1
|
Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, Schuster LC, Keinath MC, Lugo Ramos JS, Kosack L, Evankow A, Printz D, Kirchberger S, Ergüner B, Datlinger P, Fortelny N, Schmidl C, Farlik M, Skjærven K, Bergthaler A, Liedvogel M, Thaller D, Burger PA, Hermann M, Distel M, Distel DL, Kübber-Heiss A, Bock C. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat Commun 2023; 14:232. [PMID: 36646694 PMCID: PMC9842680 DOI: 10.1038/s41467-022-34828-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Daria Romanovskaia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charlotte A Seid
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Juan Sebastian Lugo Ramos
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann Evankow
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical University of Vienna, Center for Pathophysiology Infectiology and Immunology, Institute of Hygiene and Applied Immunology, Vienna, Austria
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Avian Research, An der Vogelwarte, Wilhelmshaven, Germany
| | - Denise Thaller
- Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marcela Hermann
- Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Daniel L Distel
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
2
|
Shannon A, Sama B, Gauffre P, Guez T, Debart F, Vasseur JJ, Decroly E, Canard B, Ferron F. A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome. Nucleic Acids Res 2022; 50:11186-11198. [PMID: 36265859 DOI: 10.1093/nar/gkac876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
The order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous. In Coronaviridae, the best characterized family, two distinct methytransferases perform methylation of the N7-guanine and 2'-OH of the RNA-cap to generate a cap-1 structure (m7GpppNm). The genes of both of these enzymes are located in the ORF1b genomic region. While 2'-O-MTases can be identified for most other families based on conservation of both sequence motifs and genetic loci, identification of the N7-guanine methyltransferase has proved more challenging. Recently, we identified a putative N7-MTase domain in the ORF1a region (N7-MT-1a) of certain members of the large genome Tobaniviridae family. Here, we demonstrate that this domain indeed harbors N7-specific methyltransferase activity. We present its structure as the first N7-specific Rossmann-fold (RF) MTase identified for (+)RNA viruses, making it remarkably different from that of the known Coronaviridae ORF1b N7-MTase gene. We discuss the evolutionary implications of such an appearance in this unexpected location in the genome, which introduces a split-off in the classification of Tobaniviridae.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bhawna Sama
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Pierre Gauffre
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Théo Guez
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Etienne Decroly
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - François Ferron
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
3
|
Cai Z, He Y, Liu S, Xue Y, Quan H, Zhang L, Gao YQ. Hierarchical dinucleotide distribution in genome along evolution and its effect on chromatin packing. Life Sci Alliance 2021; 4:4/8/e202101028. [PMID: 34168075 PMCID: PMC8321668 DOI: 10.26508/lsa.202101028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
It describes how hierarchical CpG distribution on the genomes of species change in the evolution and the correlation with the chromatin structure. Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.
Collapse
Affiliation(s)
- Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Ling Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
4
|
Canapa A, Biscotti MA, Barucca M, Carducci F, Carotti E, Olmo E. Shedding light upon the complex net of genome size, genome composition and environment in chordates. EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1747558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - E. Carotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - E. Olmo
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
5
|
Singh SK, Das D, Rhen T. Embryonic Temperature Programs Phenotype in Reptiles. Front Physiol 2020; 11:35. [PMID: 32082193 PMCID: PMC7005678 DOI: 10.3389/fphys.2020.00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Reptiles are critically affected by temperature throughout their lifespan, but especially so during early development. Temperature-induced changes in phenotype are a specific example of a broader phenomenon called phenotypic plasticity in which a single individual is able to develop different phenotypes when exposed to different environments. With climate change occurring at an unprecedented rate, it is important to study temperature effects on reptiles. For example, the potential impact of global warming is especially pronounced in species with temperature-dependent sex determination (TSD) because temperature has a direct effect on a key phenotypic (sex) and demographic (population sex ratios) trait. Reptiles with TSD also serve as models for studying temperature effects on the development of other traits that display continuous variation. Temperature directly influences metabolic and developmental rate of embryos and can have permanent effects on phenotype that last beyond the embryonic period. For instance, incubation temperature programs post-hatching hormone production and growth physiology, which can profoundly influence fitness. Here, we review current knowledge of temperature effects on phenotypic and developmental plasticity in reptiles. First, we examine the direct effect of temperature on biophysical processes, the concept of thermal performance curves, and the process of thermal acclimation. After discussing these reversible temperature effects, we focus the bulk of the review on developmental programming of phenotype by temperature during embryogenesis (i.e., permanent developmental effects). We focus on oviparous species because eggs are especially susceptible to changes in ambient temperature. We then discuss recent work probing the role of epigenetic mechanisms in mediating temperature effects on phenotype. Based on phenotypic effects of temperature, we return to the potential impact of global warming on reptiles. Finally, we highlight key areas for future research, including the identification of temperature sensors and assessment of genetic variation for thermosensitivity.
Collapse
Affiliation(s)
| | | | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
6
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
7
|
Sargsyan A, Simonyan A, Hovhannisyan G, Arakelyan M, Aroutiounian R. Application of the comet assay, micronucleus test and global DNA methylation analysis in Darevskia lizards as a sentinel organism for genotoxic monitoring of soil pollution. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:117-124. [DOI: 10.1016/j.mrgentox.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
8
|
Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 2018; 27:2790-2806. [DOI: 10.1111/mec.14727] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - João Barbosa
- Department of Biology; University of Aveiro; Aveiro Portugal
| | - Sérgio M. Marques
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab); Ghent University; Ghent Belgium
| | - Fernando J. M. Gonçalves
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Joana L. Pereira
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| |
Collapse
|
9
|
Motta-Neto CC, Marques A, Costa GW, Cioffi MB, Bertollo LA, Soares RX, Scortecci KC, Artoni RF, Molina WF. Differential hypomethylation of the repetitive Tol2/Alu-rich sequences in the genome of Bodianus species (Labriformes, Labridae). COMPARATIVE CYTOGENETICS 2018; 12:145-162. [PMID: 29675141 PMCID: PMC5904366 DOI: 10.3897/compcytogen.v12i2.21830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Representatives of the order Labriformes show karyotypes of extreme conservatism together with others with high chromosomal diversification. However, the cytological characterization of epigenetic modifications remains unknown for the majority of the species. In the family Labridae, the most abundant fishes on tropical reefs, the genomes of the genus Bodianus Bloch, 1790 have been characterized by the occurrence of a peculiar chromosomal region, here denominated BOD. This region is exceptionally decondensed, heterochromatic, argentophilic, GC-neutral and, in contrast to classical secondary constrictions, shows no signals of hybridization with 18S rDNA probes. In order to characterize the BOD region, the methylation pattern, the distribution of Alu and Tol2 retrotransposons and of 18S and 5S rDNA sites, respectively, were analyzed by Fluorescence In Situ Hybridization (FISH) on metaphase chromosomes of two Bodianus species, B. insularis Gomon & Lubbock, 1980 and B. pulchellus (Poey, 1860). Immunolocalization of the 5-methylcytosine revealed hypermethylated chromosomal regions, dispersed along the entire length of the chromosomes of both species, while the BOD regions exhibited a hypomethylated pattern. Hypomethylation of the BOD region is associated with the precise co-location of Tol2 and Alu elements, suggesting their active participation in the regulatory epigenetic process. This evidence underscores a probable differential methylation action during the cell cycle, as well as the role of Tol2/Alu elements in functional processes of fish genomes.
Collapse
Affiliation(s)
- Clóvis C. Motta-Neto
- Center of Biosciences, Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - André Marques
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Gideão W.W.F. Costa
- Center of Biosciences, Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marcelo B. Cioffi
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Luiz A.C. Bertollo
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Rodrigo X. Soares
- Center of Biosciences, Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kátia C. Scortecci
- Center of Biosciences, Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roberto F. Artoni
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Wagner F. Molina
- Center of Biosciences, Department of Cellular Biology and Genetics, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
10
|
De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring Animal Age with DNA Methylation: From Humans to Wild Animals. Front Genet 2017; 8:106. [PMID: 28878806 PMCID: PMC5572392 DOI: 10.3389/fgene.2017.00106] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) is a key mechanism for regulating gene expression in animals and levels are known to change with age. Recent studies have used DNAm changes as a biomarker to estimate chronological age in humans and these techniques are now also being applied to domestic and wild animals. Animal age is widely used to track ongoing changes in ecosystems, however chronological age information is often unavailable for wild animals. An ability to estimate age would lead to improved monitoring of (i) population trends and status and (ii) demographic properties such as age structure and reproductive performance. Recent studies have revealed new examples of DNAm age association in several new species increasing the potential for developing DNAm age biomarkers for a broad range of wild animals. Emerging technologies for measuring DNAm will also enhance our ability to study age-related DNAm changes and to develop new molecular age biomarkers.
Collapse
Affiliation(s)
- Ricardo De Paoli-Iseppi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia.,Australian Antarctic DivisionHobart, TAS, Australia
| | | | | | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia
| | - Joanne L Dickinson
- Cancer, Genetics and Immunology Group, Menzies Institute for Medical ResearchHobart, TAS, Australia
| | - Simon N Jarman
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin UniversityPerth, WA, Australia.,CSIRO Indian Ocean Marine Research Centre, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
11
|
Radhakrishnan S, Literman R, Mizoguchi B, Valenzuela N. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination. Epigenetics Chromatin 2017; 10:28. [PMID: 28533820 PMCID: PMC5438563 DOI: 10.1186/s13072-017-0136-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
Background DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Results Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Conclusions Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0136-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srihari Radhakrishnan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Robert Literman
- Ecology and Evolutionary Biology Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Beatriz Mizoguchi
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011 USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011 USA
| |
Collapse
|
12
|
Rees AF, Alfaro-Shigueto J, Barata PCR, Bjorndal KA, Bolten AB, Bourjea J, Broderick AC, Campbell LM, Cardona L, Carreras C, Casale P, Ceriani SA, Dutton PH, Eguchi T, Formia A, Fuentes MMPB, Fuller WJ, Girondot M, Godfrey MH, Hamann M, Hart KM, Hays GC, Hochscheid S, Kaska Y, Jensen MP, Mangel JC, Mortimer JA, Naro-Maciel E, Ng CKY, Nichols WJ, Phillott AD, Reina RD, Revuelta O, Schofield G, Seminoff JA, Shanker K, Tomás J, van de Merwe JP, Van Houtan KS, Vander Zanden HB, Wallace BP, Wedemeyer-Strombel KR, Work TM, Godley BJ. Are we working towards global research priorities for management and conservation of sea turtles? ENDANGER SPECIES RES 2016. [DOI: 10.3354/esr00801] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
ALS and FTD: an epigenetic perspective. Acta Neuropathol 2016; 132:487-502. [PMID: 27282474 DOI: 10.1007/s00401-016-1587-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases seen in comorbidity in up to 50 % of cases. Despite tremendous efforts over the last two decades, no biomarkers or effective therapeutics have been identified to prevent, decelerate, or stop neuronal death in patients. While the identification of multiple mutations in more than two dozen genes elucidated the involvement of several mechanisms in the pathogenesis of both diseases, identifying the hexanucleotide repeat expansion in C9orf72, the most common genetic abnormality in ALS and FTD, opened the door to the discovery of several novel pathogenic biological routes, including chromatin remodeling and transcriptome alteration. Epigenetic processes regulate DNA replication and repair, RNA transcription, and chromatin conformation, which in turn further dictate transcriptional regulation and protein translation. Transcriptional and post-transcriptional epigenetic regulation is mediated by enzymes and chromatin-modifying complexes that control DNA methylation, histone modifications, and RNA editing. While the alteration of DNA methylation and histone modification has recently been reported in ALS and FTD, the assessment of epigenetic involvement in both diseases is still at an early stage, and the involvement of multiple epigenetic players still needs to be evaluated. As the epigenome serves as a way to alter genetic information not only during aging, but also following environmental signals, epigenetic mechanisms might play a central role in initiating ALS and FTD, especially for sporadic cases. Here, we provide a review of what is currently known about altered epigenetic processes in both ALS and FTD and discuss potential therapeutic strategies targeting epigenetic mechanisms. As approximately 85 % of ALS and FTD cases are still genetically unexplained, epigenetic therapeutics explored for other diseases might represent a profitable direction for the field.
Collapse
|
14
|
Caracappa S, Pisciotta A, Persichetti M, Caracappa G, Alduina R, Arculeo M. Nonmodal scutes patterns in the Loggerhead Sea Turtle (Caretta caretta): a possible epigenetic effect? CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eleven specimens of the threatened Loggerhead Sea Turtle (Caretta caretta (L., 1758)) were caught accidentally by fishermen in different parts of Sicily (Mediterranean Sea). Five of them showed an atypical number of carapacial and plastron scutes, making the immediate identification of the specimens as C. caretta difficult. Both genetic and epigenetic analysis were carried out on these specimens. Sequencing of a 649 bp sequence of the mitochondrial cytochrome c oxidase I (COI) gene allowed us to classify all the individuals as C. caretta. Epigenetic analysis, performed by evaluating the total level of DNA cytosine methylation, showed a reduced and significant (F = 72.65, p < 0.01) global level of methylated cytosines in the turtles with nonmodal scutes compared with the normal turtles. Our results suggest that the variability in the number of scutes could be dependent on the environmental conditions during embryonic incubation, via an epigenetic mechanism. This finding could have implications in our understanding of the pathways of morphological evolution and diversification in the chelonians.
Collapse
Affiliation(s)
- S. Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy
| | - A. Pisciotta
- Dipartimento STEBICEF, Via Archirafi 18 – V.le delle Scienze Ed. 16, 90123 Palermo, Italy
| | - M.F. Persichetti
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy
| | - G. Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy
| | - R. Alduina
- Dipartimento STEBICEF, Via Archirafi 18 – V.le delle Scienze Ed. 16, 90123 Palermo, Italy
| | - M. Arculeo
- Dipartimento STEBICEF, Via Archirafi 18 – V.le delle Scienze Ed. 16, 90123 Palermo, Italy
| |
Collapse
|
15
|
Marsh AG, Pasqualone AA. DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai. Front Physiol 2014; 5:173. [PMID: 24847277 PMCID: PMC4017131 DOI: 10.3389/fphys.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications of DNA and histones are a primary mechanism by which gene expression activities may be modified in response to environmental stimuli. Here we characterize patterns of methyl-cytosine composition in the marine polychaete Spiophanes tcherniai from McMurdo Sound, Antarctica. We cultured adult worms at two temperatures, -1.5°C (ambient control) and +4°C (warm treatment), for 4 weeks. We observed a rapid capacity for S. tcherniai organismal respiration rates and underlying catalytic rates of citrate synthase at +4°C to return to control levels in less than 4 weeks. We profiled changes in the methylation states of CpG sites in these treatments using an NGS strategy to computationally reconstruct and quantify methylation status across the genome. In our analysis we recovered 120,000 CpG sites in assembled contigs from both treatments. Of those, we were able to align 28,000 CpG sites in common between the two sample groups. In comparing these aligned sites between treatments, only 3000 (11%) evidenced a change in methylation state, but over 85% of changes involved a gain of a 5-methyl group on a CpG site (net increase in methyation). The ability to score CpG sites as partially methylated among gDNA copies in a sample opens up a new avenue for assessing DNA methylation responses to changing environments. By quantitatively distinguishing a "mixed" population of copies of one CpG site, we can begin to identify dynamic, non-binary, continuous-response reactions in DNA methylation intensity or density that previously may have been overlooked as noise.
Collapse
Affiliation(s)
- Adam G. Marsh
- Center for Bioinformatics and Computational Biology, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| | - Annamarie A. Pasqualone
- Marine Bioscience, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| |
Collapse
|
16
|
Head JA. Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol 2014; 54:77-86. [PMID: 24785828 DOI: 10.1093/icb/icu025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA methylation refers to the addition of a methyl group to nucleotides within DNA. As with other epigenetic endpoints, patterns of DNA methylation are susceptible to alterations due to exposure to environmental stressors, including contaminants. These alterations can persist in the absence of the initial stressor as cells divide, and can even be inherited between generations if they occur in the germ line. Although our knowledge concerning patterns of DNA methylation in animals is increasing, there remains a gap in the literature when it comes to species outside of those typically used for biomedical research. Here, I review the literature relating to DNA methylation in an array of taxa (mammals, fish, birds, amphibians, reptiles, and invertebrates) and discuss these data from an ecotoxicological perspective. The pattern and extent of DNA methylation is well conserved across species of vertebrates; methylation appears mainly on cytosine residues within a CpG context, and much of the genome is methylated, with the notable exception of cytosines within CpG islands in the promoters of genes. Highly methylated genes in vertebrates tend to be transcriptionally repressed. However, large differences occur between classes of vertebrates in terms of the timing and nature of reprogramming and genomic imprinting: epigenetic processes that establish patterns of DNA methylation in the early embryo and which are sensitive to environmental stress. In invertebrates, patterns of DNA methylation are extremely variable and differ significantly from the condition observed in vertebrates. Some invertebrate genomes exhibit no DNA methylation while others are methylated to a level that is comparable to vertebrates. Additionally, DNA methylation may have different functions in invertebrates, e.g., alternative splicing. This variability in basic patterns of DNA methylation among species during sensitive periods of development suggests that responses to epigenetically active environmental contaminants may be similarly variable. For example, the timing of exposure to a contaminant may be a critical factor when considered in the light of variable reprogramming schedules among species. With this in mind, I review data relating to the effects of contaminants on DNA methylation in animals, focusing on non-model organisms and on exposures in natural environments, when possible. An ecotoxicological perspective on patterns of DNA methylation in animals may improve our understanding of the range and diversity of epigenetic phenomena in the natural world.
Collapse
Affiliation(s)
- Jessica A Head
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Head JA, Mittal K, Basu N. Application of the LUminometric Methylation Assay to ecological species: tissue quality requirements and a survey of DNA methylation levels in animals. Mol Ecol Resour 2014; 14:943-52. [PMID: 24576185 DOI: 10.1111/1755-0998.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 01/02/2023]
Abstract
The LUminometric Methylation Assay (LUMA) measures global DNA methylation. LUMA depends on digestion of DNA with methyl-sensitive and methyl-insensitive restriction enzymes, followed by pyrosequencing. Until recently, LUMA has been principally used for biomedical research. Here, we use chickens as a model to investigate sample quality issues relating to LUMA and then apply the method to ecological species. First, we assessed the effect of tissue storage conditions on DNA methylation values. This is an important consideration for ecological species because samples are not always ideally preserved and LUMA is sensitive to poor DNA quality. We found that good quality LUMA data could be obtained from chicken liver and brain tissues stored at 21 °C for at least 2 and 12 h, respectively. Longer storage times introduced nonspecific peaks to pyrograms which were associated with reduced DNA methylation. Repeatedly, freezing and thawing the tissues did not affect LUMA data. Second, we measured DNA methylation in 12 species representing five animal classes: amphibians (African and Western clawed frog), reptiles (green anole lizard), fish (yellow perch, goldfish, lake trout), mammals (American mink, polar bear, short-beaked common dolphin, Atlantic white-sided dolphin) and birds (chicken, Japanese quail). We saw a pattern of high DNA methylation in fish (84-87%), and intermediate levels in mammals (68-72%) and birds (52-71%). This pattern corresponds well with previous measures of DNA methylation generated by HPLC. Our data represent the first CpG methylation values to be reported in several species and provide a basis for studying patterns of epigenetic inheritance in an ecological context.
Collapse
Affiliation(s)
- Jessica A Head
- Cooperative Institute for Limnology and Ecosystems Research, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
18
|
DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:475981. [PMID: 24551476 PMCID: PMC3914449 DOI: 10.1155/2014/475981] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/11/2013] [Accepted: 11/23/2013] [Indexed: 12/22/2022]
Abstract
DNA methylation is a key epigenetic modification in the vertebrate genomes known to be involved in biological processes such as regulation of gene expression, DNA structure and control of transposable elements. Despite increasing knowledge about DNA methylation, we still lack a complete understanding of its specific functions and correlation with environment and gene expression in diverse organisms. To understand how global DNA methylation levels changed under environmental influence during vertebrate evolution, we analyzed its distribution pattern along the whole genome in mammals, reptiles and fishes showing that it is correlated with temperature, independently on phylogenetic inheritance. Other studies in mammals and plants have evidenced that environmental stimuli can promote epigenetic changes that, in turn, might generate localized changes in DNA sequence resulting in phenotypic effects. All these observations suggest that environment can affect the epigenome of vertebrates by generating hugely different methylation patterns that could, possibly, reflect in phenotypic differences. We are at the first steps towards the understanding of mechanisms that underlie the role of environment in molding the entire genome over evolutionary times. The next challenge will be to map similarities and differences of DNA methylation in vertebrates and to associate them with environmental adaptation and evolution.
Collapse
|
19
|
Lechner M, Marz M, Ihling C, Sinz A, Stadler PF, Krauss V. The correlation of genome size and DNA methylation rate in metazoans. Theory Biosci 2012; 132:47-60. [PMID: 23132463 DOI: 10.1007/s12064-012-0167-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022]
Abstract
Total DNA methylation rates are well known to vary widely between different metazoans. The phylogenetic distribution of this variation, however, has not been investigated systematically. We combine here publicly available data on methylcytosine content with the analysis of nucleotide compositions of genomes and transcriptomes of 78 metazoan species to trace the evolution of abundance and distribution of DNA methylation. The depletion of CpG and the associated enrichment of TpG and CpA dinucleotides are used to infer the intensity and localization of germline CpG methylation and to estimate its evolutionary dynamics. We observe a positive correlation of the relative methylation of CpG motifs with genome size. We tested this trend successfully by measuring total DNA methylation with LC/MS in orthopteran insects with very different genome sizes: house crickets, migratory locusts and meadow grasshoppers. We hypothesize that the observed correlation between methylation rate and genome size is due to a dependence of both variables from long-term effective population size and is driven by the accumulation of repetitive sequences that are typically methylated during periods of small population sizes. This process may result in generally methylated, large genomes such as those of jawed vertebrates. In this case, the emergence of a novel demethylation pathway and of novel reader proteins for methylcytosine may have enabled the usage of cytosine methylation for promoter-based gene regulation. On the other hand, persistently large populations may lead to a compression of the genome and to the loss of the DNA methylation machinery, as observed, e.g., in nematodes.
Collapse
Affiliation(s)
- Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Faux N. Single amino acid and trinucleotide repeats: function and evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:26-40. [PMID: 23560303 DOI: 10.1007/978-1-4614-5434-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington's disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
Collapse
Affiliation(s)
- Noel Faux
- Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Wells JCK. Ecogeographical associations between climate and human body composition: analyses based on anthropometry and skinfolds. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 147:169-86. [PMID: 22212891 DOI: 10.1002/ajpa.21591] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/27/2011] [Indexed: 11/07/2022]
Abstract
In the 19th century, two "ecogeographical rules" were proposed hypothesizing associations of climate with mammalian body size and proportions. Data on human body weight and relative leg length support these rules; however, it is unknown whether such associations are attributable to lean tissue (the heat-producing component) or fat (energy stores). Data on weight, height, and two skinfold thickness were obtained from the literature for 137 nonindustrialized populations, providing 145 male and 115 female individual samples. A variety of indices of adiposity and lean mass were analyzed. Preliminary analyses indicated secular increases in skinfolds in men but not women, and associations of age and height with lean mass in both sexes. Decreasing annual temperature was associated with increasing body mass index (BMI), and increasing triceps but not subscapular skinfold. After adjusting for skinfolds, decreasing temperature remained associated with increasing BMI. These results indicate that colder environments favor both greater peripheral energy stores, and greater lean mass. Contrasting results for triceps and subscapular skinfolds might be due to adaptive strategies either constraining central adiposity in cold environments to reduce cardiovascular risk, or favoring central adiposity in warmer environments to maintain energetic support of the immune system. Polynesian populations were analyzed separately and contradicted all of the climate trends, indicating support for the hypothesis that they are cold-adapted despite occupying a tropical region. It is unclear whether such associations emerge through natural selection or through trans-generational and life-course plasticity. These findings nevertheless aid understanding of the wide variability in human physique and adiposity.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Center, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| |
Collapse
|
22
|
Lim CH, Hamazaki T, Braun EL, Wade J, Terada N. Evolutionary genomics implies a specific function of Ant4 in mammalian and anole lizard male germ cells. PLoS One 2011; 6:e23122. [PMID: 21858006 PMCID: PMC3155547 DOI: 10.1371/journal.pone.0023122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Most vertebrates have three paralogous genes with identical intron-exon structures and a high degree of sequence identity that encode mitochondrial adenine nucleotide translocase (Ant) proteins, Ant1 (Slc25a4), Ant2 (Slc25a5) and Ant3 (Slc25a6). Recently, we and others identified a fourth mammalian Ant paralog, Ant4 (Slc25a31), with a distinct intron-exon structure and a lower degree of sequence identity. Ant4 was expressed selectively in testis and sperm in adult mammals and was indeed essential for mouse spermatogenesis, but it was absent in birds, fish and frogs. Since Ant2 is X-linked in mammalian genomes, we hypothesized that the autosomal Ant4 gene may compensate for the loss of Ant2 gene expression during male meiosis in mammals. Here we report that the Ant4 ortholog is conserved in green anole lizard (Anolis carolinensis) and demonstrate that it is expressed in the anole testis. Further, a degenerate DNA fragment of putative Ant4 gene was identified in syntenic regions of avian genomes, indicating that Ant4 was present in the common amniote ancestor. Phylogenetic analyses suggest an even more ancient origin of the Ant4 gene. Although anole lizards are presumed male (XY) heterogametic, like mammals, copy numbers of the Ant2 as well as its neighboring gene were similar between male and female anole genomes, indicating that the anole Ant2 gene is either autosomal or located in the pseudoautosomal region of the sex chromosomes, in contrast to the case to mammals. These results imply the conservation of Ant4 is not likely simply driven by the sex chromosomal localization of the Ant2 gene and its subsequent inactivation during male meiosis. Taken together with the fact that Ant4 protein has a uniquely conserved structure when compared to other somatic Ant1, 2 and 3, there may be a specific advantage for mammals and lizards to express Ant4 in their male germ cells.
Collapse
Affiliation(s)
- Chae Ho Lim
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Takashi Hamazaki
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Edward L. Braun
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Juli Wade
- Neuroscience Program, Department of Psychology, Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - Naohiro Terada
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Distribution of DNA methylation, CpGs, and CpG islands in human isochores. Genomics 2009; 95:25-8. [PMID: 19800400 DOI: 10.1016/j.ygeno.2009.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
Abstract
DNA methylation is a major epigenetic modification of the genome that affects basic biological functions, such as gene expression and cell development. We used the human genome sequences and the DNA methylation data that are available in order to establish a map of the levels of GC and methylation in isochores. We also looked for the correlations that hold between GC levels and the distribution of the (1) dinucleotide CpG, (2) ratio 5mC/CpG, and (3) CpG islands. Our results show that methylation levels, CpG frequencies, and the density of CpG islands are positively correlated with the GC level of isochores. In contrast, the correlation between the 5mC/CpG ratio and GC is a negative one because the increase in methylation lags behind that of CpG, to reach a plateau in the GC-richest, gene-richest isochore families H2 and H3. In conclusion, there are more CpG targets that remain unmethylated in the GC-richest, gene-richest isochores in comparison with the other isochores. This conclusion supports the idea that the widespread methylation under consideration here has a general inhibitory effect on gene expression.
Collapse
|
24
|
Varriale A, Torelli G, Bernardi G. Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA (NEW YORK, N.Y.) 2008; 14:1492-500. [PMID: 18567811 PMCID: PMC2491464 DOI: 10.1261/rna.957108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In order to investigate the influence of temperature on the GC level of the paired sequences of ribosomal 18S RNAs in vertebrates, we have studied their base composition in cold- and warm-blooded vertebrates using a stem-by-stem comparison. We observed that a number of stems of 18S ribosomal RNAs (rRNAs) are variable among species and that the majority of such stems are GC richer in warm-blooded than in cold-blooded vertebrates. We also constructed the secondary structures of the 18S rRNAs of a polar fish, a marsupial, and a monotreme to compare them with those of temperate/tropical fishes and of eutherians, respectively. In these cases, differences similar to those already mentioned were found. We conclude that there is a correlation between stem stability and body temperature even within the relatively limited temperature range of vertebrates.
Collapse
Affiliation(s)
- Annalisa Varriale
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | | | | |
Collapse
|
25
|
Chojnowski JL, Braun EL. Turtle isochore structure is intermediate between amphibians and other amniotes. Integr Comp Biol 2008; 48:454-62. [PMID: 21669806 DOI: 10.1093/icb/icn062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vertebrate genomes are comprised of isochores that are relatively long (>100 kb) regions with a relatively homogenous (either GC-rich or AT-rich) base composition and with rather sharp boundaries with neighboring isochores. Mammals and living archosaurs (birds and crocodilians) have heterogeneous genomes that include very GC-rich isochores. In sharp contrast, the genomes of amphibians and fishes are more homogeneous and they have a lower overall GC content. Because DNA with higher GC content is more thermostable, the elevated GC content of mammalian and archosaurian DNA has been hypothesized to be an adaptation to higher body temperatures. This hypothesis can be tested by examining structure of isochores across the reptilian clade, which includes the archosaurs, testudines (turtles), and lepidosaurs (lizards and snakes), because reptiles exhibit diverse body sizes, metabolic rates, and patterns of thermoregulation. This study focuses on a comparative analysis of a new set of expressed genes of the red-eared slider turtle and orthologs of the turtle genes in mammalian (human, mouse, dog, and opossum), archosaurian (chicken and alligator), and amphibian (western clawed frog) genomes. EST (expressed sequence tag) data from a turtle cDNA library enriched for genes that have specialized functions (developmental genes) revealed using the GC content of the third-codon-position to examine isochore structure requires careful consideration of the types of genes examined. The more highly expressed genes (e.g., housekeeping genes) are more likely to be GC-rich than are genes with specialized functions. However, the set of highly expressed turtle genes demonstrated that the turtle genome has a GC content that is intermediate between the GC-poor amphibians and the GC-rich mammals and archosaurs. There was a strong correlation between the GC content of all turtle genes and the GC content of other vertebrate genes, with the slope of the line describing this relationship also indicating that the isochore structure of turtles is intermediate between that of amphibians and other amniotes. These data are consistent with some thermal hypotheses of isochore evolution, but we believe that the credible set of models for isochore evolution still includes a variety of models. These data expand the amount of genomic data available from reptiles upon which future studies of reptilian genomics can build.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Department of Zoology, University of Florida, 223 Bartram Hall, PO Box 118525, Gainesville, FL 32611, USA
| | | |
Collapse
|
26
|
Organ CL, Moreno RG, Edwards SV. Three tiers of genome evolution in reptiles. Integr Comp Biol 2008; 48:494-504. [PMID: 21669810 DOI: 10.1093/icb/icn046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101-200 bp size class. A small spike in the fraction of exons in the 301 bp-1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp-2 kb size class and a lower fraction of introns within the 5-30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution.
Collapse
Affiliation(s)
- Chris L Organ
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
27
|
Abstract
Reptiles are a karyologically heterogeneous group, where some orders and suborders exhibit characteristics similar to those of anamniotes and others share similarities with homeotherms. The class also shows different evolutionary trends, for instance in genome and chromosome size and composition. The turtle DNA base composition is similar to that of mammals, whereas that of lizards and snakes is more similar to that of anamniotes. The major karyological differences between turtles and squamates are the size and composition of the genome and the rate at which chromosomes change. Turtles have larger and more variable genome sizes, and a greater amount of middle repetitive DNA that differs even among related species. In lizards and snakes size of the genome are smaller, single-copy DNA is constant within each suborder, and differences in repetitive DNA involve fractions that become increasingly heterogeneous with widening phylogenetic distance. With regard to variation in karyotype morphology, turtles and crocodiles show low variability in chromosome number, morphology, and G-banding pattern. Greater variability is found among squamates, which have a similar degree of karyotypic change-as do some mammals, such as carnivores and bats-and in which there are also differences among congeneric species. An interesting relationship has been highlighted in the entire class Reptilia between rates of change in chromosomes, number of living species, and rate of extinction. However, different situations obtain in turtles and crocodiles on the one hand, and squamates on the other. In the former, the rate of change in chromosomes is lower and the various evolutionary steps do not seem to have entailed marked chromosomal variation, whereas squamates have a higher rate of change in chromosomes clearly related to the number of living species, and chromosomal variation seems to have played an important role in the evolution of several taxa. The different evolutionary trends in chromosomes observed between turtles and crocodiles on the one hand and squamates on the other might depend on their different patterns of G-banding.
Collapse
Affiliation(s)
- Ettore Olmo
- Istituto di Biologia e Genetica, Università Politecnica delle Marche and Istituto Nazionale di Biosistemi e Biostrutture, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
28
|
Chojnowski JL, Franklin J, Katsu Y, Iguchi T, Guillette LJ, Kimball RT, Braun EL. Patterns of Vertebrate Isochore Evolution Revealed by Comparison of Expressed Mammalian, Avian, and Crocodilian Genes. J Mol Evol 2007; 65:259-66. [PMID: 17674077 DOI: 10.1007/s00239-007-9003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Vertebrate genomes are mosaics of isochores, defined as long (>100 kb) regions with relatively homogeneous within-region base composition. Birds and mammals have more GC-rich isochores than amphibians and fish, and the GC-rich isochores of birds and mammals have been suggested to be an adaptation to homeothermy. If this hypothesis is correct, all poikilothermic (cold-blooded) vertebrates, including the nonavian reptiles, are expected to lack a GC-rich isochore structure. Previous studies using various methods to examine isochore structure in crocodilians, turtles, and squamates have led to different conclusions. We collected more than 6000 expressed sequence tags (ESTs) from the American alligator to overcome sample size limitations suggested to be the fundamental problem in the previous reptilian studies. The alligator ESTs were assembled and aligned with their human, mouse, chicken, and western clawed frog orthologs, resulting in 366 alignments. Analyses of third-codon-position GC content provided conclusive evidence that the poikilothermic alligator has GC-rich isochores, like homeothermic birds and mammals. We placed these results in a theoretical framework able to unify available models of isochore evolution. The data collected for this study allowed us to reject the models that explain the evolution of GC content using changes in body temperature associated with the transition from poikilothermy to homeothermy. Falsification of these models places fundamental constraints upon the plausible pathways for the evolution of isochores.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The vertebrate genome is a mosaic of GC-poor and GC-rich isochores, megabase-sized DNA regions of fairly homogeneous base composition that differ in relative amount, gene density, gene expression, replication timing, and recombination frequency. At the emergence of warm-blooded vertebrates, the gene-rich, moderately GC-rich isochores of the cold-blooded ancestors underwent a GC increase. This increase was similar in mammals and birds and was maintained during the evolution of mammalian and avian orders. Neither the GC increase nor its conservation can be accounted for by the random fixation of neutral or nearly neutral single-nucleotide changes (i.e., the vast majority of nucleotide substitutions) or by a biased gene conversion process occurring at random genome locations. Both phenomena can be explained, however, by the neoselectionist theory of genome evolution that is presented here. This theory fully accepts Ohta's nearly neutral view of point mutations but proposes in addition (i) that the AT-biased mutational input present in vertebrates pushes some DNA regions below a certain GC threshold; (ii) that these lower GC levels cause regional changes in chromatin structure that lead to deleterious effects on replication and transcription; and (iii) that the carriers of these changes undergo negative (purifying) selection, the final result being a compositional conservation of the original isochore pattern in the surviving population. Negative selection may also largely explain the GC increase accompanying the emergence of warm-blooded vertebrates. In conclusion, the neoselectionist theory not only provides a solution to the neutralist/selectionist debate but also introduces an epigenomic component in genome evolution.
Collapse
Affiliation(s)
- Giorgio Bernardi
- Molecular Evolution Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
30
|
Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene 2006; 385:111-21. [PMID: 17067764 DOI: 10.1016/j.gene.2006.05.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/04/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Previous investigations from our laboratory [Jabbari, K., Cacciò, S., Pais de Barros, J.P., Desgres, J., Bernardi G., 1997. Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene 205, 109-118.] led to the discovery of two different methylation levels in the genomes of vertebrates, a higher one exhibited by fishes and amphibians and a lower one shown by mammals and birds. It was also noted that data from the literature indicated a higher CpG level in fishes and amphibians compared to mammals and birds. Such observations led to suggesting the existence of two equilibria and to speculate that the transitions between the two equilibria in DNA methylation and CpG levels were due to a higher deamination rate in warm-blooded vertebrates related to their higher body temperature. Here we used Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC) analysis to study methylation levels in a number of fish genomes living at different temperatures. We found that polar fishes exhibit DNA methylation levels that are higher than those of tropical and temperate fishes, the latter being in turn higher than the methylation levels of warm-blooded vertebrates, as expected from previous work. A closer analysis of the data revealed that, among Antarctic fishes, the Channichthyidae (the icefishes, deprived of haemoglobin) had the highest methylation level, and that, among temperate and tropical fishes the latter showed the lowest methylation level. These results confirm the existence of an inverse relationship between DNA methylation and body temperature, when the latter is maintained over evolutionary times.
Collapse
Affiliation(s)
- Annalisa Varriale
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | |
Collapse
|