1
|
Doležálková-Kaštánková M, Dedukh D, Labajová V, Pustovalova E, Choleva L. Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus. Sci Rep 2024; 14:22221. [PMID: 39333615 PMCID: PMC11742031 DOI: 10.1038/s41598-024-73043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Gametogenesis produces gametes as a piece of genetic information transmitted to the offspring. While during sexual reproduction, progeny inherits a mix of genetic material from both parents, asexually reproducing organisms transfer a copy of maternal or paternal DNA to the progeny clonally. Parthenogenetic, gynogenetic and hybridogenetic animals have developed various mechanisms of gametogenesis, however, their inheritance is not fully understood. Here, we focused on the inheritance of asexual gametogenesis in hybrid Pelophylax esculentus (RL), emerging after crosses of P. lessonae (LL) and P. ridibundus (RR). To understand the mechanisms of gametogenesis in hybrids, we performed three-generation experiments of sexual P. ridibundus females and hybrids from all-male hybrid populations. Using fluorescent in situ hybridization, micronuclei analysis, flow cytometry and genotyping, we found that most adult hybrid males simultaneously produced two types of clonal sperm. Also, most male tadpole progeny in two successive backcrossed generations simultaneously eliminated L and R parental genomes, while some progeny produced only one type of sperm. We hypothesize that the reproductive variability of males producing two kinds of sperm is an adaptive mechanism to reproduce in mixed populations with P. ridibundus and may explain the extensive distribution of the all-male lineage across the European River Basin.
Collapse
Affiliation(s)
- Marie Doležálková-Kaštánková
- Institute of Animal Physiology and Genetics, Laboratory of NonMendelian Evolution, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic.
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of NonMendelian Evolution, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic.
| | - Veronika Labajová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| | - Eleonora Pustovalova
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
- Laboratory of Amphibian Population Ecology, Department of Zoology and Animal Ecology, School of Biology, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Lukáš Choleva
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| |
Collapse
|
2
|
Everts T, Van Driessche C, Neyrinck S, Haegeman A, Ruttink T, Jacquemyn H, Brys R. Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3017. [PMID: 39118362 DOI: 10.1002/eap.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.
Collapse
Affiliation(s)
- Teun Everts
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Charlotte Van Driessche
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sabrina Neyrinck
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Tom Ruttink
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Rein Brys
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| |
Collapse
|
3
|
Mezhzherin SV, Morozov-Leonov SY, Rostovska OV. Nuclear gene introgressions in hybrid populations of water frog Pelophylax esculentus complex: geographical analysis of the phenomenon and its interpretation. Genetica 2024; 152:31-42. [PMID: 38361120 DOI: 10.1007/s10709-024-00203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Reproduction of water frog hybrids Pelophylax esculentus (Pelophylax ridibundus x Pelophylax lessonae) is associated with hemiclonal reproduction and backcrossing. The hemiclonal mode of reproduction occurs within P. esculentus allodiploids. In this case, the unrecombined genome of one parental species is transmitted to the offspring after premeiotic elimination of the chromosome set of the second parental species. Usually, the chromosome set of P. lessonae is eliminated, and the altered genome of P. ridibundus is passed on to the progeny. The hemiclonal inheritance within diploid Pelophylax esculentus hybrids may be accompanied by certain aberrations of premeiotic elimination. As a result, the formation of P. ridibundus specimens with introgressions of the P. lessonae genetic material, or the formation of recombinant hybrids occurs, depending on which of the parental species backcrossing takes place. The aim of our study is to describe the aberration of premeiotic elimination within the water frog P. esculentus complex detected by the nuclear gene Ldh-B inheritance, with an attempt to find out the causes of this phenomenon. It has been established that aberrations of premeiotic elimination are widespread, but only within populations of water frog from the river system of Upper Dnieper within Ukraine. The highest level of introgression takes place in the water frog populations within Kiev metropolis under conditions of expressed anthropogenization, while the maximum frequency of recombinants was detected within populations from the basin of Desna River, that has preserved native ecosystems. It was demonstrated that the frequency of premeiotic aberrations does not correlate with the intensity of interspecific water frog hybridization. Populations with introgressions are more common than populations with recombinants, however, within the latter, the frequency of recombination events is higher. The primary factor of gametogenesis aberrations, most likely, is the genetic characteristics of the local populations of parental species, since unambiguous explanations of this phenomenon based on the action of environmental stress (pollution of water systems) are not obvious.
Collapse
Affiliation(s)
- Sergey V Mezhzherin
- Department of Evolutionary Genetic and Fundamentals of Systematics, I.I. Schmalhausen Institute of Zoology, B. Khmel'nitskogo Str., Kiev-30, 01601, Ukraine
| | - Svyatoslav Yu Morozov-Leonov
- Department of Evolutionary Genetic and Fundamentals of Systematics, I.I. Schmalhausen Institute of Zoology, B. Khmel'nitskogo Str., Kiev-30, 01601, Ukraine.
| | - Olga V Rostovska
- Department of Evolutionary Genetic and Fundamentals of Systematics, I.I. Schmalhausen Institute of Zoology, B. Khmel'nitskogo Str., Kiev-30, 01601, Ukraine
| |
Collapse
|
4
|
Morozov-Leonov SY. Evolutionary Potential of the Hybrid Form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) within Dnieper and Desna Drainages: Its Loss Caused by the Hemiclonal Inheritance and the Compensatory Role of Parental Genomes’ Recombination. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Zangl L, Daill D, Schweiger S, Gassner G, Koblmüller S. A reference DNA barcode library for Austrian amphibians and reptiles. PLoS One 2020; 15:e0229353. [PMID: 32163447 PMCID: PMC7067431 DOI: 10.1371/journal.pone.0229353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
In the last few years, DNA barcoding became an established method for species identification in biodiversity inventories and monitoring studies. Such studies depend on the access to a comprehensive reference data base, covering all relevant taxa. Here we present a comprehensive DNA barcode inventory of all amphibian and reptile species native to Austria, except for the putatively extinct Vipera ursinii rakosiensis and Lissotriton helveticus, which has been only recently reported for the very western edge of Austria. A total of 194 DNA barcodes were generated in the framework of the Austrian Barcode of Life (ABOL) initiative. Species identification via DNA barcodes was successful for most species, except for the hybridogenetic species complex of water frogs (Pelophylax spp.) and the crested newts (Triturus spp.), in areas of sympatry. However, DNA barcoding also proved powerful in detecting deep conspecific lineages, e.g. within Natrix natrix or the wall lizard (Podarcis muralis), resulting in more than one Barcode Index Number (BIN) per species. Moreover, DNA barcodes revealed the presence of Natrix helvetica, which has been elevated to species level only recently, and genetic signatures of the Italian water frog Pelophylax bergeri in Western Austria for the first time. Comparison to previously published DNA barcoding data of European amphibians and reptiles corroborated the results of the Austrian data but also revealed certain peculiarities, underlining the particular strengths and in the case of the genus Pelophylax also the limitations of DNA barcoding. Consequently, DNA barcoding is not only powerful for species identification of all life stages of most Austrian amphibian and reptile species, but also for the detection of new species, the monitoring of gene flow or the presence of alien populations and/or species. Thus, DNA barcoding and the data generated in this study may serve both scientific and national or even transnational conservation purposes.
Collapse
Affiliation(s)
- Lukas Zangl
- Institute of Biology, University of Graz, Graz, Austria
- Studienzentrum Naturkunde, Universalmuseum Joanneum, Graz, Austria
- * E-mail: (LZ); (SK)
| | - Daniel Daill
- Institute of Biology, University of Graz, Graz, Austria
- Consultants in Aquatic Ecology and Engineering—blattfisch e.U., Wels, Austria
| | - Silke Schweiger
- First Zoological Department, Herpetological Collection, Museum of Natural History Vienna, Vienna, Austria
| | - Georg Gassner
- First Zoological Department, Herpetological Collection, Museum of Natural History Vienna, Vienna, Austria
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Graz, Austria
- * E-mail: (LZ); (SK)
| |
Collapse
|
6
|
Cai YY, Shen SQ, Lu LX, Storey KB, Yu DN, Zhang JY. The complete mitochondrial genome of Pyxicephalus adspersus: high gene rearrangement and phylogenetics of one of the world's largest frogs. PeerJ 2019; 7:e7532. [PMID: 31497398 PMCID: PMC6709665 DOI: 10.7717/peerj.7532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023] Open
Abstract
The family Pyxicephalidae including two subfamilies (Cacosterninae and Pyxicephalinae) is an ecologically important group of frogs distributed in sub-Saharan Africa. However, its phylogenetic position among the Anura has remained uncertain. The present study determined the complete mitochondrial genome sequence of Pyxicephalus adspersus, the first representative mitochondrial genome from the Pyxicephalinae, and reconstructed the phylogenetic relationships within Ranoidae using 10 mitochondrial protein-coding genes of 59 frog species. The P. adspersus mitochondrial genome showed major gene rearrangement and an exceptionally long length that is not shared with other Ranoidae species. The genome is 24,317 bp in length, and contains 15 protein-coding genes (including extra COX3 and Cyt b genes), four rRNA genes (including extra 12S rRNA and 16S rRNA genes), 29 tRNA genes (including extra tRNALeu (UAG), tRNALeu (UUR), tRNAThr , tRNAPro , tRNAPhe , tRNAVal , tRNAGln genes) and two control regions (CRs). The Dimer-Mitogenome and Tandem duplication and random loss models were used to explain these gene arrangements. Finally, both Bayesian inference and maximum likelihood analyses supported the conclusion that Pyxicephalidae was monophyletic and that Pyxicephalidae was the sister clade of (Petropedetidae + Ptychadenidae).
Collapse
Affiliation(s)
- Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Shi-Qi Shen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Li-Xu Lu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
7
|
Zhang JY, Zhang LP, Yu DN, Storey KB, Zheng RQ. Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae. BMC Evol Biol 2018; 18:26. [PMID: 29486721 PMCID: PMC6389187 DOI: 10.1186/s12862-018-1140-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Complete mitochondrial (mt) genomes have been used extensively to test hypotheses about microevolution and to study population structure, phylogeography, and phylogenetic relationships of Anura at various taxonomic levels. Large-scale mt genomic reorganizations have been observed among many fork-tongued frogs (family Dicroglossidae). The relationships among Dicroglossidae and validation of the genus Feirana are still problematic. Hence, we sequenced the complete mt genomes of Nanorana taihangnica (=F. taihangnica) and N. yunnanensis as well as partial mt genomes of six Quasipaa species (dicroglossid taxa), two Odorrana and two Amolops species (Ranidae), and one Rhacophorus species (Rhacophoridae) in order to identify unknown mt gene rearrangements, to investigate the validity of the genus Feirana, and to test the phylogenetic relationship of Dicroglossidae. RESULTS In the mt genome of N. taihangnica two trnM genes, two trnP genes and two control regions were found. In addition, the trnA, trnN, trnC, and trnQ genes were translocated from their typical positions. In the mt genome of N. yunnanensis, three control regions were found and eight genes (ND6, trnP, trnQ, trnA, trnN, trnC, trnY and trnS genes) in the L-stand were translocated from their typical position and grouped together. We also found intraspecific rearrangement of the mitochondrial genomes in N. taihangnica and Quasipaa boulengeri. In phylogenetic trees, the genus Feirana nested deeply within the clade of genus Nanorana, indicating that the genus Feirana may be a synonym to Nanorana. Ranidae as a sister clade to Dicroglossidae and the clade of (Ranidae + Dicroglossidae) as a sister clade to (Mantellidae + Rhacophoridae) were well supported in BI analysis but low bootstrap in ML analysis. CONCLUSIONS We found that the gene arrangements of N. taihangnica and N. yunnanensis differed from other published dicroglossid mt genomes. The gene arrangements in N. taihangnica and N. yunnanensis could be explained by the Tandem Duplication and Random Loss (TDRL) and the Dimer-Mitogenome and Non-Random Loss (DMNR) models, respectively. The invalidation of the genus Feirana is supported in this study.
Collapse
Affiliation(s)
- Jia-Yong Zhang
- Key lab of wildlife biotechnology, conservation and utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Le-Ping Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Dan-Na Yu
- Key lab of wildlife biotechnology, conservation and utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Rong-Quan Zheng
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| |
Collapse
|
8
|
Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci Rep 2017; 7:6506. [PMID: 28747630 PMCID: PMC5529583 DOI: 10.1038/s41598-017-06655-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022] Open
Abstract
The genetic era has revolutionized our perception of biological invasions. Yet, it is usually too late to understand their genesis for efficient management. Here, we take the rare opportunity to reconstruct the scenario of an uprising invasion of the famous water frogs (Pelophylax) in southern France, through a fine-scale genetic survey. We identified three different taxa over less than 200 km2: the autochthonous P. perezi, along with the alien P. ridibundus and P. kurtmuelleri, which have suddenly become invasive. As a consequence, the latter hybridizes and may now form a novel hybridogenetic complex with P. perezi, which could actively promote its replacement. This exceptional situation makes a textbook application of genetics to early-detect, monitor and understand the onset of biological invasions before they pose a continental-wide threat. It further emphasizes the alarming rate of amphibian translocations, both at global and local scales, as well as the outstanding invasive potential of Pelophylax aliens.
Collapse
|
9
|
Kolenda K, Pietras-Lebioda A, Hofman S, Ogielska M, Pabijan M. Preliminary genetic data suggest the occurrence of the Balkan water frog, Pelophylax kurtmuelleri, in southwestern Poland. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent molecular studies have detected the occurrence of exotic water frog species (Pelophylaxsp.) in central and western European populations. Here, we report genetic evidence for the occurrence of the Balkan water frog,Pelophylax kurtmuelleri, in southwestern Poland. We found a high frequency of an allele of serum albumin intron-1 and a mitochondrial cytochromebhaplotype specific for this southern taxon in frogs from the Barycz river drainage system. We interpret this finding as evidence of admixture betweenP. kurtmuelleriand the localridibundus-esculentuswater frog population. The origin of the exoticP. kurtmuellerimitochondrial and nuclear alleles in southwestern Poland could be due to (i) hybridization after a human-mediated introduction ofP. kurtmuelleri, (ii) the persistence of ancestral polymorphism in central EuropeanP. ridibundus, or (iii) hybridization betweenP. kurtmuelleriandP. ridibundusin the Balkans followed by the northward expansion of admixedP. ridibundus. Identical mtDNA haplotypes found in southwestern Poland and localities on the borders between Greece, Albania and Macedonia suggest that this region harboured the source population ofP. kurtmuelleriat the studied site.
Collapse
Affiliation(s)
- Krzysztof Kolenda
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Agnieszka Pietras-Lebioda
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
- Laboratory of DNA Analysis, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Sebastian Hofman
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Cryptic invasion of Italian pool frogs (Pelophylax bergeri) across Western Europe unraveled by multilocus phylogeography. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1359-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Langone JA, Camargo A, de Sá RO. High genetic diversity but low population structure in the frog Pseudopaludicola falcipes (Hensel, 1867) (Amphibia, Anura) from the Pampas of South America. Mol Phylogenet Evol 2015; 95:137-51. [PMID: 26639101 DOI: 10.1016/j.ympev.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
Relative to South America's ecoregions, the temperate grasslands of the Pampas have been poorly studied from a phylogeographic perspective. Based on an intermediate biogeographic setting between subtropical forest (Atlantic Forest) and arid ecosystems (Chaco and Patagonia), Pampean species are expected to show unstable demographic histories due to the Quaternary climatic oscillations. Herein, we investigate the phylogenetic relatedness and phylogeographic history of Pseudopaludicola falcipes, a small and common frog that is widely distributed across the Pampean grasslands. First, we use molecular data to assess if P. falcipes represents a single or multiple, separately evolving cryptic lineages. Because P. falcipes is a small-size species (<20mm) with extensive coloration and morphological variation, we suspected that it might represent a complex of cryptic species. In addition, we expected strong genetic and geographic structuring within Pseudopaludicola falcipes due to its large geographic distribution, potentially short dispersal distances, and multiple riverine barriers. We found that P. falcipes is a single evolutionary lineage with poor geographic structuring. Furthermore, current populations of P. falcipes have a large effective population size, maintain ancestral polymorphisms, and have a complex network of gene flow. We conclude that the demographic history of P. falcipes, combined with its ecological attributes and the landscape features of the Pampas, favored a unique combination among anurans of small body size, large population size, high genetic variability, but high cohesiveness of populations over a wide geographic distribution.
Collapse
Affiliation(s)
- José A Langone
- Sección Herpetología, Museo Nacional de Historia Natural, Casilla de Correo 399, Código Postal 11.000, Montevideo, Uruguay.
| | - Arley Camargo
- Programa de Desarrollo Universitario, Centro Universitario de Rivera, Universidad de la República. Ituzaingó 667, Código Postal 40.000, Rivera, Uruguay.
| | - Rafael O de Sá
- Sección Herpetología, Museo Nacional de Historia Natural, Casilla de Correo 399, Código Postal 11.000, Montevideo, Uruguay; Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
12
|
Radojičić JM, Krizmanić I, Kasapidis P, Zouros E. Extensive mitochondrial heteroplasmy in hybrid water frog (Pelophylax spp.) populations from Southeast Europe. Ecol Evol 2015; 5:4529-41. [PMID: 26668720 PMCID: PMC4670067 DOI: 10.1002/ece3.1692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
Water frogs of the genus Pelophylax (previous Rana) species have been much studied in Europe for their outstanding reproductive mechanism in which sympatric hybridization between genetically distinct parental species produces diverse genetic forms of viable hybrid animals. The most common hybrid is P. esculentus that carries the genomes of both parental species, P. ridibundus and P. lessonae, but usually transfers the whole genome of only one parent to its offsprings (hybridogenesis). The evolutionary cost of transfer of the intact genome and hence the hemiclonal reproduction is the depletion of heterozygosity in the hybrid populations. Pelophylax esculentus presents an excellent example of the long‐term sustained hybridization and hemiclonal reproduction in which the effects of the low genetic diversity are balanced through the novel mutations and periodic recombinations. In this study, we analyzed the mitochondrial (mt) and microsatellites DNA variations in hybrid Pelophylax populations from southern parts of the Pannonian Basin and a north–south transect of the Balkan Peninsula, which are home for a variety of Pelophylax genetic lineages. The mtDNA haplotypes found in this study corresponded to P. ridibundus and P. epeiroticus of the Balkan – Anatolian lineage (ridibundus–bedriagae) and to P. lessonae and a divergent lessonae haplotype of the lessonae lineage. The mtDNA genomes showed considerable intraspecific variation and geographic differentiation. The Balkan wide distributed P. ridibundus was found in all studied populations and its nuclear genome, along with either the lessonae or the endemic epeiroticus genome, in all hybrids. An unexpected finding was that the hybrid populations were invariably heteroplasmic, that is, they contained the mtDNA of both parental species. We discussed the possibility that such extensive heteroplasmy is a result of hybridization and it comes from regular leakage of the paternal mtDNA from a sperm of one species that fertilizes eggs of another. In this case, the mechanisms that protect the egg from heterospecific fertilization and further from the presence of sperm mtDNA could become compromised due to their differences and divergence at both, mitochondrial and nuclear DNA. The heteroplasmy once retained in the fertilized egg could be transmitted by hybrid backcrossing to the progeny and maintained in a population over generations. The role of interspecies and heteroplasmic hybrid animals due to their genomic diversity and better fitness compare to the parental species might be of the special importance in adaptations to miscellaneous and isolated environments at the Balkan Peninsula.
Collapse
Affiliation(s)
- Jelena M Radojičić
- Hellenic Centre for Marine Research Institute of Marine Biology, Biotechnology and Aquaculture Heraklion Greece ; Department of Biology University of Crete Heraklion Greece
| | - Imre Krizmanić
- Faculty of Biology Institute of Zoology University of Belgrade Belgrade Serbia
| | - Panagiotis Kasapidis
- Hellenic Centre for Marine Research Institute of Marine Biology, Biotechnology and Aquaculture Heraklion Greece
| | | |
Collapse
|
13
|
Hofman S, Pabijan M, Osikowski A, Litvinchuk SN, Szymura JM. Phylogenetic relationships among four new complete mitogenome sequences of Pelophylax (Amphibia: Anura) from the Balkans and Cyprus. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3434-7. [PMID: 25806583 DOI: 10.3109/19401736.2015.1025266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01-0.13). Most divergent was the P. shqipericus mitogenome, clustering with the "P. lessonae" group, in contrast to the other three new Pelophylax mitogenomes related to the "P. bedriagae/ridibundus" lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.
Collapse
Affiliation(s)
- Sebastian Hofman
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland
| | - Maciej Pabijan
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland .,b Institute of Environmental Sciences, Jagiellonian University , Kraków , Poland , and
| | - Artur Osikowski
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland
| | | | - Jacek M Szymura
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland
| |
Collapse
|
14
|
Huang Z, Yang C, Ke D. DNA barcoding and molecular phylogeny in Ranidae. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:4003-4007. [PMID: 25543914 DOI: 10.3109/19401736.2014.989522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The family Ranidae has the widest distribution compared with other frog family. The phylogeny of the Ranidae is still a matter of dispute. In the present study, we analyzed the COI barcodes of 29 species from six genera belonging to the family Ranidae. Twenty-seven species (93.10% of all the species) were correctly identified by their DNA barcodes. Pelophylax lessonae and Pelophylax ridibundus shared the same one barcode sequence. Kimura two-parameter distances were calculated between barcodes. Pair-wise comparisons among-species were distributed from 0.16% (between Pelophylax lessonae and Pelophylax esculenta) to 29.13% (between Rana warszewitschii and Rana dybowskii). The average genetic distance between species was 28 times higher than the average genetic distance within species. The neighbor-joining method was used to construct a phylogenetic tree, which grouped all the genera into two divergent clades. The results indicated that some currently recognized genera of Ranidae may not be monophyletic. COI gene data supported the hypothesis of polyphyly for Rana, Amolops, Babina, and Hylarana. DNA barcoding is an effective molecular tool for Ranidae species identification and phylogenetic inference.
Collapse
Affiliation(s)
- Zuhao Huang
- a School of Life Sciences, Jinggangshan University , Ji'an , Jiangxi Province , China and
| | - Chengzhong Yang
- b Chongqing Key Laboratory of Animal Biology , College of Life Sciences, Chongqing Normal University , Chongqing , China
| | - Dianhua Ke
- a School of Life Sciences, Jinggangshan University , Ji'an , Jiangxi Province , China and
| |
Collapse
|
15
|
Hofman S, Pabijan M, Osikowski A, Szymura JM. Complete mitochondrial genome of the Greek marsh frog Pelophylax cretensis (Anura, Ranidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1995-6. [PMID: 25329260 DOI: 10.3109/19401736.2014.974158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We sequenced the complete mitochondrial genome of the Greek marsh frog Pelophylax cretensis, a water frog species endemic to the island of Crete. The genome sequence was 17,829 bp in size, and the gene order and contents were identical to those of previously reported mitochondrial genomes of other water frog species. This is the first complete mitogenome (i.e. including control region) described for western Palaearctic water frogs.
Collapse
Affiliation(s)
- Sebastian Hofman
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland , and
| | - Maciej Pabijan
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland , and.,b Institute of Environmental Sciences, Jagiellonian University , Kraków , Poland
| | - Artur Osikowski
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland , and
| | - Jacek M Szymura
- a Department of Comparative Anatomy , Institute of Zoology, Jagiellonian University , Kraków , Poland , and
| |
Collapse
|
16
|
Lee-Yaw JA, Jacobs CGC, Irwin DE. Individual performance in relation to cytonuclear discordance in a northern contact zone between long-toed salamander (Ambystoma macrodactylum) lineages. Mol Ecol 2014; 23:4590-602. [DOI: 10.1111/mec.12878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Julie A. Lee-Yaw
- Department of Zoology; University of British Columbia; 6270 University Blvd. Vancouver British Columbia Canada V6T 1Z4
| | - Chris G. C. Jacobs
- Institute of Biology Leiden; Leiden University; Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Darren E. Irwin
- Department of Zoology; University of British Columbia; 6270 University Blvd. Vancouver British Columbia Canada V6T 1Z4
| |
Collapse
|
17
|
Mikulíček P, Kautman M, Demovič B, Janko K. When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J Evol Biol 2014; 27:628-42. [PMID: 26227900 DOI: 10.1111/jeb.12332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/02/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Abstract
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become 'frozen' in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex-clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non-negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site-specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.
Collapse
Affiliation(s)
- P Mikulíček
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - M Kautman
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - B Demovič
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.,State Nature Conservancy of the Slovak Republic, Administration of the Protected Landscape Area White Carpathians, Nemšová, Slovak Republic
| | - K Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
18
|
Burton RS, Pereira RJ, Barreto FS. Cytonuclear Genomic Interactions and Hybrid Breakdown. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135758] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Ricardo J. Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Felipe S. Barreto
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| |
Collapse
|
19
|
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012; 21:4942-57. [PMID: 22994153 DOI: 10.1111/mec.12006] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/07/2023]
Abstract
Evolution in allopatric populations can lead to incompatibilities that result in reduced hybrid fitness and ultimately reproductive isolation upon secondary contact. The Dobzhansky-Muller (DM) model nicely accounts for the evolution of such incompatibilities. Although DM incompatibilities were originally conceived as resulting of interactions between nuclear genes, recent studies have documented cases where incompatibilities have arisen between nuclear and mitochondrial genomes (mtDNA). Although mtDNA comprises only a tiny component (typically <<0.01%) of an organism's genetic material, several features of mtDNA may lead to a disproportionate contribution to the evolution of hybrid incompatibilities: (i) essentially all functions of mtDNA require interaction with nuclear gene products. All mtDNA-encoded proteins are components of the oxidative phosphorylation (OXPHOS) system and all mtDNA-encoded RNAs are part of the mitochondrial protein synthetic machinery; both processes require interaction with nuclear-encoded proteins for function. (ii) Transcription and replication of mtDNA also involve mitonuclear interactions as nuclear-encoded proteins must bind to regulatory motifs in the mtDNA to initiate these processes. (iii) Although features of mtDNA vary amongst taxa, metazoan mtDNA is typically characterized by high nucleotide substitution rates, lack of recombination and reduced effective population sizes that collectively lead to increased chance fixation of mildly deleterious mutations. Combined, these features create an evolutionary dynamic where rapid mtDNA evolution favours compensatory nuclear gene evolution, ultimately leading to co-adaptation of mitochondrial and nuclear genomes. When previously isolated lineages hybridize in nature or in the lab, intergenomic co-adaptation is disrupted and hybrid breakdown is observed; the role of intergenomic co-adaptation in hybrid breakdown and speciation will generally be most pronounced when rates of mtDNA evolution are high or when restricted gene flow results in significant population differentiation.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
20
|
Hauswaldt JS, Höer M, Ogielska M, Christiansen DG, Dziewulska-Szwajkowska D, Czernicka E, Vences M. A simplified molecular method for distinguishing among species and ploidy levels in European water frogs (Pelophylax). Mol Ecol Resour 2012; 12:797-805. [PMID: 22716763 DOI: 10.1111/j.1755-0998.2012.03160.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Palearctic water frogs in the genus Pelophylax are a set of morphologically similar anuran species that form hybridogenetic complexes. Fully reliable identification of species and especially of hybrid ploidy depends on karyological and molecular methods. In central Europe, native water frog populations consist of the Pelophylax esculentus complex, that is, P. lessonae (LL), P. ridibundus (RR) and the hybrid form P. esculentus that can have different karyotypes (RL, LLR and RRL). We developed existing molecular methods further and propose a simple PCR method based on size-differences in the length of the serum albumin intron-1 and the RanaCR1, a non-LTR retrotransposon of the chicken repeat (CR) family. This PCR yields taxon-specific banding patterns that can easily be screened by standard agarose gel electrophoresis and correctly identify species in all of the 160 samples that had been identified to karyotype with other methods. To distinguish ploidy levels in LR, LLR and RRL specimens, we used the ratio of the peak heights of the larger (ridibundus specific) to the smaller (lessonae specific) bands of fluorescently labelled PCR products resolved on a capillary DNA sequencer and obtained a correct assignment of the karyotype in 93% of cases. Our new method will cut down time and expenses drastically for a reliable identification of water frogs of the P. esculentus complex and potentially for identification of other hybridogenetic complexes and/or taxa, and it even serves as a good indicator of the ploidy status of hybrid individuals.
Collapse
Affiliation(s)
- J Susanne Hauswaldt
- Zoological Institute, Technical University Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|