1
|
Boone PM, Buenaventura T, King JWD, Merkenschlager M. X-linked competition - implications for human development and disease. Nat Rev Genet 2025:10.1038/s41576-025-00840-3. [PMID: 40355603 DOI: 10.1038/s41576-025-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner - a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.
Collapse
Affiliation(s)
- Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teresa Buenaventura
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James W D King
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025; 60:1217-1233.e7. [PMID: 39742660 PMCID: PMC12014375 DOI: 10.1016/j.devcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells. Additionally, PRR12 co-localizes with NIPBL to sites of DNA damage in a NIPBL and cohesin-dependent manner. We find that the requirement for PRR12 differs across cell lines, with human HeLa cells exhibiting reduced sensitivity to PRR12 loss compared with mouse NIH-3T3 cells, indicating context-specific roles. Together, our work identifies PRR12 as a regulator of cohesin and provides insight into how genome integrity is maintained across diverse cellular contexts.
Collapse
Affiliation(s)
| | - Eric M Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Selivanovskiy AV, Molodova MN, Khrameeva EE, Ulianov SV, Razin SV. Liquid condensates: a new barrier to loop extrusion? Cell Mol Life Sci 2025; 82:80. [PMID: 39976773 PMCID: PMC11842697 DOI: 10.1007/s00018-024-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025]
Abstract
Liquid-liquid phase separation (LLPS), driven by dynamic, low-affinity multivalent interactions of proteins and RNA, results in the formation of macromolecular condensates on chromatin. These structures are likely to provide high local concentrations of effector factors responsible for various processes including transcriptional regulation and DNA repair. In particular, enhancers, super-enhancers, and promoters serve as platforms for condensate assembly. In the current paradigm, enhancer-promoter (EP) interaction could be interpreted as a result of enhancer- and promoter-based condensate contact/fusion. There is increasing evidence that the spatial juxtaposition of enhancers and promoters could be provided by loop extrusion (LE) by SMC complexes. Here, we propose that condensates may act as barriers to LE, thereby contributing to various nuclear processes including spatial contacts between regulatory genomic elements.
Collapse
Affiliation(s)
- Arseniy V Selivanovskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maria N Molodova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
4
|
Zhang K, Nie Q, Li M, Chen X, Zhong L, Dai T, Guo X, Zhao H, Lau TCK, Wang H, Chen SB, Kwok CK. RNA G-quadruplex structure-based PROTACs for targeted DHX36 protein degradation and gene activity modulation in mammalian cells. Nucleic Acids Res 2025; 53:gkaf039. [PMID: 39883012 PMCID: PMC11780864 DOI: 10.1093/nar/gkaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development. Generating innovative tools to disrupt rG4-G4BP interactions will provide a unique opportunity to explore new biological mechanisms and potentially treat related diseases. Here, we have rationally designed and developed a series of rG4-based proteolytic targeting chimeras (rG4-PROTACs) aimed at degrading G4BPs, such as DHX36, a specific G4BP that regulates gene expression by binding to and unraveling rG4 structures in messenger RNAs (mRNAs). Our comprehensive data and systematic analysis reveals that rG4-PROTACs predominantly and selectively degrade DHX36 through a proteosome-dependent mechanism, which promotes the formation of the rG4 structure in mRNA, leading to the translation inhibition of rG4-containing transcripts. Notably, rG4-PROTACs inhibit rG4-mediated APP protein expression, and impact the proliferative capacity of skeletal muscle stem cells by negatively regulating Gnai2 protein expression. In summary, rG4-PROTACs provide a new avenue to understand rG4-G4BP interactions and the biological implications of dysregulated G4BPs, promoting the development of PROTACs technology based on the non-canonical structure of nucleic acids.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qichang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Maolin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liting Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianle Dai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaofan Guo
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Giménez-Llorente D, Cuadrado A, Andreu MJ, Sanclemente-Alamán I, Solé-Ferran M, Rodríguez-Corsino M, Losada A. STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1. EMBO Rep 2024; 25:5537-5560. [PMID: 39487368 PMCID: PMC11624272 DOI: 10.1038/s44319-024-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Humans
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Promoter Regions, Genetic
- Enhancer Elements, Genetic
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Gene Expression Regulation, Neoplastic
- Chromatin/metabolism
- Chromatin/genetics
- Cell Line, Tumor
- Cohesins
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/genetics
- Protein Binding
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Nuclear Proteins
Collapse
Affiliation(s)
- Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - María José Andreu
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Inmaculada Sanclemente-Alamán
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Maria Solé-Ferran
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
6
|
McDonald A, Murre C, Sedat JW. Helical coiled nucleosome chromosome architectures during cell cycle progression. Proc Natl Acad Sci U S A 2024; 121:e2410584121. [PMID: 39401359 PMCID: PMC11513933 DOI: 10.1073/pnas.2410584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies showed an interphase chromosome architecture-a specific coiled nucleosome structure-derived from cryopreserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here, we provide additional insights into the chromosome architecture that was recently published [M. Elbaum et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2119101119 (2022)]. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale reorganization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture.
Collapse
Affiliation(s)
- Angus McDonald
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID83725-2090
| | - Cornelis Murre
- Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - John W. Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94158
| |
Collapse
|
7
|
Kimura S, Park CS, Montefiori LE, Iacobucci I, Polonen P, Gao Q, Arnold ED, Attarbaschi A, Brown A, Buldini B, Caldwell KJ, Chang Y, Chen C, Cheng C, Cheng Z, Choi J, Conter V, Crews KR, de Groot-Kruseman HA, Deguchi T, Eguchi M, Muhle HE, Elitzur S, Escherich G, Freeman BB, Gu Z, Han K, Horibe K, Imamura T, Jeha S, Kato M, Chiew KH, Khan T, Kicinski M, Köhrer S, Kornblau SM, Kotecha RS, Li CK, Liu YC, Locatelli F, Luger SM, Paietta EM, Manabe A, Marquart HV, Masetti R, Maybury M, Mazilier P, Meijerink JP, Mitchell S, Miyamura T, Moore AS, Oshima K, Pawinska-Wasikowska K, Pieters R, Prater MS, Pruett-Miller SM, Pui CH, Qu C, Reiterova M, Reyes N, Roberts KG, Rowe JM, Sato A, Schmiegelow K, Schrappe M, Shen S, Skoczeń S, Spinelli O, Stary J, Svaton M, Takagi M, Takita J, Tang Y, Teachey DT, Thomas PG, Tomizawa D, Trka J, Varotto E, Vincent TL, Yang JJ, Yeoh AEJ, Zhou Y, Zimmermann M, Inaba H, Mullighan CG. Biologic and Clinical Analysis of Childhood Gamma Delta T-ALL Identifies LMO2/STAG2 Rearrangements as Extremely High Risk. Cancer Discov 2024; 14:1838-1859. [PMID: 38916500 PMCID: PMC11452281 DOI: 10.1158/2159-8290.cd-23-1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chun Shik Park
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth D. Arnold
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica (IRP)-Città della Speranza, Padova, Italy
| | | | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsey Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University, Ehime, Japan
| | - Hannah Elisa Muhle
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burgess B. Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katie Han
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sima Jeha
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Motohiro Kato
- Department of Pediatrics, Tokyo University, Tokyo, Japan
| | - Kean Hui Chiew
- Department of Paediatrics, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Tanya Khan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Franco Locatelli
- Department of Pediatric Hematology–Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Selina M. Luger
- Abramson Cancer Center, Univeristy of Pennsylvania, Philadelphia, PA, USA
| | | | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Mellissa Maybury
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
| | - Pauline Mazilier
- Pediatric hemato-oncology and transplantation, HUB - HUDERF, Brussels, Belgium
| | | | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Andrew S. Moore
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Koichi Oshima
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mollie S. Prater
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, København, Denmark
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Berlin, Germany
| | - Shuhong Shen
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII Hospital, Piazza OMS, Bergamo, Italy
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Svaton
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David T. Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Elena Varotto
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
| | | | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen EJ Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558239. [PMID: 37786717 PMCID: PMC10541618 DOI: 10.1101/2023.09.18.558239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associated domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains", which are also reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ~20-40 kb in C. elegans. Hi-C analysis upon cohesin and WAPL depletion support the idea that cohesin is preferentially loaded at NIPBL occupied sites and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly due to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers and fountain strength is associated with transcription. Compared to mammals, average processivity of C. elegans cohesin is ~10-fold shorter and NIPBL binding does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
9
|
Ros-Pardo D, Gómez-Puertas P, Marcos-Alcalde Í. STAG2-RAD21 complex: A unidirectional DNA ratchet mechanism in loop extrusion. Int J Biol Macromol 2024; 276:133822. [PMID: 39002918 DOI: 10.1016/j.ijbiomac.2024.133822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
DNA loop extrusion plays a key role in the regulation of gene expression and the structural arrangement of chromatin. Most existing mechanistic models of loop extrusion depend on some type of ratchet mechanism, which should permit the elongation of loops while preventing their collapse, by enabling DNA to move in only one direction. STAG2 is already known to exert a role as DNA anchor, but the available structural data suggest a possible role in unidirectional DNA motion. In this work, a computational simulation framework was constructed to evaluate whether STAG2 could enforce such unidirectional displacement of a DNA double helix. The results reveal that STAG2 V-shape allows DNA sliding in one direction, but blocks opposite DNA movement via a linear ratchet mechanism. Furthermore, these results suggest that RAD21 binding to STAG2 controls its flexibility by narrowing the opening of its V-shape, which otherwise remains widely open in absence of RAD21. Therefore, in the proposed model, in addition to its already described role as a DNA anchor, the STAG2-RAD21 complex would be part of a ratchet mechanism capable of exerting directional selectivity on DNA sliding during loop extrusion. The identification of the molecular basis of the ratchet mechanism of loop extrusion is a critical step in unraveling new insights into a broad spectrum of chromatin activities and their implications for the mechanisms of chromatin-related diseases.
Collapse
Affiliation(s)
- David Ros-Pardo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain.
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain
| |
Collapse
|
10
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
11
|
Buenaventura T, Bagci H, Patrascan I, Graham JJ, Hipwell KD, Oldenkamp R, King JWD, Urtasun J, Young G, Mouzo D, Gomez-Cabrero D, Rowland BD, Panne D, Fisher AG, Merkenschlager M. Competition shapes the landscape of X-chromosome-linked genetic diversity. Nat Genet 2024; 56:1678-1688. [PMID: 39060501 PMCID: PMC11319201 DOI: 10.1038/s41588-024-01840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.
Collapse
Affiliation(s)
- Teresa Buenaventura
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Hakan Bagci
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ilinca Patrascan
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Joshua J Graham
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kelsey D Hipwell
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Roel Oldenkamp
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - James W D King
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jesus Urtasun
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - George Young
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Mouzo
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Amanda G Fisher
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Matthias Merkenschlager
- MRC LMS, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
12
|
Labudina AA, Meier M, Gimenez G, Tatarakis D, Ketharnathan S, Mackie B, Schilling TF, Antony J, Horsfield JA. Cohesin composition and dosage independently affect early development in zebrafish. Development 2024; 151:dev202593. [PMID: 38975838 DOI: 10.1242/dev.202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
Collapse
Affiliation(s)
- Anastasia A Labudina
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Sarada Ketharnathan
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Bridget Mackie
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| |
Collapse
|
13
|
Brühlmann F, Perry C, Griessen C, Gunasekera K, Reymond JL, Naguleswaran A, Rottenberg S, Woods K, Olias P. TurboID mapping reveals the exportome of secreted intrinsically disordered proteins in the transforming parasite Theileria annulata. mBio 2024; 15:e0341223. [PMID: 38747635 PMCID: PMC11237503 DOI: 10.1128/mbio.03412-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.
Collapse
Affiliation(s)
- Francis Brühlmann
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Carmen Perry
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Kapila Gunasekera
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | | | - Sven Rottenberg
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Kerry Woods
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
McDonald A, Murre C, Sedat J. Helical Coiled Nucleosome Chromosome Architectures during Cell Cycle Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595892. [PMID: 38826250 PMCID: PMC11142257 DOI: 10.1101/2024.05.25.595892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Recent studies showed an interphase chromosome architecture, --- a specific coiled nucleosome structure, --- derived from cryo-preserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here we provide additional insights and details into the coiled nucleosome chromosome architectures. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale re-organization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture. Significance Statement This study places all 46 sequenced human chromosomes, --- correctly filled with nucleosomes and in micron sized chromosome territories - into 10micron (average sized) nuclei. The chromosome architecture used a helical nucleosome coiled structure discerned from cryo-EM tomography, as was recently published ( https://doi.org/10.1073/pnas.2119101119 ). This chromosome architecture was further modeled to dynamic structures, structure variations and chromosome replication centromere complications. Finally, this chromosome architecture was modified to allow seamless transition through the cell cycle.
Collapse
|
15
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
16
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Wheeler EC, Martin BJE, Doyle WC, Neaher S, Conway CA, Pitton CN, Gorelov RA, Donahue M, Jann JC, Abdel-Wahab O, Taylor J, Seiler M, Buonamici S, Pikman Y, Garcia JS, Belizaire R, Adelman K, Tothova Z. Splicing modulators impair DNA damage response and induce killing of cohesin-mutant MDS and AML. Sci Transl Med 2024; 16:eade2774. [PMID: 38170787 PMCID: PMC11222919 DOI: 10.1126/scitranslmed.ade2774] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/08/2023] [Indexed: 01/05/2024]
Abstract
Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.
Collapse
Affiliation(s)
- Emily C. Wheeler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Benjamin J. E. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William C. Doyle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Sofia Neaher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Caroline A. Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Caroline N. Pitton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Rebecca A. Gorelov
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Melanie Donahue
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Johann C. Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Seiler
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Silvia Buonamici
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02215 USA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Bhattacharya SA, Dias E, Nieto-Aliseda A, Buschbeck M. The consequences of cohesin mutations in myeloid malignancies. Front Mol Biosci 2023; 10:1319804. [PMID: 38033389 PMCID: PMC10684907 DOI: 10.3389/fmolb.2023.1319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Recurrent somatic mutations in the genes encoding the chromatin-regulatory cohesin complex and its modulators occur in a wide range of human malignancies including a high frequency in myeloid neoplasms. The cohesin complex has a ring-like structure which can enclose two strands of DNA. A first function for the complex was described in sister chromatid cohesion during metaphase avoiding defects in chromosome segregation. Later studies identified additional functions of the cohesin complex functions in DNA replication, DNA damage response, 3D genome organisation, and transcriptional regulation through chromatin looping. In this review, we will focus on STAG2 which is the most frequently mutated cohesin subunit in myeloid malignancies. STAG2 loss of function mutations are not associated with chromosomal aneuploidies or genomic instability. We hypothesize that this points to changes in gene expression as disease-promoting mechanism and summarize the current state of knowledge on affected genes and pathways. Finally, we discuss potential strategies for targeting cohesion-deficient disease cells.
Collapse
Affiliation(s)
- Shubhra Ashish Bhattacharya
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eve Dias
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Nieto-Aliseda
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
20
|
Kimura S, Polonen P, Montefiori L, Park CS, Iacobucci I, Yeoh AE, Attarbaschi A, Moore AS, Brown A, Manabe A, Buldini B, Freeman BB, Chen C, Cheng C, Kean Hui C, Li CK, Pui CH, Qu C, Tomizawa D, Teachey DT, Varotto E, Paietta EM, Arnold ED, Locatelli F, Escherich G, Elisa Muhle H, Marquart HV, de Groot-Kruseman HA, Rowe JM, Stary J, Trka J, Choi JK, Meijerink JPP, Yang JJ, Takita J, Pawinska-Wasikowska K, Roberts KG, Han K, Caldwell KJ, Schmiegelow K, Crews KR, Eguchi M, Schrappe M, Zimmerman M, Takagi M, Maybury M, Svaton M, Reiterova M, Kicinski M, Prater MS, Kato M, Reyes N, Spinelli O, Thomas P, Mazilier P, Gao Q, Masetti R, Kotecha RS, Pieters R, Elitzur S, Luger SM, Mitchell S, Pruett-Miller SM, Shen S, Jeha S, Köhrer S, Kornblau SM, Skoczeń S, Miyamura T, Vincent TL, Imamura T, Conter V, Tang Y, Liu YC, Chang Y, Gu Z, Cheng Z, Yinmei Z, Inaba H, Mullighan CG. Biologic and clinical features of childhood gamma delta T-ALL: identification of STAG2/LMO2 γδ T-ALL as an extremely high risk leukemia in the very young. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298028. [PMID: 37986997 PMCID: PMC10659466 DOI: 10.1101/2023.11.06.23298028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
PURPOSE Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.
Collapse
|
21
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
22
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
23
|
Langer CCH, Mitter M, Stocsits RR, Gerlich DW. HiCognition: a visual exploration and hypothesis testing tool for 3D genomics. Genome Biol 2023; 24:158. [PMID: 37408019 PMCID: PMC10320903 DOI: 10.1186/s13059-023-02996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Genome browsers facilitate integrated analysis of multiple genomics datasets yet visualize only a few regions at a time and lack statistical functions for extracting meaningful information. We present HiCognition, a visual exploration and machine-learning tool based on a new genomic region set concept, enabling detection of patterns and associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing how transcription and cohesion subunit isoforms contribute to chromosome conformation, we showcase how the flexible user interface and machine learning tools of HiCognition help to understand the relationship between the structure and function of the genome.
Collapse
Affiliation(s)
- Christoph C H Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Michael Mitter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
24
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
25
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
26
|
Alonso-Gil D, Cuadrado A, Giménez-Llorente D, Rodríguez-Corsino M, Losada A. Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2. Nat Commun 2023; 14:1326. [PMID: 36898992 PMCID: PMC10006224 DOI: 10.1038/s41467-023-36900-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cohesin organizes the genome through the formation of chromatin loops. NIPBL activates cohesin's ATPase and is essential for loop extrusion, but its requirement for cohesin loading is unclear. Here we have examined the effect of reducing NIPBL levels on the behavior of the two cohesin variants carrying STAG1 or STAG2 by combining a flow cytometry assay to measure chromatin-bound cohesin with analyses of its genome-wide distribution and genome contacts. We show that NIPBL depletion results in increased cohesin-STAG1 on chromatin that further accumulates at CTCF positions while cohesin-STAG2 diminishes genome-wide. Our data are consistent with a model in which NIPBL may not be required for chromatin association of cohesin but it is for loop extrusion, which in turn facilitates stabilization of cohesin-STAG2 at CTCF positions after being loaded elsewhere. In contrast, cohesin-STAG1 binds chromatin and becomes stabilized at CTCF sites even under low NIPBL levels, but genome folding is severely impaired.
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
27
|
Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022; 24:241. [PMID: 36613684 PMCID: PMC9820593 DOI: 10.3390/ijms24010241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nonna I. Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
| |
Collapse
|
28
|
Cuadrado A, Giménez-Llorente D, De Koninck M, Ruiz-Torres M, Kojic A, Rodríguez-Corsino M, Losada A. Contribution of variant subunits and associated factors to genome-wide distribution and dynamics of cohesin. Epigenetics Chromatin 2022; 15:37. [PMID: 36424654 PMCID: PMC9686121 DOI: 10.1186/s13072-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The cohesin complex organizes the genome-forming dynamic chromatin loops that impact on all DNA-mediated processes. There are two different cohesin complexes in vertebrate somatic cells, carrying the STAG1 or STAG2 subunit, and two versions of the regulatory subunit PDS5, PDS5A and PDS5B. Mice deficient for any of the variant subunits are embryonic lethal, which indicates that they are not functionally redundant. However, their specific behavior at the molecular level is not fully understood. RESULTS The genome-wide distribution of cohesin provides important information with functional consequences. Here, we have characterized the distribution of cohesin subunits and regulators in mouse embryo fibroblasts (MEFs) either wild type or deficient for cohesin subunits and regulators by chromatin immunoprecipitation and deep sequencing. We identify non-CTCF cohesin-binding sites in addition to the commonly detected CTCF cohesin sites and show that cohesin-STAG2 is the preferred variant at these positions. Moreover, this complex has a more dynamic association with chromatin as judged by fluorescence recovery after photobleaching (FRAP), associates preferentially with WAPL and is more easily extracted from chromatin with salt than cohesin-STAG1. We observe that both PDS5A and PDS5B are exclusively located at cohesin-CTCF positions and that ablation of a single paralog has no noticeable consequences for cohesin distribution while double knocked out cells show decreased accumulation of cohesin at all its binding sites. With the exception of a fraction of cohesin positions in which we find binding of all regulators, including CTCF and WAPL, the presence of NIPBL and PDS5 is mutually exclusive, consistent with our immunoprecipitation analyses in mammalian cell extracts and previous results in yeast. CONCLUSION Our findings support the idea that non-CTCF cohesin-binding sites represent sites of cohesin loading or pausing and are preferentially occupied by the more dynamic cohesin-STAG2. PDS5 proteins redundantly contribute to arrest cohesin at CTCF sites, possibly by preventing binding of NIPBL, but are not essential for this arrest. These results add important insights towards understanding how cohesin regulates genome folding and the specific contributions of the different variants that coexist in the cell.
Collapse
Affiliation(s)
- Ana Cuadrado
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Giménez-Llorente
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Magali De Koninck
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miguel Ruiz-Torres
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Aleksandar Kojic
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
29
|
Sun Y, Dotson GA, Muir LA, Ronquist S, Oravecz-Wilson K, Peltier D, Seike K, Li L, Meixner W, Rajapakse I, Reddy P. Rearrangement of T Cell genome architecture regulates GVHD. iScience 2022; 25:104846. [PMID: 36043052 PMCID: PMC9420521 DOI: 10.1016/j.isci.2022.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
WAPL, cohesin's DNA release factor, regulates three-dimensional (3D) chromatin architecture. The 3D chromatin structure and its relevance to mature T cell functions is not well understood. We show that in vivo lymphopenic expansion, and alloantigen-driven proliferation, alters the 3D structure and function of the genome in mature T cells. Conditional deletion of WAPL, cohesin's DNA release factor, in T cells reduced long-range genomic interactions and altered chromatin A/B compartments and interactions within topologically associating domains (TADs) of the chromatin in T cells at baseline. WAPL deficiency in T cells reduced loop extensions, changed expression of cell cycling genes and reduced proliferation following in vitro and in vivo stimulation, and reduced severity of graft-versus-host disease (GVHD) following experimental allogeneic hematopoietic stem cell transplantation. These data collectively characterize 3D genomic architecture of T cells in vivo and demonstrate biological and clinical implications for its disruption by cohesin release factor WAPL.
Collapse
Affiliation(s)
- Yaping Sun
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Gabrielle A. Dotson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey A. Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine Oravecz-Wilson
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Daniel Peltier
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Keisuke Seike
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Lu Li
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Walter Meixner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
30
|
A proposed unified interphase nucleus chromosome structure: Preliminary preponderance of evidence. Proc Natl Acad Sci U S A 2022; 119:e2119101119. [PMID: 35749363 PMCID: PMC9245672 DOI: 10.1073/pnas.2119101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation of the nuclear interior allows a large-scale interphase chromosome structure—present throughout the nucleus—to be seen in its native state by electron tomography. This structure appears as a coiled chain of nucleosomes, wrapped like a Slinky toy. This coiled structure can be further used to explain the enigmatic architectures of polytene and lampbrush chromosomes. In addition, this new structure can further be organized as chromosome territories: for example, all 46 human interphase chromosomes easily fit into a 10-μm-diameter nucleus. Thus, interphase chromosomes can be unified into a flexibly defined structure. Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-μm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.
Collapse
|
31
|
Sedat J, McDonald A, Kasler H, Verdin E, Cang H, Arigovindan M, Murre C, Elbaum M. A proposed unified mitotic chromosome architecture. Proc Natl Acad Sci U S A 2022; 119:e2119107119. [PMID: 35544689 PMCID: PMC9171755 DOI: 10.1073/pnas.2119107119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/30/2022] [Indexed: 01/12/2023] Open
Abstract
A molecular architecture is proposed for a representative mitotic chromosome, human chromosome 10. This architecture is built on an interphase chromosome structure based on cryo-electron microscopy (cryo-EM) cellular tomography [J. Sedat et al., Proc. Natl. Acad. Sci. U.S.A., in press], thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle for mitotic chromosomes is specific coiling of the 11-nm nucleosome fiber into large scale, ∼200-nm interphase structures, a Slinky [https://en.wikipedia.org/wiki/Slinky; motif cited in S. Bowerman et al., eLife 10, e65587 (2021)], then further modified with subsequent additional coiling for the final mitotic chromosome structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well-known cytological configurations. In addition, proof is experimentally provided by digital PCR technology that G1 T cell nuclei are diploid with one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.
Collapse
Affiliation(s)
- John Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Angus McDonald
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725-2090
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945
| | - Hu Cang
- Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Muthuvel Arigovindan
- Department of Electrical Engineering, Indian Institute of Science, Bengluru 560012, India
| | - Cornelis Murre
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92092
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 760001 Rehovot, Israel
| |
Collapse
|
32
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
33
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
34
|
Scala G, Gorini F, Ambrosio S, Chiariello AM, Nicodemi M, Lania L, Majello B, Amente S. 8-oxodG accumulation within super-enhancers marks fragile CTCF-mediated chromatin loops. Nucleic Acids Res 2022; 50:3292-3306. [PMID: 35234932 PMCID: PMC8989568 DOI: 10.1093/nar/gkac143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of the DNA oxidization process, has been proposed to have an epigenetic function in gene regulation and has been associated with genome instability. NGS-based methodologies are contributing to the characterization of the 8-oxodG function in the genome. However, the 8-oxodG epigenetic role at a genomic level and the mechanisms controlling the genomic 8-oxodG accumulation/maintenance have not yet been fully characterized. In this study, we report the identification and characterization of a set of enhancer regions accumulating 8-oxodG in human epithelial cells. We found that these oxidized enhancers are mainly super-enhancers and are associated with bidirectional-transcribed enhancer RNAs and DNA Damage Response activation. Moreover, using ChIA-PET and HiC data, we identified specific CTCF-mediated chromatin loops in which the oxidized enhancer and promoter regions physically associate. Oxidized enhancers and their associated chromatin loops accumulate endogenous double-strand breaks which are in turn repaired by NHEJ pathway through a transcription-dependent mechanism. Our work suggests that 8-oxodG accumulation in enhancers-promoters pairs occurs in a transcription-dependent manner and provides novel mechanistic insights on the intrinsic fragility of chromatin loops containing oxidized enhancers-promoters interactions.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Andrea M Chiariello
- Department of Physics, University of Naples Federico II, and INFN, Naples, Italy
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN, Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| |
Collapse
|
35
|
STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nat Commun 2022; 13:1859. [PMID: 35388001 PMCID: PMC8986786 DOI: 10.1038/s41467-022-29541-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
The cohesin complex participates in the organization of 3D genome through generating and maintaining DNA loops. Stromal antigen 2 (STAG2), a core subunit of the cohesin complex, is frequently mutated in various cancers. However, the impact of STAG2 inactivation on 3D genome organization, especially the long-range enhancer-promoter contacts and subsequent gene expression control in cancer, remains poorly understood. Here we show that depletion of STAG2 in melanoma cells leads to expansion of topologically associating domains (TADs) and enhances the formation of acetylated histone H3 lysine 27 (H3K27ac)-associated DNA loops at sites where binding of STAG2 is switched to its paralog STAG1. We further identify Interferon Regulatory Factor 9 (IRF9) as a major direct target of STAG2 in melanoma cells via integrated RNA-seq, STAG2 ChIP-seq and H3K27ac HiChIP analyses. We demonstrate that loss of STAG2 activates IRF9 through modulating the 3D genome organization, which in turn enhances type I interferon signaling and increases the expression of PD-L1. Our findings not only establish a previously unknown role of the STAG2 to STAG1 switch in 3D genome organization, but also reveal a functional link between STAG2 and interferon signaling in cancer cells, which may enhance the immune evasion potential in STAG2-mutant cancer.
Collapse
|
36
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
37
|
Buonaiuto S, Biase ID, Aleotti V, Ravaei A, Marino AD, Damaggio G, Chierici M, Pulijala M, D'Ambrosio P, Esposito G, Ayub Q, Furlanello C, Greco P, Capalbo A, Rubini M, Biase SD, Colonna V. Prioritization of putatively detrimental variants in euploid miscarriages. Sci Rep 2022; 12:1997. [PMID: 35132093 PMCID: PMC8821623 DOI: 10.1038/s41598-022-05737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Collapse
Affiliation(s)
| | | | - Valentina Aleotti
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | - Madhuri Pulijala
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | | | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Pantaleo Greco
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | - Michele Rubini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy.
| |
Collapse
|
38
|
Liu N, Wang J, Zhang M. Identification of urinary peptides associated with allergic rhinitis. REVUE FRANÇAISE D'ALLERGOLOGIE 2021. [DOI: 10.1016/j.reval.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
40
|
Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol 2021; 31:760-773. [PMID: 33766521 PMCID: PMC8364472 DOI: 10.1016/j.tcb.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Lauren Wattendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sammer Marzouk
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
41
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
42
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
43
|
Ketharnathan S, Labudina A, Horsfield JA. Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos. Front Cell Dev Biol 2020; 8:617545. [PMID: 33365313 PMCID: PMC7750468 DOI: 10.3389/fcell.2020.617545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a multiprotein complex made up of core subunits Smc1, Smc3, and Rad21, and either Stag1 or Stag2. Normal haematopoietic development relies on crucial functions of cohesin in cell division and regulation of gene expression via three-dimensional chromatin organization. Cohesin subunit STAG2 is frequently mutated in myeloid malignancies, but the individual contributions of Stag variants to haematopoiesis or malignancy are not fully understood. Zebrafish have four Stag paralogues (Stag1a, Stag1b, Stag2a, and Stag2b), allowing detailed genetic dissection of the contribution of Stag1-cohesin and Stag2-cohesin to development. Here we characterize for the first time the expression patterns and functions of zebrafish stag genes during embryogenesis. Using loss-of-function CRISPR-Cas9 zebrafish mutants, we show that stag1a and stag2b contribute to primitive embryonic haematopoiesis. Both stag1a and stag2b mutants present with erythropenia by 24 h post-fertilization. Homozygous loss of either paralogue alters the number of haematopoietic/vascular progenitors in the lateral plate mesoderm. The lateral plate mesoderm zone of scl-positive cells is expanded in stag1a mutants with concomitant loss of kidney progenitors, and the number of spi1-positive cells are increased, consistent with skewing toward primitive myelopoiesis. In contrast, stag2b mutants have reduced haematopoietic/vascular mesoderm and downregulation of primitive erythropoiesis. Our results suggest that Stag1 and Stag2 proteins cooperate to balance the production of primitive haematopoietic/vascular progenitors from mesoderm.
Collapse
Affiliation(s)
- Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Genetic Testing Distinguishes Multiple Chondroid Chordomas with Neuraxial Bone Metastases from Multicentric Tumors. Case Rep Genet 2020; 2020:8877722. [PMID: 33312743 PMCID: PMC7719490 DOI: 10.1155/2020/8877722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chordomas are rare malignant bone tumors preferentially forming in neuraxial bones. Chondroid chordoma is a subtype of chordoma. Chordomas reportedly present as synchronous multiple lesions upon initial diagnosis. However, it remains unknown whether these lesions are multicentric or metastatic multiple chordoma tumors. Case Presentation. Here, we present the case of a 57-year-old woman with multiple chordomas at the clivus, C6, and T12 upon initial presentation. Sequential surgeries and radiotherapy were performed for these lesions, and postoperative histological diagnosis revealed that all lesions were chondroid chordomas. Next-generation sequencing revealed that these lesions harbored a common somatic mutation in epidermal growth factor receptor (EGFR), c.3617A>C, which is not considered a pathogenic chordoma mutation, thus indicating that these lesions were not multicentric but rather multiple metastatic tumors. Subsequent multiple metastases to the lung and appendicular and axial bones were detected 15 months after the initial surgery. Recurrent lesions at the clivus progressed despite EGFR-targeted therapy, surgery, and radiotherapy. Conclusion The present evidence indicates that multiple chordomas in this case were caused by multiple metastases rather than multicentric lesions. Multiple presentations of chordoma imply systemic dissemination of tumor cells, and novel efficient systemic therapy is required to treat this disease.
Collapse
|
45
|
Editorial overview: Diving into the Genome. Curr Opin Genet Dev 2020; 61:iii-vi. [PMID: 32950132 DOI: 10.1016/j.gde.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
De Koninck M, Lapi E, Badía-Careaga C, Cossío I, Giménez-Llorente D, Rodríguez-Corsino M, Andrada E, Hidalgo A, Manzanares M, Real FX, Losada A. Essential Roles of Cohesin STAG2 in Mouse Embryonic Development and Adult Tissue Homeostasis. Cell Rep 2020; 32:108014. [PMID: 32783938 DOI: 10.1016/j.celrep.2020.108014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain
| | | | - Itziar Cossío
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Elena Andrada
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, 28049 Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|