1
|
Kashani-Ligumsky L, Scott O, Martinez G, Jeong A, Yin O, Shah S, Wang A, Zhu Y, Afshar Y. Updates and Knowledge Gaps in Placenta Accreta Spectrum Biology. Clin Obstet Gynecol 2025; 68:310-316. [PMID: 40257851 DOI: 10.1097/grf.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Placenta accreta spectrum (PAS) disorders have traditionally been characterized based on histopathologic grading, emphasizing the invasion of trophoblasts into the myometrium, and uterine serosa. Recent research has shifted the etiological understanding of PAS, moving away from the concept of aggressive trophoblast invasion to focusing on the critical role of scarred decidual-myometrial interface. This shift highlights the importance of defective scar tissue as a primary factor, reshaping prevention strategies, diagnostic accuracy, and treatment approaches for this increasingly prevalent iatrogenic and morbid pregnancy complication.
Collapse
Affiliation(s)
| | - Olivia Scott
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Guadalupe Martinez
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Anhyo Jeong
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Ophelia Yin
- Division of Maternal Fetal Medicine and Reproductive Genetics, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California
| | - Sohum Shah
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Amanda Wang
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles
| | - Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology
- Department of Pathology, David Geffen School of Medicine
- Molecular Biology Institute, University of California
| |
Collapse
|
2
|
Cheng Y, Li Y, Zhang Y, Liu H, Yang B, Zhu J, Kuang H. Gestational exposure to micro- and nanoplastics leads to poor pregnancy outcomes by impairing placental trophoblast syncytialization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126520. [PMID: 40414412 DOI: 10.1016/j.envpol.2025.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, in vivo and in vitro experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly,inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hui Liu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
3
|
Li Y, Yan X, Yu H, Zhou Y, Gao Y, Zhou X, Yuan Y, Ding Y, Shi Q, Fang Y, Du H, Yuan E, Zhao X, Zhang L. Downregulation of CMIP contributes to preeclampsia development by impairing trophoblast function via the PDE7B-cAMP pathway. Cell Mol Life Sci 2025; 82:203. [PMID: 40372501 PMCID: PMC12081820 DOI: 10.1007/s00018-025-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Preeclampsia (PE) is one of the leading causes of perinatal maternal and fetal morbidity and mortality, but its precise mechanism remains elusive. Previous research has suggested that c-Maf-inducible protein (CMIP) is abnormally expressed in PE pathophysiology. Therefore, we aimed to explore the potential role of CMIP and its downstream molecules in PE. METHODS Multiplex immunofluorescence and immunohistochemical assays were conducted on preeclamptic placentas. Functional analysis of CMIP was performed in HTR-8/SVneo cells through transfection experiments in which either CMIP was overexpressed or downregulated. RNA sequencing was utilized to identify the molecular pathways downstream of CMIP. The impact of hypoxia on CMIP levels was assessed in three different types of trophoblast cells. The therapeutic efficacy of CMIP was evaluated in an N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced rat model of PE. RESULTS CMIP expression was downregulated in extrachorionic trophoblasts (EVTs) and syncytiotrophoblasts (STBs) in preeclamptic placentas. This downregulation of CMIP in trophoblast cells disrupts cell proliferation, migration, invasion, and angiogenesis by upregulating the PDE7B-cAMP pathway, while elevated CMIP levels enhance these cellular functions. Hypoxia reduced CMIP expression in all three types of trophoblast cells. Moreover, in a rat model of PE, supplementation with CMIP alleviated hypertension and increased fetal weight and number. CONCLUSIONS Our study demonstrates for the first time that the CMIP-PDE7B-cAMP pathway contributes to PE development by influencing trophoblast function. The signaling pathway proteins involved in PE induced by CMIP may provide new clues to the occurrence of PE and new targets for future PE therapy.
Collapse
Affiliation(s)
- Yina Li
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Xinjing Yan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Department of Blood Transfusion, Xi'an People's Hospital, Xi'an, 710000, China
| | - Haiyang Yu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Yuanbo Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Yongrui Gao
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Xinyuan Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangnan Ding
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Qianqian Shi
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Yang Fang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Hongmei Du
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
| | - Enwu Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou, China
| | - Xin Zhao
- Tianjian Advanced Biomedical Laboratory, Zhengzhou, China.
- Radiology Department, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Linlin Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Qian Street, Zhengzhou, Henan, 450052, People's Republic of China.
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, China.
- Tianjian Advanced Biomedical Laboratory, Zhengzhou, China.
| |
Collapse
|
4
|
Xie X, Li R, Mi F. hsa_circ_0095812 accelerates periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression. Clinics (Sao Paulo) 2025; 80:100631. [PMID: 40220480 PMCID: PMC12018572 DOI: 10.1016/j.clinsp.2025.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To explore the role of hsa_circ_0095812 (circLRRC4C) in periodontitis and its mechanism with miR-485-3p and Thrombospondin-1 (THBS1). METHODS Periodontal tissues were collected from periodontitis patients. Periodontal Ligament Cells (PDLCs) were stimulated with Lipopolysaccharide (LPS) and transfected. Cell viability, inflammation, apoptosis, and pyroptosis were analyzed. A mouse model of periodontitis was constructed and injected with a lentiviral plasmid vector targeting circLRRC4C. Immunohistochemistry was performed on the periodontal tissue of model mice. The relevant expression level of genes was measured via real-time reverse transcriptase-polymerase chain reaction or Western blot. The relationship between circLRRC4C and THBS1 with miR-485-3p was analyzed. RESULTS CircLRRC4C was highly expressed in periodontitis tissues of patients and LPS-treated PDLCs. Downregulating circLRRC4C attenuated LPS-induced PDLC inflammation, apoptosis and pyroptosis and recovered cellular viability. CircLRRC4C acted as a sponge for miR-485-3p. CircLRRC4C affected LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating miR-485-3p. THBS1 was the target gene of miR-485-3p. Inhibition of THBS1 effectively improved LPS-induced periodontitis. CircLRRC4C aggravated LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating the miR-485-3p/THBS1 axis. Suppressing circLRRC4C effectively improved periodontitis in mice. CONCLUSION CircLRRC4C induces periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression.
Collapse
Affiliation(s)
- XiaoTing Xie
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - RuiTing Li
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - FangLin Mi
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China.
| |
Collapse
|
5
|
Benouda I, Vaiman D, Miralles F. Trophoblast Fusion in Hypertensive Disorders of Pregnancy and Preeclampsia. Int J Mol Sci 2025; 26:2859. [PMID: 40243430 PMCID: PMC11988414 DOI: 10.3390/ijms26072859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Trophoblast fusion into the multinucleated syncytiotrophoblast (SCT) appears as an inescapable feature of placentation in mammals and other viviparous species. The trophoblast cells underlying the syncytium are considered a reservoir for the restoration of the aging peripheric structure. The transition from trophoblasts to SCTs has to be tightly regulated, and could be altered by genetic anomalies or environmental exposure. The resulting defective placental function could be one of the causes of the major placental diseases, such as preeclampsia (PE) and Intra-Uterine Growth Restriction (IUGR). This review attempts to take stock of the current knowledge about fusion mechanisms and their deregulations.
Collapse
Affiliation(s)
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR8104 CNRS, Université de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France; (I.B.); (F.M.)
| | | |
Collapse
|
6
|
Luo Y, Wang Y, Liu L, Huang F, Lu S, Yan Y. Identifying pathological myopia associated genes with GenePlexus in protein-protein interaction network. Front Genet 2025; 16:1533567. [PMID: 40110040 PMCID: PMC11919901 DOI: 10.3389/fgene.2025.1533567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Pathological myopia, a severe form of myopia, is characterized by an extreme elongation of the eyeball, leading to various vision-threatening complications. It is broadly classified into two primary types: high myopia, which primarily involves an excessive axial length of the eye with potential for reversible vision loss, and degenerative myopia, associated with progressive and irreversible retinal damage. Methods Leveraging data from DisGeNET, reporting 184 genes linked to high myopia and 39 genes associated with degenerative myopia, we employed the GenePlexus methodology in conjunction with screening tests to further explore the genetic landscape of pathological myopia. Results and discussion Our comprehensive analysis resulted in the discovery of 21 new genes associated with degenerative myopia and 133 genes linked to high myopia with significant confidence. Among these findings, genes such as ADCY4, a regulator of the cAMP pathway, were functionally linked to high myopia, while THBS1, involved in collagen degradation, was closely associated with the pathophysiology of degenerative myopia. These previously unreported genes play crucial roles in the underlying mechanisms of pathological myopia, thereby emphasizing the complexity and multifactorial nature of this condition. The importance of our study resides in the uncovering of new genetic associations with pathological myopia, the provision of potential biomarkers for early screening, and the identification of therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shiheng Lu
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Yan
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhao J, Yang DH, Qieqieke Y, Han NN, Jieensi H. Regulation of Alternative Splicing by PARP1 in HTR-8/Svneo Cells: Implications for Placental Development and Spontaneous Abortion. Curr Med Sci 2024; 44:1325-1336. [PMID: 39565507 DOI: 10.1007/s11596-024-2943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2023] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Alternative splicing affects gene expression during placental development. The present study aimed to identify poly (ADP-ribose) polymerase 1 (PARP1)-regulated alternative splicing events in HTR-8/Svneo cells. METHODS Decidual tissues were collected from women with induced abortion and spontaneous abortion. PARP1 transcription was quantified by RT-qPCR. Small interfering RNA (siRNA) was used to knock down the PARP1 expression in HTR-8/Svneo cells. The transfection efficiency was verified by RT-qPCR and Western blotting. Total RNA was extracted, and the RNA-sequencing approach was used to identify alternative splicing events and transcriptomes. The PARP1 knockdown-induced differentially expressed genes with changes in alternative splicing events were quantified by RT-qPCR. Functional analysis, which included the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, was performed. RESULTS The PARP1 mRNA expression increased in decidual tissues in the spontaneous abortion group, when compared to the induced abortion group. However, the PARP1 knockdown significantly downregulated 1491 genes and upregulated 881 genes in HTR-8/Svneo cells. Furthermore, 227 genes that underwent alternative splicing were identified, and these were differentially expressed in siPARP1 cells, when compared to siNC cells. CONCLUSION The functional analysis revealed that these alternative splicing genes affected the functional phenotypes of extravillous cytotrophoblasts. Furthermore, the PARP1 knockdown led to alterations in gene expression and specific alternative splicing patterns in extravillous trophoblasts.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - De-Hua Yang
- Department of Pediatrics, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Yeerdeng Qieqieke
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Ning-Ning Han
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Hasitiyaer Jieensi
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
8
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
9
|
Jiang T, Jin X, Gao Y, Zhou W, Yu J, Li Y, Xu J, Cai B. CardioAtlas: deciphering the single-cell transcriptome landscape in cardiovascular tissues and diseases. Biomark Res 2024; 12:149. [PMID: 39609860 PMCID: PMC11606023 DOI: 10.1186/s40364-024-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Increasing scRNA-seq data in cardiovascular research have substantially improved our knowledge on the development of the cardiovascular system and the mechanisms underlying cardiovascular diseases. However, the single-cell transcriptome datasets were dispersed in literature and no resource for cardiovascular systems and diseases. Here, we constructed an organized resource CardioAtlas, which provides comprehensive analysis results for > 1,929,000 cells in 27 human data sets and > 1,088,000 cells in 39 mouse data sets. Through large-scale literature retrieval and manual annotation, we constructed 12 and 15 scRNA-seq reference atlas for common human and mouse cardiovascular systems and diseases, covering 43 and 39 cell types. In particular, CardioAtlas provides five analytic modules, including cell-type prediction, identification of marker genes, functional enrichment analysis, identification of cell-type-specific transcription regulons, and cell-cell communication analysis. In addition, users can upload scRNA-seq data for personalized analysis. CardioAtlas is available at http://bio-bigdata.hrbmu.edu.cn/CardioAtlas . CardioAtlas provides the first comprehensive and well-crafted reference atlas of cardiovascular systems and diseases and describes in detail previously unrecognized cell populations across a large number of humans and mice.
Collapse
Affiliation(s)
- Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyan Jin
- Department of Pharmacy, The Second Affiliated Hospital, Department of Pharmacology, College of Pharmacy, (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Yueying Gao
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, College of Biomedical Information and Engineering, Hainan Medical University, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, College of Biomedical Information and Engineering, Hainan Medical University, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Benzhi Cai
- Department of Pharmacy, The Second Affiliated Hospital, Department of Pharmacology, College of Pharmacy, (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Parameshwar PK, Vaillancourt C, Moraes C. Engineering placental trophoblast fusion: A potential role for biomechanics in syncytialization. Placenta 2024; 157:50-54. [PMID: 38448351 DOI: 10.1016/j.placenta.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The process by which placental trophoblasts fuse to form the syncytiotrophoblast around the chorionic villi is not fully understood. Mechanical features of the in vivo and in vitro culture environments have recently emerged as having the potential to influence fusion efficiency, and considering these mechanical cues may ultimately allow predictive control of trophoblast syncytialization. Here, we review recent studies that suggest that biomechanical factors such as shear stress, tissue stiffness, and dimensionally-related stresses affect villous trophoblast fusion efficiency. We then discuss how these stimuli might arise in vivo and how they can be incorporated in cultures to study and enhance villous trophoblast fusion. We believe that this mechanical paradigm will provide novel insight into manipulating the syncytialization process to better engineer improved models, understand disease progression, and ultimately develop novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Cathy Vaillancourt
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7B 1B7, Canada; Department of Obstetrics and Gynecology, Université de Montréal, and Research Center Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Île-de-Montréal, Montréal, QC, H3L 1K5, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada; Department of Chemical Engineering, McGill University, Montréal, QC, H3A 0C5, Canada; Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
11
|
Chen EX, Hu SC, Xu JQ, Liu KY, Tang J, Shen XP, Liang X, Xie YL, Ge LX, Luo X, Wang YX, Xiang YL, Ding YB. Suppression of GATA3 promotes epithelial-mesenchymal transition and simultaneous cellular senescence in human extravillous trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119768. [PMID: 38838858 DOI: 10.1016/j.bbamcr.2024.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated β-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.
Collapse
Affiliation(s)
- En-Xiang Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Si-Chen Hu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Qi Xu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Kun-Yan Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xi-Peng Shen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - You-Long Xie
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lu-Xin Ge
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University. Hunan 410219, China
| | - Xin Luo
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying-Xiong Wang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yun-Long Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Li MR, Chen EX, Li ZH, Song HL, Zhang Y, Li FF, Xie YL, Tang J, Ding YB, Fu LJ. HMGB1 regulates autophagy of placental trophoblast through ERK signaling pathway†. Biol Reprod 2024; 111:414-426. [PMID: 38647664 DOI: 10.1093/biolre/ioae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.
Collapse
Affiliation(s)
- Ming-Rui Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - En-Xiang Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhuo-Hang Li
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hong-Lan Song
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Fang-Fang Li
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - You-Long Xie
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li-Juan Fu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
13
|
Ajmal N, Gargano SM, Gosavi U, Tuluc M. Recurrent Inflammatory Myofibroblastic Tumor of Larynx Harboring a Novel THBS1::ALK Fusion. Int J Genomics 2024; 2024:4937501. [PMID: 39171208 PMCID: PMC11338662 DOI: 10.1155/2024/4937501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a rare soft tissue tumor primarily occurring in the abdominopelvic region of young patients, and it is characterized by spindle-shaped myofibroblasts, or fibroblasts surrounded by inflammatory infiltrate. Herein, we report a case of a 24-year-old male with a firm submucosal mass in the anterior right vocal fold diagnosed as an IMT that recurred 14 months later. The tumor demonstrated a novel THBS1::ALK fusion containing Exons 1-7 of the thrombospondin 1 (THBS1) gene fused to Exon 19 of the anaplastic lymphoma kinase (ALK) gene via next-generation sequencing with the NextSeq sequencer. The fusion of THBS1 to ALK potentially results in increased expression and constitutive activation of the ALK kinase domain. These findings not only broaden the repertoire of known ALK fusion partners implicated in tumorigenesis but also provide a novel avenue for investigating the etiology of recurrent IMT by considering this fusion event as a causal factor. To our knowledge, this is the second case of IMT of the larynx with this novel mutation reported in the literature and the first such case with a detailed description of this specific fusion and clinical recurrence.
Collapse
Affiliation(s)
- Namra Ajmal
- Department of Pathology and Genomic MedicineThomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Stacey M. Gargano
- Department of Pathology and Genomic MedicineThomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Ujwala Gosavi
- Department of Pathology and Genomic MedicineThomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Madalina Tuluc
- Department of Pathology and Genomic MedicineThomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Poh QH, Rai A, Pangestu M, Salamonsen LA, Greening DW. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024; 24:e2300056. [PMID: 37698557 DOI: 10.1002/pmic.202300056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Sun C, Mei J, Yi H, Song M, Ma Y, Huang Y. The Effect of the cAMP Signaling Pathway on HTR8/SV-Neo Cell Line Proliferation, Invasion, and Migration After Treatment with Forskolin. Reprod Sci 2024; 31:1268-1277. [PMID: 38110819 DOI: 10.1007/s43032-023-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.
Collapse
Affiliation(s)
- Chao Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Mengyi Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Afshar Y, Yin O, Jeong A, Martinez G, Kim J, Ma F, Jang C, Tabatabaei S, You S, Tseng HR, Zhu Y, Krakow D. Placenta accreta spectrum disorder at single-cell resolution: a loss of boundary limits in the decidua and endothelium. Am J Obstet Gynecol 2024; 230:443.e1-443.e18. [PMID: 38296740 DOI: 10.1016/j.ajog.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.
Collapse
Affiliation(s)
- Yalda Afshar
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.
| | - Ophelia Yin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Anhyo Jeong
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Guadalupe Martinez
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jina Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Christine Jang
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sarah Tabatabaei
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, Los Angeles, CA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, Los Angeles, CA; Department of Pathology, University of California, Los Angeles, Los Angeles, CA
| | - Deborah Krakow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Departments of Orthopedic Surgery and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
17
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Lee BK. Mechanistic actions of long non-coding RNA MALAT1 within the ovary and at the feto-maternal interface. Mol Biol Rep 2024; 51:301. [PMID: 38353828 DOI: 10.1007/s11033-024-09220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Long non-coding RNAs (LncRNAs) are being unveiled as crucial regulators of several biological processes and pathways. Among the lncRNAs is metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), which is also known as nuclear enriched abundant transcript 2 (NEAT2). MALAT1 is highly conserved in mammals, and controls cellular processes such as proliferation, migration, invasion, angiogenesis, and apoptosis in both physiological and pathological conditions. Roles of MALAT1 in the female reproductive system are gradually getting explored. Within the ovarian micro-environment, the physiological expression of MALAT1 potentially modulates folliculogenesis while its upregulation promotes the metastasis of epithelial ovarian cancers. Interestingly, women with polycystic ovary syndrome have been shown to exhibit aberrant ovarian expression of MALAT1 and this is believed to contribute to the development of the disease. At the feto-maternal interface, MALAT1 potentially promotes trophoblast development. While its placental downregulation is linked to the pathogenesis of preeclampsia, its placental upregulation is associated with placenta increta and placenta percreta. Hence, abnormal expression of MALAT1 is a candidate molecular biomarker and therapeutic target for the treatment of these obstetric and gynecologic anomalies. To enhance a quick uncovering and detailed characterization of the mechanistic actions of MALAT1 in the female reproductive system, we have highlighted some knowledge deficits and have recommended ideal experimental models to be employed in prospective investigations.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
| |
Collapse
|
18
|
Li J, Feng H, Zhu J, Yang K, Zhang G, Gu Y, Shi T, Chen W. Gastric cancer derived exosomal THBS1 enhanced Vγ9Vδ2 T-cell function through activating RIG-I-like receptor signaling pathway in a N6-methyladenosine methylation dependent manner. Cancer Lett 2023; 576:216410. [PMID: 37783390 DOI: 10.1016/j.canlet.2023.216410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Gamma delta (γδ) T-cell-based immunotherapy has shown favorable safety and clinical response in patients with multiple types of cancer. However, its efficiency in treating patients with solid tumors remains limited. In the current study, we investigated the function and molecular mechanism underlying gastric cancer (GC) cell-derived exosomal THBS1 in the regulation of Vγ9Vδ2 T cells. We found that GC cell-derived exosomal THBS1 markedly enhanced the cytotoxicity of Vγ9Vδ2 T cells against GC cells and the production of IFN-γ, TNF-α, perforin and granzyme B in vitro and elevated the killing effects of Vγ9Vδ2 T cells on GC cells in vivo. Mechanistically, exosomal THBS1 could regulate METTL3-or IGF2BP2-mediated m6A modification, further activating the RIG-I-like receptor signaling pathway in Vγ9Vδ2 T cells. Moreover, blocking the RIG-I-like receptor signaling pathway reversed the effects of exosomal THBS1 on the function of Vγ9Vδ2 T cells. In addition, THBS1 was expressed at low levels in GC tissues and was associated with an unfavorable prognosis in GC patients. In sum, our findings indicate that exosomal THBS1 derived from GC cells enhanced the function of Vγ9Vδ2 T cells by activating the RIG-I-like signaling pathway in a m6A methylation-dependent manner. Targeting the exosomal THBS1/m6A/RIG-I axis may have important implications for GC immunotherapy based on Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Wu ZH, Li FF, Ruan LL, Feng Q, Zhang S, Li ZH, Otoo A, Tang J, Fu LJ, Liu TH, Ding YB. miR-181d-5p, which is upregulated in fetal growth restriction placentas, inhibits trophoblast fusion via CREBRF. J Assist Reprod Genet 2023; 40:2725-2737. [PMID: 37610607 PMCID: PMC10643557 DOI: 10.1007/s10815-023-02917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Fetal growth restriction (FGR) is a common complication characterized by impaired placental function and unfavorable pregnancy outcomes. This study aims to elucidate the expression pattern of miR-181d-5p in FGR placentas and explore its effects on trophoblast fusion. METHODS The expression pattern of miR-181d-5p in human FGR placentas were evaluated using qRT-PCR. Western blot, qRT-PCR, and Immunofluorescence analysis were performed in a Forskolin (FSK)-induced BeWo cell fusion model following the transfection of miR-181d-5p mimic or inhibitor. Potential target genes for miR-181d-5p were identified by screening miRNA databases. The interaction between miR-181d-5p and Luman/CREB3 Recruitment Factor (CREBRF) was determined through a luciferase assay. Moreover, the effect of CREBRF on BeWo cell fusion was examined under hypoxic conditions. RESULTS Aberrant up-regulation of miR-181d-5p and altered expression of trophoblast fusion makers, including glial cell missing 1 (GCM1), Syncytin1 (Syn1), and E-cadherin (ECAD), were found in human FGR placentas. A down-regulation of miR-181d-5p expression was observed in the FSK-induced BeWo cell fusion model. Transfection of the miR-181d-5p mimic resulted in the inhibition of BeWo cell fusion, characterized by a down-regulation of GCM1 and Syn1, accompanied by an up-regulation of ECAD. Conversely, the miR-181d-5p inhibitor promoted BeWo cell fusion. Furthermore, miR-181d-5p exhibited negative regulation of CREBRF, which was significantly down-regulated in the hypoxia-induced BeWo cell model. The overexpression of CREBRF was effectively ameliorated the impaired BeWo cell fusion induced by hypoxia. CONCLUSIONS Our study demonstrated that miR-181d-5p, which is elevated in FGR placenta, inhibited the BeWo cell fusion through negatively regulating the expression of CREBRF.
Collapse
Affiliation(s)
- Zhi-Hong Wu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Shuang Zhang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Zhuo-Hang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Antonia Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Li-Juan Fu
- Department of Pharmacology, the School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Academician Workstation, Changsha Medical University, Changsha, China.
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Xu J, Wang J, Chen M, Chao B, He J, Bai Y, Luo X, Liu H, Xie L, Tao Y, Qi H, Luo X. miR-101-5p suppresses trophoblast cell migration and invasion via modulating the DUSP6-ERK1/2 axis in preeclampsia. J Assist Reprod Genet 2023; 40:1597-1610. [PMID: 37300650 PMCID: PMC10352218 DOI: 10.1007/s10815-023-02846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Bingdi Chao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lumei Xie
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Wei X, Zhou S, Liao L, Liu M, Gao Y, Yin Y, Xu Q, Zhou R. Comprehensive analysis of transcriptomic profiling of 5-methylcytosin modification in placentas from preeclampsia and normotensive pregnancies. FASEB J 2023; 37:e22751. [PMID: 36692426 DOI: 10.1096/fj.202201248r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.
Collapse
Affiliation(s)
- Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Shengping Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
22
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|
23
|
Valproate Targets Mammalian Gastrulation Impairing Neural Tissue Differentiation and Development of the Placental Source In Vitro. Int J Mol Sci 2022; 23:ijms23168861. [PMID: 36012122 PMCID: PMC9408494 DOI: 10.3390/ijms23168861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The teratogenic activity of valproate (VPA), an antiepileptic and an inhibitor of histone deacetylase (HDACi), is dose-dependent in humans. Previous results showed that VPA impairs in vitro development and neural differentiation of the gastrulating embryo proper. We aimed to investigate the impact of a lower VPA dose in vitro and whether this effect is retained in transplants in vivo. Rat embryos proper (E9.5) and ectoplacental cones were separately cultivated at the air-liquid interface with or without 1 mM VPA. Embryos were additionally cultivated with HDACi Trichostatin A (TSA), while some cultures were syngeneically transplanted under the kidney capsule for 14 days. Embryos were subjected to routine histology, immunohistochemistry, Western blotting and pyrosequencing. The overall growth of VPA-treated embryos in vitro was significantly impaired. However, no differences in the apoptosis or proliferation index were found. Incidence of the neural tissue was lower in VPA-treated embryos than in controls. TSA also impaired growth and neural differentiation in vitro. VPA-treated embryos and their subsequent transplants expressed a marker of undifferentiated neural cells compared to controls where neural differentiation markers were expressed. VPA increased the acetylation of histones. Our results point to gastrulation as a sensitive period for neurodevelopmental impairment caused by VPA.
Collapse
|
24
|
Shen Y, Ren H, Davshilt T, Tian S, Wang X, Yi M, Ulaangerel T, Li B, Dugarjav M, Bou G. The transcriptome landscapes of allantochorion and vitelline-chorion in equine day 30 conceptus. Front Cell Dev Biol 2022; 10:958205. [PMID: 35990610 PMCID: PMC9386053 DOI: 10.3389/fcell.2022.958205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
During equine early gestation, trophectoderm forms chorion tissue, which is composed of two parts that one is covering allantoin, called allantochorion (AC) and another is covering yolk sac, which here we call vitelline-chorion (VC). Given that little is known about the equine trophoblast-derived chorion differentiation at an early stage, we first compared the transcriptome of AC and VC of day 30 equine conceptus based on RNA-sequencing. As a result, we found that compared to VC, there are 484 DEGs, including 305 up- and 179 down-regulated genes in AC. GO and KEGG analysis indicated that up-regulated genes in AC are mainly cell proliferation and cell adhesion-related genes, participating in allantois expansion and allantochorionic-placenta formation; dominant genes in VC are extracellular exosome and other cell adhesion-related genes implicated in direct and indirect conceptus-maternal communication. Additionally, as for the progenitor chorion tissue of equine chorionic gonadotropin secreting endometrium cup-the chorionic girdle (CG), which locates at the junction of the dilating AC and regressing VC, we revealed its unique gene expression pattern and the gene regulation during its further differentiation in vitro. Collectively, this study sheds light on the molecular events regarding the trophoblast differentiation and function at an early stage of the equine preimplantation conceptus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manglai Dugarjav
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
25
|
Zhang M, Deng X, Jiang Z, Ge Z. Identification of underlying mechanisms and hub gene-miRNA networks of the genomic subgroups in preeclampsia development. Medicine (Baltimore) 2022; 101:e29569. [PMID: 35866827 PMCID: PMC9302342 DOI: 10.1097/md.0000000000029569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can lead to multiorgan complications in the mother and fetus. Our study aims to uncover the underlying mechanisms and hub genes between genomic subgroups of preeclampsia. A total of 180 preeclampsia cases from 4 gene profiles were classified into 3 subgroups. Weighted gene coexpression analysis was performed to uncover the genomic characteristics associated with different clinical features. Functional annotation was executed within the significant modules and hub genes were predicted using Cytoscape software. Subsequently, miRNet analysis was performed to identify potential miRNA-mRNA networks. Three key subgroup-specific modules were identified. Patients in subgroup II were found to develop more severe preeclampsia symptoms. Subgroup II, characterized by classical markers, was considered representative of typical preeclampsia patients. Subgroup I was considered as an early stage of preeclampsia with normal-like gene expression patterns. Moreover, subgroup III was a proinflammatory subgroup, which presented immune-related genomic characteristics. Subsequently, miR-34a-5p and miR-106a-5p were found to be correlated with all 3 significant gene modules. This study revealed the transcriptome classification of preeclampsia cases with unique gene expression patterns. Potential hub genes and miRNAs may facilitate the identification of therapeutic targets for preeclampsia in future.
Collapse
Affiliation(s)
- Min Zhang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaheng Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyan Jiang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Ge
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhiping Ge, Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210000, China. (e-mail: )
| |
Collapse
|
26
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
27
|
OUP accepted manuscript. Mol Hum Reprod 2022; 28:6583214. [DOI: 10.1093/molehr/gaac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/31/2022] [Indexed: 11/13/2022] Open
|
28
|
Shangguan Y, Wang Y, Shi W, Guo R, Zeng Z, Hu W, Cai W, Yan Q, Xu Y, Tang D, Dai Y. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia. J Cell Mol Med 2021; 25:10614-10626. [PMID: 34697885 PMCID: PMC8581308 DOI: 10.1111/jcmm.16997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a dangerous hypertensive disorder that occurs during pregnancy. The specific aetiology and pathogenesis of PE have yet to be clarified. To better reveal the specific pathogenesis of PE, we characterized the proteome and acetyl proteome (acetylome) profile of placental tissue from PE and normal-term pregnancy by label-free quantification proteomics technology and PRM analysis. In this research, 373 differentially expressed proteins (DEPs) were identified by proteome analysis. Functional enrichment analysis revealed significant enrichment of DEPs related to angiogenesis and the immune system. COL12A1, C4BPA and F13A1 may be potential biomarkers for PE diagnosis and new therapeutic targets. Additionally, 700 Kac sites were identified on 585 differentially acetylated proteins (DAPs) by acetylome analyses. These DAPs may participate in the occurrence and development of PE by affecting the complement and coagulation cascades pathway, which may have important implications for better understand the pathogenesis of PE. In conclusion, this study systematically analysed the reveals critical features of placental proteins in pregnant women with PE, providing a resource for exploring the contribution of lysine acetylation modification to PE.
Collapse
Affiliation(s)
- Yu Shangguan
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yinglan Wang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wei Shi
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Ruonan Guo
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Zhipeng Zeng
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wenlong Hu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wanxia Cai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yong Xu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Donge Tang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
| |
Collapse
|
29
|
Parameshwar PK, Sagrillo-Fagundes L, Fournier C, Girard S, Vaillancourt C, Moraes C. Disease-specific extracellular matrix composition regulates placental trophoblast fusion efficiency. Biomater Sci 2021; 9:7247-7256. [PMID: 34608901 DOI: 10.1039/d1bm00799h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The placental syncytiotrophoblast is a multinucleated layer that regulates transport between the mother and fetus. Fusion of trophoblasts is essential to form this layer, but this process can be disrupted in pregnancy-related disorders such as preeclampsia. Disease progression is also associated with changes in the extracellular matrix (ECM), but whether disease-specific ECM compositions play any causal role in establishing syncytiotrophoblast disease phenotypes remains unknown. Here, we develop a decellularization-based platform to isolate and characterize the role of human placental ECM composition on cell function, while controlling for the confounding effects of matrix structure and mechanics that can arise in conventional tissue decellularization/recellularization experiments. Using this approach, we demonstrate that ECM compositional changes that occur in preeclampsia have a statistically significant effect on adhesion, spreading, and fusion of placental trophoblasts. Proteomic analysis of ECM content then allowed us to identify and recreate selected differences in matrix composition; indicating that replacement of normally present Type IV Collagen by Type I Collagen in preeclampsia significantly affects fusion efficiency. These results indicate that disease-specific matrix compositions can play an important role in trophoblast fusion, suggesting novel matrix-targeting therapeutic strategies for pregnancy-related disorders. More broadly, this work demonstrates the utility of a decellularization-based approach in understanding the functional contributions of matrix composition in driving cellular disease phenotypes.
Collapse
Affiliation(s)
| | - Lucas Sagrillo-Fagundes
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada.,INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Caroline Fournier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Université de Montréal, Ste-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.,Department of Obstetrics and Gynecology, Université de Montréal, Ste-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada. .,Department of Chemical Engineering, McGill University, Montréal, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
30
|
Adu-Gyamfi EA, Lamptey J, Chen XM, Li FF, Li C, Ruan LL, Yang XN, Liu TH, Wang YX, Ding YB. Iodothyronine deiodinase 2 (DiO 2) regulates trophoblast cell line cycle, invasion and apoptosis; and its downregulation is associated with early recurrent miscarriage. Placenta 2021; 111:54-68. [PMID: 34166926 DOI: 10.1016/j.placenta.2021.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Trophoblast development is a crucial event in placentation and pregnancy complications but its underlying mechanisms remain unclear. Thus, we aimed at investigating the role of DiO2 in trophoblast cell line decisions and assessing its placental villous expression in early recurrent miscarriage (ERM) patients. METHODS The placental villous expression of DiO2 was determined with immunofluorescence. Cell proliferation was measured with the CCK8 kit while cell-cycle and apoptosis were studied with flow-cytometry. Cell migration and invasion were measured with wound-healing and transwell assays, respectively. Gene expression was then assessed with RT-qPCR and western blotting. RESULTS DiO2 is expressed in the CTB, PCT, DCT and STB of the placenta. Its overexpression arrested trophoblast cell line proliferation at the G1 phase of the cell-cycle by downregulating cyclin-D1 and PCNA, while promoting apoptosis via increased caspase-3 activity and inhibition of the AKT and ERK1/2 signaling pathways. Also, it augmented trophoblast cell line migration and invasion via the upregulation of N-cadherin, vimentin, fascin-1, twist-1 and other epithelial-mesenchymal transition genes. DiO2 knockdown elicited the opposite effects. Surprisingly, each of these effects of DiO2 manipulation was not mediated by thyroid hormone metabolism. Assessment of the ERM placental villi revealed a downregulation of DiO2, N-cadherin, vimentin, fascin-1 and twist-1. The expression of E-cadherin remained unchanged in these placentae. DISCUSSION During placentation, DiO2 may inhibit trophoblast proliferation while facilitating their differentiation into an invasive phenotype; and that its downregulation may contribute to the shallow trophoblast invasion that precedes ERM. Hence, DiO2 is a potential therapeutic target against ERM.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Mei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Niu Yang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, 400020, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|