crucial role of cell-substrate interactions in regulating segmentation clock behavior, providing insights into the mechanobiology of somitogenesis.
Collapse
Affiliation(s)
- Chun-Yen Sung
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Usha Kadiyala
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Owen Blanchard
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Liam Yourston
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Derek Walker
- Department of Physics, University of Michigan, Ann Arbor, MI 48109
| | - Linyuan Li
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Physics, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
4
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
5
|
Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG, Boschann F, Kornak U, Klopocki E, Özbudak EM, Vona B, Haaf T, Liedtke D. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024; 18:23. [PMID: 38448978 PMCID: PMC10916241 DOI: 10.1186/s40246-024-00593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND/OBJECTIVES Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Collapse
Affiliation(s)
- Asuman Koparir
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thalia Rose
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Lena Rappl
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Aboulfazl Rad
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nakul Narendran
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atefeh Hasanzadeh
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | | | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
6
|
Genuth MA, Kojima Y, Jülich D, Kiryu H, Holley SA. Automated time-lapse data segmentation reveals in vivo cell state dynamics. SCIENCE ADVANCES 2023; 9:eadf1814. [PMID: 37267354 PMCID: PMC10413672 DOI: 10.1126/sciadv.adf1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Embryonic development proceeds as a series of orderly cell state transitions built upon noisy molecular processes. We defined gene expression and cell motion states using single-cell RNA sequencing data and in vivo time-lapse cell tracking data of the zebrafish tailbud. We performed a parallel identification of these states using dimensional reduction methods and a change point detection algorithm. Both types of cell states were quantitatively mapped onto embryos, and we used the cell motion states to study the dynamics of biological state transitions over time. The time average pattern of cell motion states is reproducible among embryos. However, individual embryos exhibit transient deviations from the time average forming left-right asymmetries in collective cell motion. Thus, the reproducible pattern of cell states and bilateral symmetry arise from temporal averaging. In addition, collective cell behavior can be a source of asymmetry rather than a buffer against noisy individual cell behavior.
Collapse
Affiliation(s)
- Miriam A. Genuth
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yasuhiro Kojima
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya 4668550, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Scott A. Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Emig AA, Williams MLK. Gastrulation morphogenesis in synthetic systems. Semin Cell Dev Biol 2023; 141:3-13. [PMID: 35817656 PMCID: PMC9825685 DOI: 10.1016/j.semcdb.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent advances in pluripotent stem cell culture allow researchers to generate not only most embryonic cell types, but also morphologies of many embryonic structures, entirely in vitro. This recreation of embryonic form from naïve cells, known as synthetic morphogenesis, has important implications for both developmental biology and regenerative medicine. However, the capacity of stem cell-based models to recapitulate the morphogenetic cell behaviors that shape natural embryos remains unclear. In this review, we explore several examples of synthetic morphogenesis, with a focus on models of gastrulation and surrounding stages. By varying cell types, source species, and culture conditions, researchers have recreated aspects of primitive streak formation, emergence and elongation of the primary embryonic axis, neural tube closure, and more. Here, we describe cell behaviors within in vitro/ex vivo systems that mimic in vivo morphogenesis and highlight opportunities for more complete models of early development.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Margot L K Williams
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
8
|
Oikonomou P, Cirne HC, Nerurkar NL. A chemo-mechanical model of endoderm movements driving elongation of the amniote hindgut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541363. [PMID: 37292966 PMCID: PMC10245718 DOI: 10.1101/2023.05.18.541363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While mechanical and biochemical descriptions of development are each essential, integration of upstream morphogenic cues with downstream tissue mechanics remains understudied in many contexts during vertebrate morphogenesis. A posterior gradient of Fibroblast Growth Factor (FGF) ligands generates a contractile force gradient in the definitive endoderm, driving collective cell movements to form the hindgut. Here, we developed a two-dimensional chemo-mechanical model to investigate how mechanical properties of the endoderm and transport properties of FGF coordinately regulate this process. We began by formulating a 2-D reaction-diffusion-advection model that describes the formation of an FGF protein gradient due to posterior displacement of cells transcribing unstable Fgf8 mRNA during axis elongation, coupled with translation, diffusion, and degradation of FGF protein. This was used together with experimental measurements of FGF activity in the chick endoderm to inform a continuum model of definitive endoderm as an active viscous fluid that generates contractile stresses in proportion to FGF concentration. The model replicated key aspects of hindgut morphogenesis, confirms that heterogeneous - but isotropic - contraction is sufficient to generate large anisotropic cell movements, and provides new insight into how chemo-mechanical coupling across the mesoderm and endoderm coordinates hindgut elongation with outgrowth of the tailbud.
Collapse
Affiliation(s)
| | - Helena C. Cirne
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
9
|
Wopat S, Adhyapok P, Daga B, Crawford JM, Peskin B, Norman J, Bagwell J, Fogerson SM, Di Talia S, Kiehart DP, Charbonneau P, Bagnat M. Axial segmentation by iterative mechanical signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534101. [PMID: 37034817 PMCID: PMC10081202 DOI: 10.1101/2023.03.27.534101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In bony fishes, formation of the vertebral column, or spine, is guided by a metameric blueprint established in the epithelial sheath of the notochord. Generation of the notochord template begins days after somitogenesis and even occurs in the absence of somite segmentation. However, patterning defects in the somites lead to imprecise notochord segmentation, suggesting these processes are linked. Here, we reveal that spatial coordination between the notochord and the axial musculature is necessary to ensure segmentation of the zebrafish spine both in time and space. We find that the connective tissues that anchor the axial skeletal musculature, known as the myosepta in zebrafish, transmit spatial patterning cues necessary to initiate notochord segment formation, a critical pre-patterning step in spine morphogenesis. When an irregular pattern of muscle segments and myosepta interact with the notochord sheath, segments form non-sequentially, initiate at atypical locations, and eventually display altered morphology later in development. We determine that locations of myoseptum-notochord connections are hubs for mechanical signal transmission, which are characterized by localized sites of deformation of the extracellular matrix (ECM) layer encasing the notochord. The notochord sheath responds to the external mechanical changes by locally augmenting focal adhesion machinery to define the initiation site for segmentation. Using a coarse-grained mathematical model that captures the spatial patterns of myoseptum-notochord interactions, we find that a fixed-length scale of external cues is critical for driving sequential segment patterning in the notochord. Together, this work identifies a robust segmentation mechanism that hinges upon mechanical coupling of adjacent tissues to control patterning dynamics.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Present address: Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Authors contributed equally to this work
| | - Priyom Adhyapok
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Authors contributed equally to this work
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Present address: Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Authors contributed equally to this work
| | - Janice M. Crawford
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Brianna Peskin
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - James Norman
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Daniel P. Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
- Lead contact
| |
Collapse
|
10
|
Mongera A, Pochitaloff M, Gustafson HJ, Stooke-Vaughan GA, Rowghanian P, Kim S, Campàs O. Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish presomitic mesoderm differentiation. NATURE MATERIALS 2023; 22:135-143. [PMID: 36577855 PMCID: PMC9812792 DOI: 10.1038/s41563-022-01433-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/03/2022] [Indexed: 05/19/2023]
Abstract
Tissue morphogenesis, homoeostasis and repair require cells to constantly monitor their three-dimensional microenvironment and adapt their behaviours in response to local biochemical and mechanical cues. Yet the mechanical parameters of the cellular microenvironment probed by cells in vivo remain unclear. Here, we report the mechanics of the cellular microenvironment that cells probe in vivo and in situ during zebrafish presomitic mesoderm differentiation. By quantifying both endogenous cell-generated strains and tissue mechanics, we show that individual cells probe the stiffness associated with deformations of the supracellular, foam-like tissue architecture. Stress relaxation leads to a perceived microenvironment stiffness that decreases over time, with cells probing the softest regime. We find that most mechanical parameters, including those probed by cells, vary along the anteroposterior axis as mesodermal progenitors differentiate. These findings expand our understanding of in vivo mechanosensation and might aid the design of advanced scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Alessandro Mongera
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Department of Pathology, Brigham and Women's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marie Pochitaloff
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Hannah J Gustafson
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | | | - Payam Rowghanian
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Center for Systems Biology Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
Paulissen E, Palmisano NJ, Waxman J, Martin BL. Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis. eLife 2022; 11:74821. [PMID: 35137687 PMCID: PMC8863375 DOI: 10.7554/elife.74821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Angioblasts that form the major axial blood vessels of the dorsal aorta and cardinal vein migrate toward the embryonic midline from distant lateral positions. Little is known about what controls the precise timing of angioblast migration and their final destination at the midline. Using zebrafish, we found that midline angioblast migration requires neighboring tissue rearrangements generated by somite morphogenesis. The somitic shape changes cause the adjacent notochord to separate from the underlying endoderm, creating a ventral midline cavity that provides a physical space for the angioblasts to migrate into. The anterior to posterior progression of midline angioblast migration is facilitated by retinoic acid-induced anterior to posterior somite maturation and the subsequent progressive opening of the ventral midline cavity. Our work demonstrates a critical role for somite morphogenesis in organizing surrounding tissues to facilitate notochord positioning and angioblast migration, which is ultimately responsible for creating a functional cardiovascular system.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Joshua Waxman
- Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Benjamin Louis Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
13
|
Sermeus Y, Vangheel J, Geris L, Smeets B, Tylzanowski P. Mechanical Regulation of Limb Bud Formation. Cells 2022; 11:420. [PMID: 35159230 PMCID: PMC8834596 DOI: 10.3390/cells11030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/28/2022] Open
Abstract
Early limb bud development has been of considerable interest for the study of embryological development and especially morphogenesis. The focus has long been on biochemical signalling and less on cell biomechanics and mechanobiology. However, their importance cannot be understated since tissue shape changes are ultimately controlled by active forces and bulk tissue rheological properties that in turn depend on cell-cell interactions as well as extracellular matrix composition. Moreover, the feedback between gene regulation and the biomechanical environment is still poorly understood. In recent years, novel experimental techniques and computational models have reinvigorated research on this biomechanical and mechanobiological side of embryological development. In this review, we consider three stages of early limb development, namely: outgrowth, elongation, and condensation. For each of these stages, we summarize basic biological regulation and examine the role of cellular and tissue mechanics in the morphogenetic process.
Collapse
Affiliation(s)
- Yvenn Sermeus
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Jef Vangheel
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
- GIGA In Silico Medicine, Université de Liège, 4000 Liège, Belgium
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Smeets
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Przemko Tylzanowski
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Ge Y, Ren F, Chen L, Hu D, Wang X, Cui Y, Suo Y, Zhang H, He J, Yin Z, Ning H. Bisphenol A exposure induces apoptosis and impairs early embryonic development in Xenopus laevis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116901. [PMID: 33773307 DOI: 10.1016/j.envpol.2021.116901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical that is largely produced and used in the plastics industry, causes environmental pollution and is absorbed by humans through consumption of food and liquids in polycarbonate containers. BPA exerts developmental and genetic toxicities to embryos and offsprings, but the embryotoxicity mechanism of this chemical is unclear. This study aimed to explore the toxic effect of BPA on embryonic development and elucidate its toxicity mechanism. Embryos of Xenopus laevis as a model were treated with different concentrations (0.1, 1, 10, and 20 μM) of BPA at the two-cell stage to investigate the developmental toxicity of BPA. Embryonic development and behaviors were monitored 24 h-96 h of BPA exposure. BPA concentrations greater than 1 μM exerted significant teratogenic effects on the Xenopus embryos, which showed short tail axis, miscoiled guts, and bent notochord as the main malformations. The 20 μM BPA-treated embryos were seriously damaged in all aspects and exhibited deformity, impaired behavioral ability, and tissue damage. The DNA integrity and apoptosis of the Xenopus embryos were also investigated. Exposure to BPA concentrations higher than 0.1 μM significantly induced DNA damage (p < 0.05). The 10 and 20 μM BPA-treated embryos exhibited higher levels of cleaved caspase-3 protein than the control. The ratios of bax/bcl-2 mRNA were significantly higher in the 10 μM and 20 μM-treated embryos than the ratio in the control group. Overall, data indicated that BPA can delay the early development, induce DNA damage and apoptosis, and eventually cause multiple malformations in Xenopus embryos.
Collapse
Affiliation(s)
- Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xinrui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yunli Cui
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yu Suo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hongli Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Junping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
15
|
Aparisi Gómez MP, Watkin S, Perry D, Simoni P, Trisolino G, Bazzocchi A. Anatomical Considerations of Embryology and Development of the Musculoskeletal System: Basic Notions for Musculoskeletal Radiologists. Semin Musculoskelet Radiol 2021; 25:3-21. [PMID: 34020465 DOI: 10.1055/s-0041-1723005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The musculoskeletal (MSK) system begins to form in the third week of intrauterine development. Multiple genes are involved in the complex different processes to form the skeleton, muscles and joints. The embryonic period, from the third to the eighth week of development, is critical for normal development and therefore the time when most structural defects are induced. Many of these defects have a genetic origin, but environmental factors may also play a very important role. This review summarizes the embryology of the different components of the MSK system and their configuration as an organ-system, analyzes the clinical implications resulting from failures in the process of organogenesis, and describes the first approach to diagnosis of skeletal abnormalities using prenatal ultrasound.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, National Women's Ultrasound, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Sheryl Watkin
- Department of Radiology, National Women's Ultrasound, Auckland City Hospital, Auckland, New Zealand
| | - David Perry
- Department of Radiology, National Women's Ultrasound, Auckland City Hospital, Auckland, New Zealand.,Department of Pediatric Radiology, Starship Children's Hospital, Auckland City Hospital, Auckland, New Zealand
| | - Paolo Simoni
- Diagnostic Imaging Department, Université Libre de Bruxelles, "Reine Fabiola" Children's University Hospital, Bruxelles, Belgium
| | - Giovanni Trisolino
- Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Banavar SP, Carn EK, Rowghanian P, Stooke-Vaughan G, Kim S, Campàs O. Mechanical control of tissue shape and morphogenetic flows during vertebrate body axis elongation. Sci Rep 2021; 11:8591. [PMID: 33883563 PMCID: PMC8060277 DOI: 10.1038/s41598-021-87672-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Shaping embryonic tissues into their functional morphologies requires cells to control the physical state of the tissue in space and time. While regional variations in cellular forces or cell proliferation have been typically assumed to be the main physical factors controlling tissue morphogenesis, recent experiments have revealed that spatial variations in the tissue physical (fluid/solid) state play a key role in shaping embryonic tissues. Here we theoretically study how the regional control of fluid and solid tissue states guides morphogenetic flows to shape the extending vertebrate body axis. Our results show that both the existence of a fluid-to-solid tissue transition along the anteroposterior axis and the tissue surface tension determine the shape of the tissue and its ability to elongate unidirectionally, with large tissue tensions preventing unidirectional elongation and promoting blob-like tissue expansions. We predict both the tissue morphogenetic flows and stresses that enable unidirectional axis elongation. Our results show the existence of a sharp transition in the structure of morphogenetic flows, from a flow with no vortices to a flow with two counter-rotating vortices, caused by a transition in the number and location of topological defects in the flow field. Finally, comparing the theoretical predictions to quantitative measurements of both tissue flows and shape during zebrafish body axis elongation, we show that the observed morphogenetic events can be explained by the existence of a fluid-to-solid tissue transition along the anteroposterior axis. These results highlight the role of spatiotemporally-controlled fluid-to-solid transitions in the tissue state as a physical mechanism of embryonic morphogenesis.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA
- Stanford University, Stanford, CA, USA
| | - Emmet K Carn
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Payam Rowghanian
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Georgina Stooke-Vaughan
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- California NanoSystems Institute, University of California, Santa Barbara, CA, 93106, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.
- Center for Bioengineering, University of California, Santa Barbara, CA, 93106, USA.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
17
|
Muncie JM, Ayad NME, Lakins JN, Xue X, Fu J, Weaver VM. Mechanical Tension Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human Embryonic Stem Cells. Dev Cell 2020; 55:679-694.e11. [PMID: 33207224 PMCID: PMC7755684 DOI: 10.1016/j.devcel.2020.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Embryogenesis is directed by morphogens that induce differentiation within a defined tissue geometry. Tissue organization is mediated by cell-cell and cell-extracellular matrix (ECM) adhesions and is modulated by cell tension and tissue-level forces. Whether cell tension regulates development by modifying morphogen signaling is less clear. Human embryonic stem cells (hESCs) exhibit an intrinsic capacity for self-organization, which motivates their use as a tractable model of early human embryogenesis. We engineered patterned substrates that recapitulate the biophysical properties of the early embryo and mediate the self-organization of "gastrulation-like" nodes in cultured hESCs. Tissue geometries that generated local nodes of high cell-adhesion tension directed the spatial patterning of the BMP4-dependent "gastrulation-like" phenotype by enhancing phosphorylation and junctional release of β-catenin to promote Wnt signaling and mesoderm specification. Furthermore, direct force application via mechanical stretching promoted BMP-dependent mesoderm specification, confirming that tissue-level forces can directly regulate cell fate specification in early human development.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadia M E Ayad
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johnathon N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Shaker MR, Lee JH, Park SH, Kim JY, Son GH, Son JW, Park BH, Rhyu IJ, Kim H, Sun W. Anteroposterior Wnt-RA Gradient Defines Adhesion and Migration Properties of Neural Progenitors in Developing Spinal Cord. Stem Cell Reports 2020; 15:898-911. [PMID: 32976767 PMCID: PMC7562945 DOI: 10.1016/j.stemcr.2020.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
Mammalian embryos exhibit a transition from head morphogenesis to trunk elongation to meet the demand of axial elongation. The caudal neural tube (NT) is formed with neural progenitors (NPCs) derived from neuromesodermal progenitors localized at the tail tip. However, the molecular and cellular basis of elongating NT morphogenesis is yet elusive. Here, we provide evidence that caudal NPCs exhibit strong adhesion affinity that is gradually decreased along the anteroposterior (AP) axis in mouse embryonic spinal cord and human cellular models. Strong cell-cell adhesion causes collective migration, allowing AP alignment of NPCs depending on their birthdate. We further validated that this axial adhesion gradient is associated with the extracellular matrix and is under the control of graded Wnt signaling emanating from tail buds and antagonistic retinoic acid (RA) signaling. These results suggest that progressive reduction of NPC adhesion along the AP axis is under the control of Wnt-RA molecular networks, which is essential for a proper elongation of the spinal cord.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea
| | - Si-Hyung Park
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea
| | - Joo Yeon Kim
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea
| | - Gi Hoon Son
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841, Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Im Joo Rhyu
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hyun Kim
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program, Korea University College of Medicine, Seoul, 02841, Korea.
| |
Collapse
|
19
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|
20
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
21
|
Guillon E, Das D, Jülich D, Hassan AR, Geller H, Holley S. Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development. eLife 2020; 9:48964. [PMID: 32228864 PMCID: PMC7108867 DOI: 10.7554/elife.48964] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
An extracellular matrix of Fibronectin adheres the neural tube to the two flanking columns of paraxial mesoderm and is required for normal vertebrate development. Here, we find that the bilaterally symmetric interfaces between the zebrafish neural tube and paraxial mesoderm function as optimally engineered adhesive lap joints with rounded edges, graded Fibronectin ‘adhesive’ and an arced adhesive spew filet. Fibronectin is a ‘smart adhesive’ that remodels to the lateral edges of the neural tube-paraxial mesoderm interfaces where shear stress is highest. Fibronectin remodeling is mechanically responsive to contralateral variation morphogenesis, and Fibronectin-mediated inter-tissue adhesion is required for bilaterally symmetric morphogenesis of the paraxial mesoderm. Strikingly, however, perturbation of the Fibronectin matrix rescues the neural tube convergence defect of cadherin 2 mutants. Therefore, Fibronectin-mediated inter-tissue adhesion dynamically coordinates bilaterally symmetric morphogenesis of the vertebrate trunk but predisposes the neural tube to convergence defects that lead to spina bifida. In embryos, the spinal cord starts out as a flat sheet of cells that curls up to form a closed cylinder called the neural tube. The folding tube is attached to the surrounding tissues through an extracellular matrix of proteins and sugars. Overlapping strands of a protein from the extracellular matrix called Fibronectin connect the neural tube to adjacent tissues, like a kind of biological glue. However, it remained unclear what effect this attachment had on the embryonic development of the spinal cord. Connecting two overlapping objects with glue to form what is known as an ‘adhesive lap joint’ is common in fields such as woodworking and aeronautical engineering. The glue in these joints comes under shearing stress whenever the two objects it connects try to pull apart. But, thanks to work in engineering, it is possible to predict how different joints will perform under tension. Now, Guillon et al. have deployed these engineering principles to shed light on neural tube development. Using zebrafish embryos and computational models, Guillon et al. investigated what happens when the strength of the adhesive lap joints in the developing spine changes. This revealed that Fibronectin works like a smart adhesive: rather than staying in one place like a conventional glue, it moves around. As the neural tube closes, cells remodel the Fibronectin, concentrating it on the areas under the highest stress. This seemed to both help and hinder neural tube development. On the one hand, by anchoring the tube equally to the left and right sides of the embryo, the Fibronectin glue helped the spine to develop symmetrically. On the other hand, the strength of the adhesive lap joints made it harder for the neural tube to curl up and close. If the neural tube fails to close properly, it can lead to birth defects like spina bifida. One of the best-known causes of these birth defects in humans is a lack of a vitamin known as folic acid. Cell culture experiments suggest that this might have something to do with the mechanics of the cells during development. It may be that faulty neural tubes could close more easily if they were able to unglue themselves from the surrounding tissues. Further use of engineering principles could shed more light on this idea in the future.
Collapse
Affiliation(s)
- Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Abdel-Rahman Hassan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Hannah Geller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Scott Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
22
|
Mongera A, Michaut A, Guillot C, Xiong F, Pourquié O. Mechanics of Anteroposterior Axis Formation in Vertebrates. Annu Rev Cell Dev Biol 2019; 35:259-283. [PMID: 31412208 PMCID: PMC7394480 DOI: 10.1146/annurev-cellbio-100818-125436] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials-such as cells and extracellular matrix-and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis.
Collapse
Affiliation(s)
- Alessandro Mongera
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Charlène Guillot
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
23
|
Naidich TP, Schefflein J, Cedillo MA, Deutsch JP, Murthy S, Fowkes M. The Distal Spine. Neuroimaging Clin N Am 2019; 29:385-409. [DOI: 10.1016/j.nic.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Organization of Embryonic Morphogenesis via Mechanical Information. Dev Cell 2019; 49:829-839.e5. [PMID: 31178400 DOI: 10.1016/j.devcel.2019.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
Embryonic organizers establish gradients of diffusible signaling molecules to pattern the surrounding cells. Here, we elucidate an additional mechanism of embryonic organizers that is a secondary consequence of morphogen signaling. Using pharmacological and localized transgenic perturbations, 4D imaging of the zebrafish embryo, systematic analysis of cell motion, and computational modeling, we find that the vertebrate tail organizer orchestrates morphogenesis over distances beyond the range of morphogen signaling. The organizer regulates the rate and coherence of cell motion in the elongating embryo using mechanical information that is transmitted via relay between neighboring cells. This mechanism is similar to a pressure front in granular media and other jammed systems, but in the embryo the mechanical information emerges from self-propelled cell movement and not force transfer between cells. The propagation likely relies upon local biochemical signaling that affects cell contractility, cell adhesion, and/or cell polarity but is independent of transcription and translation.
Collapse
|
25
|
Wang F, Zhang C, Sinkemani A, Shi R, Xie ZY, Chen L, Mao L, Wu XT. A histocytological and radiological overview of the natural history of intervertebral disk: from embryonic formation to age-related degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:633-648. [PMID: 30715648 DOI: 10.1007/s00586-019-05903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To elucidate the natural history of intervertebral disk (IVD) and characterize its embryonic beginnings and age-related degeneration. METHODS Coronal sections of embryonic (E13.5-neonatal) and postnatal (4-60-week-old) Sprague-Dawley rat IVD were stained by a series of histological stainings (hematoxylin and eosin, Alcian blue, Picrosirius red, Masson, Periodic acid-Schiff). Growth kinetics within embryonic IVD were evaluated by immunohistochemical staining of Ki67 and proliferating cell nuclear antigen. Postnatal maturation and degeneration of IVD were visualized on radiology by X-ray, CT, and MR imaging. RESULTS During the formation of rat IVD, inner annulus fibrosus (AF) and cartilaginous endplate (CEP) shared similar cell density, extracellular matrix, and potential of growth kinetics; notochord provided increased and enlarged cytoplasmic vacuoles to generate nucleus pulposus (NP), part of which was retained within CEP. Postnatally, vacuolated notochord cells were reduced by devacuolation, while chondrocytic NP cells increased; cartilaginous layers of CEP were narrowed by vertebrae growth and secondary ossification; fibrotic portion of AF decreased as cartilaginous matrix accumulated and infiltrated outward. In aged and degenerated IVD, large longitudinal fissures were detected near the boundaries between inner and outer AF, whereas both reduced cellularity and accumulated cell clusters were evident within the dehydrated NP; only part of these histocytological changes could be reported on radiology. CONCLUSIONS By showing that the natural history of IVD is orchestrated by a dynamic histocytological regulation, our study may facilitate better understanding of the developmental defects, cellular heterogeneity, age-related degenerative mechanisms, and biological regeneration of IVD. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China. .,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
26
|
Kimelman D, Smith NL, Lai JKH, Stainier DYR. Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1. eLife 2017; 6:e31065. [PMID: 29283341 PMCID: PMC5773182 DOI: 10.7554/elife.31065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the presumptive epidermis and notochord, and play a critical and unexpected role in posterior body extension by regulating Fibronectin assembly underneath the presumptive epidermis and surrounding the notochord. We further find that Yap1 and Wwtr1, also via Fibronectin, have an essential role in the epidermal morphogenesis necessary to form the initial dorsal and ventral fins, a process previously thought to involve bending of an epithelial sheet, but which we now show involves concerted active cell movement. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo.
Collapse
Affiliation(s)
- David Kimelman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Natalie L Smith
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Jason Kuan Han Lai
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier YR Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|
27
|
Das D, Chatti V, Emonet T, Holley SA. Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry. Dev Cell 2017; 42:170-180.e5. [PMID: 28743003 DOI: 10.1016/j.devcel.2017.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Abstract
The biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion. We find that increasing order in cell motion causes a phase transition from symmetric to asymmetric body elongation. In silico and in vivo, overly ordered cell motion converts normal anisotropic fluxes into stable vortices near the posterior tail bud, contributing to asymmetric cell sorting. Thus, disorder is a physical mechanism that ensures the bilateral symmetry of the spinal column. These physical properties of the tissue connect across scales such that patterned disorder at the cellular level leads to the emergence of organism-level order.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Veena Chatti
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Serwane F, Mongera A, Rowghanian P, Kealhofer DA, Lucio AA, Hockenbery ZM, Campàs O. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat Methods 2017; 14:181-186. [PMID: 27918540 PMCID: PMC5524219 DOI: 10.1038/nmeth.4101] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/23/2016] [Indexed: 12/13/2022]
Abstract
The mechanical properties of the cellular microenvironment and their spatiotemporal variations are thought to play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has yet been performed. Here we introduce a technique that employs biocompatible, magnetically responsive ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just 1 min) and displays decreasing stiffness and increasing fluidity toward its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer.
Collapse
Affiliation(s)
- Friedhelm Serwane
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
| | - Alessandro Mongera
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
| | - Payam Rowghanian
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
| | - David A. Kealhofer
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Adam A. Lucio
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
| | - Zachary M. Hockenbery
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- California NanoSystems Institute, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
29
|
Segade F, Cota C, Famiglietti A, Cha A, Davidson B. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo 2016; 7:21. [PMID: 27583126 PMCID: PMC5006582 DOI: 10.1186/s13227-016-0056-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genomic analysis has upended chordate phylogeny, placing the tunicates as the sister group to the vertebrates. This taxonomic rearrangement raises questions about the emergence of a tunicate/vertebrate ancestor. RESULTS Characterization of developmental genes uniquely shared by tunicates and vertebrates is one promising approach for deciphering developmental shifts underlying acquisition of novel, ancestral traits. The matrix glycoprotein Fibronectin (FN) has long been considered a vertebrate-specific gene, playing a major instructive role in vertebrate embryonic development. However, the recent computational prediction of an orthologous "vertebrate-like" Fn gene in the genome of a tunicate, Ciona savignyi, challenges this viewpoint suggesting that Fn may have arisen in the shared tunicate/vertebrate ancestor. Here we verify the presence of a tunicate Fn ortholog. Transgenic reporter analysis was used to characterize a Ciona Fn enhancer driving expression in the notochord. Targeted knockdown in the notochord lineage indicates that FN is required for proper convergent extension. CONCLUSIONS These findings suggest that acquisition of Fn was associated with altered notochord morphogenesis in the vertebrate/tunicate ancestor.
Collapse
Affiliation(s)
- Fernando Segade
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Christina Cota
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Amber Famiglietti
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna Cha
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| |
Collapse
|
30
|
Warren KM, Islam MM, LeDuc PR, Steward R. 2D and 3D Mechanobiology in Human and Nonhuman Systems. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21869-21882. [PMID: 27214883 DOI: 10.1021/acsami.5b12064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.
Collapse
Affiliation(s)
- Kristin M Warren
- Departments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Md Mydul Islam
- Department of Mechanical and Aerospace Engineering and Burnett School of Biomedical Sciences, University of Central Florida , Orlando, Florida 32827, United States
| | - Philip R LeDuc
- Departments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Robert Steward
- Department of Mechanical and Aerospace Engineering and Burnett School of Biomedical Sciences, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
31
|
Campàs O. A toolbox to explore the mechanics of living embryonic tissues. Semin Cell Dev Biol 2016; 55:119-30. [PMID: 27061360 PMCID: PMC4903887 DOI: 10.1016/j.semcdb.2016.03.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable.
Collapse
Affiliation(s)
- Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; California Nanosystems Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
32
|
Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Bénazéraf B, Little CD. Extracellular matrix motion and early morphogenesis. Development 2016; 143:2056-65. [PMID: 27302396 PMCID: PMC4920166 DOI: 10.1242/dev.127886] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher M Smith
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA Department of Biological Physics, Eotvos University, Budapest 1117, Hungary
| | - Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
33
|
A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis. Curr Biol 2016; 26:542-9. [PMID: 26853361 DOI: 10.1016/j.cub.2015.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023]
Abstract
Differential cadherin (Cdh) expression is a classical mechanism for in vitro cell sorting. Studies have explored the roles of differential Cdh levels in cell aggregates and during vertebrate gastrulation, but the role of differential Cdh activity in forming in vivo tissue boundaries and boundary extracellular matrix (ECM) is unclear. Here, we examine the interactions between cell-cell and cell-ECM adhesion during somitogenesis, the formation of the segmented embryonic precursors of the vertebral column and musculature. We identify a sawtooth pattern of stable Cdh2 adhesions in which there is a posterior-to-anterior gradient of stable Cdh2 within each somite, while there is a step-like drop in stable Cdh2 along the somite boundary. Moreover, we find that the posterior somite boundary cells with high levels of stable Cdh2 have the most columnar morphology. Cdh2 is required for maximal cell aspect ratio and thus full epithelialization of the posterior somite. Loss-of-function analysis also indicates that Cdh2 acts with the fibronectin (FN) receptor integrin α5 (Itgα5) to promote somite boundary formation. Using genetic mosaics, we demonstrate that differential Cdh2 levels are sufficient to induce boundary formation, Itgα5 activation, and FN matrix assembly in the paraxial mesoderm. Elevated cytoskeletal contractility is sufficient to replace differential Cdh2 levels in genetic mosaics, suggesting that Cdh2 promotes ECM assembly by increasing cytoskeletal and tissue stiffness along the posterior somite boundary. Throughout somitogenesis, Cdh2 promotes ECM assembly along tissue boundaries and inhibits ECM assembly in the tissue mesenchyme.
Collapse
|
34
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
35
|
Martin BL. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 2016; 49:59-67. [DOI: 10.1016/j.semcdb.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
|
36
|
Turlier H, Maître JL. Mechanics of tissue compaction. Semin Cell Dev Biol 2015; 47-48:110-7. [PMID: 26256955 PMCID: PMC5484403 DOI: 10.1016/j.semcdb.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.
Collapse
Affiliation(s)
- Hervé Turlier
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jean-Léon Maître
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|