1
|
Xie X, Jin J, Wang C, Lu P, Li Z, Tao J, Cao P, Xu Y. Investigating nicotine pathway-related long non-coding RNAs in tobacco. Front Genet 2023; 13:1102183. [PMID: 36744176 PMCID: PMC9892058 DOI: 10.3389/fgene.2022.1102183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with low or no protein-coding ability, which play essential roles in various biological processes in plants. Tobacco is an ideal model plant for studying nicotine biosynthesis and metabolism, and there is little research on lncRNAs in this field. Therefore, how to take advantage of the mature tobacco system to profoundly investigate the lncRNAs involved in the nicotine pathway is intriguing. By exploiting 549 public RNA-Seq datasets of tobacco, 30,212 lncRNA candidates were identified, including 24,084 large intervening non-coding RNAs (lincRNAs), 5,778 natural antisense transcripts (NATs) and 350 intronic non-coding RNAs (incRNAs). Compared with protein-coding genes, lncRNAs have distinct properties in terms of exon number, sequence length, A/U content, and tissue-specific expression pattern. lincRNAs showed an asymmetric evolutionary pattern, with a higher proportion (68.71%) expressed from the Nicotiana sylvestris (S) subgenome. We predicted the potential cis/trans-regulatory effects on protein-coding genes. One hundred four lncRNAs were detected as precursors of 30 known microRNA (miRNA) family members, and 110 lncRNAs were expected to be the potential endogenous target mimics for 39 miRNAs. By combining the results of weighted gene co-expression network analysis with the differentially expressed gene analysis of topping RNA-seq data, we constructed a sub-network containing eight lncRNAs and 25 nicotine-related coding genes. We confirmed that the expression of seven lncRNAs could be affected by MeJA treatment and may be controlled by the transcription factor NtMYC2 using a quantitative PCR assay and gene editing. The results suggested that lncRNAs are involved in the nicotine pathway. Our findings further deepened the understanding of the features and functions of lncRNAs and provided new candidates for regulating nicotine biosynthesis in tobacco.
Collapse
|
2
|
Jin J, Xu Y, Lu P, Chen Q, Liu P, Wang J, Zhang J, Li Z, Yang A, Li F, Cao P. Degradome, small RNAs and transcriptome sequencing of a high-nicotine cultivated tobacco uncovers miRNA's function in nicotine biosynthesis. Sci Rep 2020; 10:11751. [PMID: 32678207 PMCID: PMC7366715 DOI: 10.1038/s41598-020-68691-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022] Open
Abstract
Tobacco (Nicotiana tabacum) is considered as the model plant for alkaloid research, of which nicotine accounts for 90%. Many nicotine biosynthetic genes have been identified and were known to be regulated by jasmonate-responsive transcription factors. As an important regulator in plant physiological processes, whether small RNAs are involved in nicotine biosynthesis is largely unknown. Here, we combine transcriptome, small RNAs and degradome analysis of two native tobacco germplasms YJ1 and ZY100 to investigate small RNA's function. YJ1 leaves accumulate twofold higher nicotine than ZY100. Transcriptome analysis revealed 3,865 genes which were differently expressed in leaf and root of two germplasms, including some known nicotine and jasmonate pathway genes. By small RNA sequencing, 193 miRNAs were identified to be differentially expressed between YJ1 and ZY100. Using in silico and degradome sequencing approaches, six nicotine biosynthetic genes and seven jasmonate pathway genes were predicted to be targeted by 77 miRNA loci. Three pairs among them were validated by transient expression in vivo. Combined analysis of degradome and transcriptome datasets revealed 51 novel miRNA-mRNA interactions that may regulate nicotine biosynthesis. The comprehensive analysis of our study may provide new insights into the regulatory network of nicotine biosynthesis.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jinbang Wang
- China Tobacco Science and Technology Information Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Huen A, Bally J, Smith P. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis. BMC Genomics 2018; 19:940. [PMID: 30558535 PMCID: PMC6296076 DOI: 10.1186/s12864-018-5258-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/16/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Phosphorus is an important macronutrient that is severely lacking in soils. In plants, specific microRNAs (miRNAs) essential for nutrient management and the regulation of stress responses are responsible for the control of many phosphate starvation responses. Further understanding of conserved and species-specific microRNA species has potential implications for the development of crops tolerant to soils with low phosphate. RESULTS This study identified and characterised phosphate starvation-responsive miRNAs in the native Australian tobacco Nicotiana benthamiana. Small RNA libraries were constructed and sequenced from phosphate-starved plant leaves, stems and roots. Twenty-four conserved miRNA families and 36 species-specific miRNAs were identified. The majority of highly phosphate starvation-responsive miRNAs were highly conserved, comprising of members from the miR399, miR827, and miR2111 families. In addition, two miRNA-star species were identified to be phosphate starvation-responsive. A total of seven miRNA targets were confirmed using RLM-5'RACE to be cleaved by five miRNA families, including two confirmed cleavage targets for Nbe-miR399 species, one for Nbe-miR2111, and two for Nbe-miR398. A number of N. benthamiana-specific features for conserved miRNAs were identified, including species-specific miRNA targets predicted or confirmed for miR399, miR827, and miR398. CONCLUSIONS Our results give an insight into the phosphate starvation-responsive miRNAs of Nicotiana benthamiana, and indicate that the phosphate starvation response pathways in N. benthamiana contain both highly conserved and species-specific components.
Collapse
Affiliation(s)
- Amanda Huen
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, QLD, Brisbane, 4000, Australia
| | - Penelope Smith
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
4
|
Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, Li Y, Wei C. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC PLANT BIOLOGY 2017; 17:212. [PMID: 29157210 PMCID: PMC5697157 DOI: 10.1186/s12870-017-1169-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. RESULTS Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. CONCLUSION In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Mingzhu Shangguan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Prabu Gajjeraman
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
- Department of Biotechnology, Karpagam University, Coimbatore, India
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| |
Collapse
|
5
|
Guo Y, Jia MA, Yang Y, Zhan L, Cheng X, Cai J, Zhang J, Yang J, Liu T, Fu Q, Zhao J, Shamsi IH. Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provids insight into tobacco-PVY interactions. Sci Rep 2017; 7:4895. [PMID: 28687775 PMCID: PMC5501784 DOI: 10.1038/s41598-017-05155-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 02/02/2023] Open
Abstract
Potato virus Y (PVY) is a globally and economically important pathogen of potato, tobacco, tomato and other staple crops and caused significant yield losses and reductions in quality.To explore the molecular PVY-host interactions, we analysed changes in the miRNA and mRNA profiles of tobacco in response to PVY infection. A total of 81 differentially expressed miRNAs belonging to 29 families and 8133 mRNAs were identified. The Gene Ontology (GO) enrichment analyses showed that genes encoding the DNA/RNA binding, catalytic activity and signalling molecules were all significantly enriched. Moreover, 88 miRNA-mRNA interaction pairs were identified through a combined analysis of the two datasets. We also found evidence showing that the virus-derived siRNAs (vsiRNAs) from the PVY genome target tobacco translationally controlled tumor protein (NtTCTP) mRNA and mediate plant resistance to PVY. Together, our findings revealed that both miRNA and mRNA expression patterns can be changed in response to PVY infection and novel vsiRNA-plant interactions that may regulate plant resistance to PVY. Both provide fresh insights into the virus-plant interactions.
Collapse
MESH Headings
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Disease Resistance/genetics
- Gene Ontology
- Gene Regulatory Networks
- Host-Pathogen Interactions
- MicroRNAs/genetics
- MicroRNAs/immunology
- MicroRNAs/metabolism
- Molecular Sequence Annotation
- Plant Diseases/genetics
- Plant Diseases/immunology
- Plant Diseases/virology
- Plant Proteins/genetics
- Plant Proteins/immunology
- Plant Proteins/metabolism
- Potyvirus/genetics
- Potyvirus/metabolism
- Potyvirus/pathogenicity
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/immunology
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/virology
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China.
| | - Yumei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Linlin Zhan
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, P. R. China
| | - Xiaofei Cheng
- School of Life and Environmental science, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Jianyu Cai
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, P. R. China
| | - Jie Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Jie Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Qiang Fu
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Jiehong Zhao
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| |
Collapse
|
6
|
Chen Q, Li M, Zhang Z, Tie W, Chen X, Jin L, Zhai N, Zheng Q, Zhang J, Wang R, Xu G, Zhang H, Liu P, Zhou H. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco. BMC Genomics 2017; 18:62. [PMID: 28068898 PMCID: PMC5223433 DOI: 10.1186/s12864-016-3372-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/02/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). RESULTS In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed miRNAs (DEMs) and DEGs revealed 92 mRNA-miRNA interactions between CL and DL plants, and 32 mRNA-miRNA interactions between DL and WL plants. CONCLUSIONS This study provides a global view of the transcriptional and the post-transcriptional responses of tobacco under drought stress and re-watering conditions. Our results establish an empirical foundation that should prove valuable for further investigations into the molecular mechanisms through which tobacco, and plants more generally, respond to drought stress at multiple molecular genetic levels.
Collapse
Affiliation(s)
- Qiansi Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Meng Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410000, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410000, China
| | - Zhongchun Zhang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hui Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Xie S. Identification of conserved and novel microRNAs in Porphyridium purpureum via deep sequencing and bioinformatics. BMC Genomics 2016; 17:612. [PMID: 27516065 PMCID: PMC4981961 DOI: 10.1186/s12864-016-2985-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Background Porphyridium purpureum has been utilized in important industrial and pharmaceutical fields. The identification of microRNAs (miRNAs) in this unique species is of great importance: such identification can help fill gaps in the small RNA (sRNA) studies of this organism and help to elucidate essential biological processes and their regulation mechanisms in this special micro alga. Results In this study, 254 high-confidence miRNAs (203 conserved miRNAs and 51 novel miRNAs) were identified by sRNA deep sequencing (sRNA-seq) combined with bioinformatics. A total of 235 putative miRNA families were predicted, including 192 conserved families and 43 species-specific families. The conservation and diversity of predicted miRNA families were analysed in different plant species. Both the 100 % northern blot validation rate (VR) of four randomly selected miRNAs and the results of stem-loop quantitative real time RT-PCR (qRT-PCR) assays of 25 randomly selected miRNAs demonstrated that the majority of the miRNAs identified in this study are credible. A total of 14,958 and 2184 genes were predicted to be targeted by the 186 conserved and 41 novel miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that some target genes likely provide valuable references for further understanding of vital functions in P. purpureum. In addition, a cytoscape network will provide some clues for research into the complex biological processes that occur in this unique alga. Conclusions We first identified a large set of conserved and novel miRNAs in P. purpureum. The characteristic and validation analysis on miRNAs demonstrated authenticity of identification data. Functional annotation of target genes and metabolic pathways they involved in illuminated the direction for further utilization and development this micro alga based on its unique properties. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2985-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
8
|
Gao F, Nan F, Song W, Feng J, Lv J, Xie S. Identification and Characterization of miRNAs in Chondrus crispus by High-Throughput Sequencing and Bioinformatics Analysis. Sci Rep 2016; 6:26397. [PMID: 27193824 PMCID: PMC4872230 DOI: 10.1038/srep26397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Chondrus crispus, an economically and medicinally important red alga, is a medicinally active substance and important for anti-tumor research. In this study, 117 C. crispus miRNAs (108 conserved and 9 novel) were identified from 2,416,181 small-RNA reads using high-throughput sequencing and bioinformatics methods. According to the BLAST search against the miRBase database, these miRNAs belonged to 110 miRNA families. Sequence alignment combined with homology searching revealed both the conservation and diversity of predicted potential miRNA families in different plant species. Four and 19 randomly selected miRNAs were validated by northern blotting and stem-loop quantitative real-time reverse transcription polymerase chain reaction detection, respectively. The validation rates (75% and 94.7%) demonstrated that most of the identified miRNAs could be credible. A total of 160 potential target genes were predicted and functionally annotated by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis. We also analyzed the interrelationship of miRNAs, miRNA-target genes and target genes in C. crispus by constructing a Cytoscape network. The 117 miRNAs identified in our study should supply large quantities of information that will be important for red algae small RNA research.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - FangRu Nan
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Song
- College of Shanxi Physical Technology, Taiyuan 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - JunPing Lv
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - ShuLian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Xie S. Identification and characterization of microRNAs in Eucheuma denticulatum by high-throughput sequencing and bioinformatics analysis. RNA Biol 2015; 13:343-52. [PMID: 26717154 DOI: 10.1080/15476286.2015.1125075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Eucheuma denticulatum, an economically and industrially important red alga, is a valuable marine resource. Although microRNAs (miRNAs) play an essential role in gene post-transcriptional regulation, no research has been conducted to identify and characterize miRNAs in E. denticulatum. In this study, we identified 134 miRNAs (133 conserved miRNAs and one novel miRNA) from 2,997,135 small-RNA reads by high-throughput sequencing combined with bioinformatics analysis. BLAST searching against miRBase uncovered 126 potential miRNA families. A conservation and diversity analysis of predicted miRNA families in different plant species was performed by comparative alignment and homology searching. A total of 4 and 13 randomly selected miRNAs were respectively validated by northern blotting and stem-loop reverse transcription PCR, thereby demonstrating the reliability of the miRNA sequencing data. Altogether, 871 potential target genes were predicted using psRobot and TargetFinder. Target genes classification and enrichment were conducted based on Gene Ontology analysis. The functions of target gene products and associated metabolic pathways were predicted by Kyoto Encyclopedia of Genes and Genomes pathway analysis. A Cytoscape network was constructed to explore the interrelationships of miRNAs, miRNA-target genes and target genes. A large number of miRNAs with diverse target genes will play important roles for further understanding some essential biological processes in E. denticulatum. The uncovered information can serve as an important reference for the protection and utilization of this unique red alga in the future.
Collapse
Affiliation(s)
- Fan Gao
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Fangru Nan
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Jia Feng
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Junping Lv
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Qi Liu
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Shulian Xie
- a School of Life Science, Shanxi University , Taiyuan , PR China
| |
Collapse
|
10
|
Bukhari SAH, Shang S, Zhang M, Zheng W, Zhang G, Wang TZ, Shamsi IH, Wu F. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (Nicotiana tabacum) roots. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2573-82. [PMID: 26053264 DOI: 10.1002/etc.3097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 04/07/2015] [Accepted: 05/31/2015] [Indexed: 05/29/2023]
Abstract
Tobacco easily accumulates certain heavy metals in leaves and thus poses a potential threat to human health. To systematically dissect Cr-responsive microRNAs (miRNAs) and their targets at the global level, 4 small RNA libraries were constructed from the roots of Cr-treated (Cr) and Cr-free (control) for 2 contrasting tobacco genotypes,Yunyan2 (Cr-sensitive) and Guiyan1 (Cr-tolerant). Using high-throughput-sequencing-technology, the authors identified 53 conserved and 29 novel miRNA families. Comparative genomic analysis of 41 conserved Cr-responsive miRNA families revealed that 11 miRNA families showed up-regulation in Guiyan1 but unaltered in Yunyan2, and 17 miRNA families were up-regulated only in Yunyan2 under Cr stress. Only 1 family, miR6149, was down-regulated in Yunyan2 but remained unchanged in Guiyan1. Of the 29 novel miRNA families, 14 expressed differently in the 2 genotypes under Cr stress. Based on a high-throughput degradome sequencing homology search, potential targets were predicted for the 41 conserved and 14 novel Cr-responsive miRNA families. Clusters of Orthologous Groups functional category analysis revealed that some of these predicted target transcripts of miRNAs are responsive to biotic and abiotic stresses. Furthermore, the expression patterns of many Cr-responsive miRNAs were validated by stem-loop real-time transcription polymerase chain reaction. The results of the present study provide valuable information and a framework for understanding the function of miRNAs in Cr tolerance.
Collapse
Affiliation(s)
- Syed Asad Hussain Bukhari
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shenghua Shang
- Guizhou Tobacco Science Institute, Guiyang, People's Republic of China
| | - Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weite Zheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ting-Zhang Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
11
|
Mapping epistasis and environment×QTX interaction based on four -omics genotypes for the detected QTX loci controlling complex traits in tobacco. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P. High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics 2013; 14:801. [PMID: 24245539 PMCID: PMC3840582 DOI: 10.1186/1471-2164-14-801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/14/2013] [Indexed: 11/20/2022] Open
Abstract
Background Plant microRNAs are short (~21 nt) non-coding molecules that regulate gene expression by targeting the mRNA cleavage or protein translation inhibition. In this manner, they play many important roles in the cells of living organisms. One of the plant species in which the entire set of miRNAs has not been yet completely identified is Brassica oleracea var. capitata (cabbage). For this reason and for the economic and nutritional importance of this food crop, high-throughput small RNAs sequencing has been performed to discover the novel and conserved miRNAs in mature cabbage leaves. Results In this study, raw reads generated from three small RNA libraries were bioinformatically processed and further analyzed to select sequences homologous to known B. oleracea and other plant miRNAs. As a result of this analysis, 261 conserved miRNAs (belonging to 62 families) have been discovered. MIR169, MIR167 and MIR166 were the largest miRNA families, while the highest abundance molecules were miR167, miR166, miR168c and miR157a. Among the generated sequencing reads, miRNAs* were also found, such as the miR162c*, miR160a* and miR157a*. The unannotated tags were used in the prediction and evaluation of novel miRNAs, which resulted in the 26 potential miRNAs proposal. The expressions of 13 selected miRNAs were analyzed by northern blot hybridization. The target prediction and annotation for identified miRNAs were performed, according to which discovered molecules may target mRNAs encoding several potential proteins – e.g., transcription factors, polypeptides that regulate hormone stimuli and abiotic stress response, and molecules participating in transport and cell communication. Additionally, KEGG maps analysis suggested that the miRNAs in cabbage are involved in important processing pathways, including glycolysis, glycerolipid metabolism, flavonoid biosynthesis and oxidative phosphorylation. Conclusions Conclusively, for the first time, the large set of miRNAs was identified in mature cabbage leaves. Potential targets designation for these miRNAs may suggest their essential role in many plants primary biological processes. Presented study not only supplements the knowledge about B. oleracea miRNAs, but additionally it may be used in other research concerning the improvement of the cabbage cultivation.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Zielenkiewicz
- Institute of Biophysics and Biochemistry, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|