1
|
Gou Y, Li A, Dong X, Hao A, Li J, Xiang H, Rahaman S, He TC, Fan J. Lactate transporter MCT4 regulates the hub genes for lipid metabolism and inflammation to attenuate intracellular lipid accumulation in non-alcoholic fatty liver disease. Genes Dis 2025; 12:101554. [PMID: 40330148 PMCID: PMC12052676 DOI: 10.1016/j.gendis.2025.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 05/08/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) patients have multiple metabolic disturbances, with markedly elevated levels of lactate. Lactate accumulations play pleiotropic roles in disease progression through metabolic rearrangements and epigenetic modifications. Monocarboxylate transporter 4 (MCT4) is highly expressed in hepatocytes and responsible for transporting intracellular lactate out of the cell. To explore whether elevated MCT4 levels played any role in NAFLD development, we overexpressed and silenced MCT4 in hepatocytes and performed a comprehensive in vitro and in vivo analysis. Our results revealed that MCT4 overexpression down-regulated the genes for lipid synthesis while up-regulating the genes involved in lipid catabolism. Conversely, silencing MCT4 expression or inhibiting MCT4 expression led to the accumulation of intracellular lipid and glucose metabolites, resulting in hepatic steatosis. In a mouse model of NAFLD, we found that exogenous MCT4 overexpression significantly reduced lipid metabolism and alleviated hepatocellular steatosis. Mechanistically, MCT4 alleviated hepatic steatosis by regulating a group of hub genes such as Arg2, Olr1, Cd74, Mmp8, Irf7, Spp1, and Apoe, which in turn impacted multiple pathways involved in lipid metabolism and inflammatory response, such as PPAR, HIF-1, TNF, IL-17, PI3K-AKT, Wnt, and JAK-STAT. Collectively, our results strongly suggest that MCT4 may play an important role in regulating lipid metabolism and inflammation and thus serve as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Han Xiang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Saidur Rahaman
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China
| |
Collapse
|
2
|
Zhao P, Zhu Y, Kim M, Zhao G, Wang Y, Collins CP, Mei O, Zhang Y, Duan C, Zhong J, Zhang H, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Luu HH, Haydon RC, Lee MJ, Shi LL, Huang W, Fan J, Sun C, Wen L, Ameer GA, He TC, Reid RR. Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:197-210. [PMID: 39718997 PMCID: PMC11783527 DOI: 10.1021/acsami.4c13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs). Specifically, we synthesized and characterized methacrylate poly(1,8 octamethylene citrate) (mPOC), mixed it with 0%, 40% or 60% HA (i.e., mPOC-0HA, mPOC-40HA, or mPOC-60HA), and fabricated composite scaffold via micro-continuous liquid interface production (μCLIP). The 3D-printed mPOC-HA composite scaffolds were compatible with human USCs that exhibited high osteogenic activity in vitro upon BMP9 stimulation. Subcutaneous implantation of mPOC-HA scaffolds laden with BMP9-stimulated USCs revealed effective bone formation in all three types of mPOC-HA composite scaffolds. Histologic evaluation revealed that the mPOC-60HA composite scaffold yielded the most mature bone, resembling native bone tissue with extensive scaffold-osteointegration. Collectively, these findings demonstrate that the citrate-based mPOC-60HA composite, human urine stem cells, and the potent osteogenic factor BMP9 constitute a desirable triad for effective bone tissue engineering.
Collapse
Affiliation(s)
- Piao Zhao
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Yi Zhu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Beijing Hospital,
National Center of Gerontology, Chinese Academy of Medical Sciences
& Peking Union Medical College, Beijing, 100005, China
| | - Mirae Kim
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guozhi Zhao
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Yonghui Wang
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Geriatrics, Xinhua Hospital, Shanghai
Jiao-Tong University School of Medicine, Shanghai 200000, China
| | - Caralyn P. Collins
- Department
of Mechanical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
| | - Ou Mei
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yuanyuan Zhang
- Wake Forest
Institute for Regenerative Medicine, Wake
Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Chongwen Duan
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
| | - Jiamin Zhong
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Ministry
of Education Key Laboratory of Diagnostic Medicine, and Department
of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhang
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- The Breast
Cancer Center, Chongqing University Cancer
Hospital, Chongqing 4000430, China
| | - Wulin You
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Wuxi Hospital Affiliated
to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Guowei Shen
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Changqi Luo
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Yibin Second People’s
Hospital, Affiliated with West China School of Medicine, Yibin 644000, China
| | - Xingye Wu
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Jingjing Li
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Oncology, The Affiliated Hospital of
Shandong Second Medical University, Weifang 261053, China
| | - Yi Shu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Stem Cell
Biology and Therapy Laboratory of the Pediatric Research Institute,
the National Clinical Research Center for Child Health and Disorders,
and Ministry of Education Key Laboratory of Child Development and
Disorders, the Children’s Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Hue H. Luu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Rex C. Haydon
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Lewis L. Shi
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Wei Huang
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Ministry
of Education Key Laboratory of Diagnostic Medicine, and Department
of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Sun
- Department
of Mechanical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Liangyuan Wen
- Department
of Orthopaedic Surgery, Beijing Hospital,
National Center of Gerontology, Chinese Academy of Medical Sciences
& Peking Union Medical College, Beijing, 100005, China
| | - Guillermo A. Ameer
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tong-Chuan He
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Laboratory
of Craniofacial Biology and Development, Section of Plastic and Reconstructive
Surgery, Department of Surgery, The University
of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Russell R. Reid
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Laboratory
of Craniofacial Biology and Development, Section of Plastic and Reconstructive
Surgery, Department of Surgery, The University
of Chicago Medical Center, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Hao ZN, Tan XP, Zhang Q, Li J, Xia R, Ma Z. Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy. Biomolecules 2024; 14:1646. [PMID: 39766353 PMCID: PMC11674224 DOI: 10.3390/biom14121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by promoting regulatory T cell (Treg) activity. Lactylation, a post-translational modification (PTM), alters histone and non-histone proteins, influencing gene expression and further reinforcing immune suppression. In the complex TME, lactate and its derivative, lactylation, are not only associated with immune suppression but can also, under certain conditions, exert immunostimulatory effects that enhance cytotoxic responses. This review describes the dual roles of lactate and lactylation in T-cell-mediated tumor immunity, analyzing how these factors contribute to immune evasion, therapeutic resistance, and immune activation. Furthermore, the article highlights emerging therapeutic strategies aimed at inhibiting lactate production or disrupting lactylation pathways to achieve a balanced regulation of these dual effects. These strategies offer new insights into overcoming tumor-induced immune suppression and hold the potential to improve the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Zhi-Nan Hao
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Xiao-Ping Tan
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
- The Third Clinical Medical College of Yangtze University, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434023, China
| | - Qing Zhang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Jie Li
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Ruohan Xia
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
4
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|
5
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|