1
|
Dorant Y, Quillien V, Le Luyer J, Ky CL. Comparative transcriptomics identifies genes underlying growth performance of the Pacific black-lipped pearl oyster Pinctada margaritifera. BMC Genomics 2024; 25:717. [PMID: 39049022 PMCID: PMC11270918 DOI: 10.1186/s12864-024-10636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In bivalves, the rate at which organisms grow is a major functional trait underlying many aspects of their commercial production. Growth is a highly polygenic trait, which is typically regulated by many genes with small to moderate effects. Due to its complexity, growth variability in such shellfish remains poorly understood. In this study, we aimed to investigate differential gene expression among spat of the pearl oyster Pinctada margaritifera with distinct growth phenotypes. RESULTS We selected two groups of P. margaritifera spat belonging to the same F2 cohort based on their growth performance at 5.5 months old. Transcriptome profile analysis identified a total of 394 differentially expressed genes between these Fast-growing (F) and Slow-growing (S) phenotypes. According to functional enrichment analysis, S oysters overexpressed genes associated with stress-pathways and regulation of innate immune responses. In contrast, F oysters up-regulated genes associated with cytoskeleton activity, cell proliferation, and apoptosis. Analysis of genome polymorphism identified 16 single nucleotide polymorphisms (SNPs) significantly associated with the growth phenotypes. SNP effect categorization revealed one SNP identified for high effect and annotated for a stop codon gained mutation. Interestingly, this SNP is located within a gene annotated for scavenger receptor class F member 1 (SRF1), which is known to modulate apoptosis. Our analyses also revealed that all F oysters showed up-regulation for this gene and were homozygous for the stop-codon mutation. Conversely, S oysters had a heterozygous genotype and a reduced expression of this gene. CONCLUSIONS Altogether, our findings suggest that differences in growth among the same oyster cohort may be explained by contrasted metabolic allocation between regulatory pathways for growth and the immune system. This study provides a valuable contribution towards our understanding of the molecular components associated with growth performance in the pearl oyster P. margaritifera and bivalves in general.
Collapse
Affiliation(s)
- Y Dorant
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France.
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France.
| | - V Quillien
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - J Le Luyer
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - C L Ky
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France
| |
Collapse
|
2
|
Gecaj RM, Behluli B, Youngs CR. Validation of Selected MicroRNA Transcriptome Data in the Bovine Corpus Luteum during Early Pregnancy by RT-qPCR. Curr Issues Mol Biol 2024; 46:6620-6632. [PMID: 39057036 PMCID: PMC11275921 DOI: 10.3390/cimb46070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
In cattle, the corpus luteum (CL) is pivotal in maintaining early pregnancy by secreting progesterone. To establish pregnancy, the conceptus produces interferon-τ, preventing luteolysis and initiating the transformation of the CL spurium into a CL verum. Although this transformation is tightly regulated, limited data are available on the expression of microRNAs (miRNAs) during and after this process. To address this gap, we re-analyzed previously published RNA-Seq data of CL from pregnant cows and regressed CL from non-pregnant cows. This analysis identified 44 differentially expressed miRNAs. From this pool, three miRNAs-bta-miR-222-3p, bta-miR-29c, and bta-miR-2411-3p-were randomly selected for relative quantification. Using bovine ovaries (n = 14) obtained from an abattoir, total RNA (including miRNAs) was extracted and converted to cDNA for RT-qPCR. The results revealed that bta-miR-222-3p was downregulated (p = 0.016) in pregnant females compared to non-pregnant cows with regressed CL. However, no differences in miRNA expression were observed between CL of pregnant and non-pregnant cows for bta-miR-29c (p > 0.32) or bta-miR-2411-3p (p > 0.60). In silico prediction approaches indicated that these miRNAs are involved in pathways regulating pregnancy maintenance, such as the VEGF- and FoxO-signaling pathways. Additionally, their biogenesis is regulated by GABPA and E2F4 transcription factors. The validation of selected miRNA expression in the CL during pregnancy by RT-qPCR provides novel insights that could potentially lead to the identification of biomarkers related to CL physiology and pregnancy outcome.
Collapse
Affiliation(s)
- Rreze M. Gecaj
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Pristina, 10000 Prishtina, Kosovo;
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Pristina, Kosovo
| | - Behlul Behluli
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Pristina, Kosovo
| | - Curtis R. Youngs
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
3
|
Lee H, Molomjamts M, Roehrich H, Gudvangen S, Asuncion C, Georgieff MK, Tran P, McLoon LK, Ingolfsland EC. Differences in Oxygen-Induced Retinopathy Susceptibility Between Two Sprague Dawley Rat Vendors: A Comparison of Retinal Transcriptomes. Curr Eye Res 2024; 49:425-436. [PMID: 38152854 DOI: 10.1080/02713683.2023.2297346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To determine the retinal transcriptomic differences underlying the oxygen-induced retinopathy phenotypes between Sprague Dawley rat pups from two commonly used commercial vendors. This will allow us to discover genes and pathways that may be related to differences in disease severity in similarly aged premature babies and suggest possible new treatment approaches. METHODS We analyzed retinal vascular morphometry and transcriptomes from Sprague Dawley rat pups from Charles River Laboratories and Envigo (previously Harlan). Room air control and oxygen-induced retinopathy groups were compared. Oxygen-induced retinopathy was induced with the rat 50/10 model. RESULTS Pups from Charles River Laboratories developed a more severe oxygen-induced retinopathy phenotype, with 3.6-fold larger percent avascular area at P15 and twofold larger % neovascular area at P20 than pups from Envigo. Changes in retinal transcriptomes of rat pups from both vendors were substantial at baseline and in response to oxygen-induced retinopathy. Baseline differences centered on activated pathways of neuronal development in Charles River Laboratories pups. In response to oxygen-induced retinopathy, during the neovascular phase, retinas from Charles River Laboratories pups exhibited activation of pathways regulating necrosis, neuroinflammation, and interferon signaling, supporting the observed increase of neovascularization. Conversely, retinas from Envigo pups showed decreased necrosis and increased focal adhesion kinase signaling, supporting more normal vascular development. Comparing oxygen-induced retinopathy transcriptomes at P15 to those at P20, canonical pathways such as phosphate and tensin homolog, interferon, and coordinated lysosomal expression and regulation element signaling were identified, highlighting potential novel mechanistic targets for future research. CONCLUSION Transcriptomic profiles differ substantially between rat pup retinas from Charles River Laboratories and Envigo at baseline and in response to oxygen-induced retinopathy, providing insight into vascular morphologic differences. Comparing transcriptomes identified new pathways for further research in oxygen-induced retinopathy pathogenesis and increased scientific rigor of this model.
Collapse
Affiliation(s)
- Haeyeon Lee
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mandkhai Molomjamts
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sydney Gudvangen
- University of Minnesota College of Biological Sciences, St. Paul, MN, USA
| | - Chanel Asuncion
- University of Minnesota College of Biological Sciences, St. Paul, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Phu Tran
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ellen C Ingolfsland
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
4
|
Dean B, Scarr E. Common changes in rat cortical gene expression after antidepressant drug treatment: Impacts on metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. World J Biol Psychiatry 2024; 25:200-213. [PMID: 38349617 DOI: 10.1080/15622975.2024.2312475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES This study sought to identify pathways affected by rat cortical RNA that were changed after treatment with fluoxetine or imipramine. METHODS We measured levels of cortical RNA in male rats using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (0.9% NaCl), fluoxetine (10 mg/kg/day) or imipramine (20 mg/kg/day) for 28 days. Levels of coding and non-coding RNA in vehicle treated rats were compared to those in treated rats using ANOVA in JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify pathways involving the changed RNAs. RESULTS 18,876 transcripts were detected; there were highly correlated changes in 1010 levels of RNA after both drug treatments that would principally affect the metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. Using our previously published data, we compared changes in transcripts after treatment with antipsychotic and mood stabilising drugs. CONCLUSIONS Our study shows there are common, correlated, changes in coding and non-coding RNA in the rat cortex after treatment with fluoxetine or imipramine; we propose the pathways affected by these changes are involved in the therapeutic mechanisms of action of antidepressant drugs.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Dean B, Scarr E. Common changes in rat cortical gene expression after valproate or lithium treatment particularly affect pre- and post-synaptic pathways that regulate four neurotransmitters systems. World J Biol Psychiatry 2024; 25:54-64. [PMID: 37722808 DOI: 10.1080/15622975.2023.2258972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES We have postulated that common changes in gene expression after treatment with different therapeutic classes of psychotropic drugs contribute to their common therapeutic mechanisms of action. METHODS To test this hypothesis, we measured levels of cortical coding and non-coding RNA using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (chow only), chow containing 1.8 g lithium carbonate/kg (n = 10) or chow containing 12 g sodium valproate/kg (n = 10) for 28 days. Differences in levels of RNA were identified using JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify potential consequences of RNA. RESULTS Compared to vehicle treatment, levels of cortical RNA for 543 and 583 coding and non-coding RNAs were different after treatment with valproate and lithium, respectively. Moreover, levels of 323 coding and non-coding RNAs were altered in a highly correlated way by treatment with valproate and lithium, changes that would impact on cholinergic, glutamatergic, serotonergic and dopaminergic neurotransmission as well as on voltage gated ion channels. CONCLUSIONS Our study suggests that treating with mood stabilisers cause many common changes in levels of RNA which will impact on CNS function, particularly affecting post-synaptic muscarinic receptor functioning and the release of multiple neurotransmitters.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
7
|
Seshan H, Santillan E, Constancias F, Chandra Segaran US, Williams RBH, Wuertz S. Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166066. [PMID: 37549699 DOI: 10.1016/j.scitotenv.2023.166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying the adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of amplicon sequence variants associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
Collapse
Affiliation(s)
- Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Uma Shankari Chandra Segaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore..
| |
Collapse
|
8
|
Asins MJ, Bullones A, Raga V, Romero-Aranda MR, Espinosa J, Triviño JC, Bernet GP, Traverso JA, Carbonell EA, Claros MG, Belver A. Combining Genetic and Transcriptomic Approaches to Identify Transporter-Coding Genes as Likely Responsible for a Repeatable Salt Tolerance QTL in Citrus. Int J Mol Sci 2023; 24:15759. [PMID: 37958745 PMCID: PMC10650496 DOI: 10.3390/ijms242115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The excessive accumulation of chloride (Cl-) in leaves due to salinity is frequently related to decreased yield in citrus. Two salt tolerance experiments to detect quantitative trait loci (QTLs) for leaf concentrations of Cl-, Na+, and other traits using the same reference progeny derived from the salt-tolerant Cleopatra mandarin (Citrus reshni) and the disease-resistant donor Poncirus trifoliata were performed with the aim to identify repeatable QTLs that regulate leaf Cl- (and/or Na+) exclusion across independent experiments in citrus, as well as potential candidate genes involved. A repeatable QTL controlling leaf Cl- was detected in chromosome 6 (LCl-6), where 23 potential candidate genes coding for transporters were identified using the C. clementina genome as reference. Transcriptomic analysis revealed two important candidate genes coding for a member of the nitrate transporter 1/peptide transporter family (NPF5.9) and a major facilitator superfamily (MFS) protein. Cell wall biosynthesis- and secondary metabolism-related processes appeared to play a significant role in differential gene expression in LCl-6. Six likely gene candidates were mapped in LCl-6, showing conserved synteny in C. reshni. In conclusion, markers to select beneficial Cleopatra mandarin alleles of likely candidate genes in LCl-6 to improve salt tolerance in citrus rootstock breeding programs are provided.
Collapse
Affiliation(s)
- Maria J. Asins
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain; (V.R.)
| | - Amanda Bullones
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain; (A.B.); (M.G.C.)
| | - Veronica Raga
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain; (V.R.)
| | - Maria R. Romero-Aranda
- Integrative Biology for Plant Stress Group, La Mayora Institute of Subtropical and Mediterranean Horticulture, IHSM-CSIC-UMA, 29750 Malaga, Spain;
| | - Jesus Espinosa
- Department of Stress, Development and Signaling of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ CSIC), C/Prof. Albareda 1, 18008 Granada, Spain; (J.E.); (A.B.)
| | - Juan C. Triviño
- Sistemas Genómicos S.L., Ronda de Guglielmo Marconi, 6, 46980 Paterna, Spain; (J.C.T.); (G.P.B.)
| | - Guillermo P. Bernet
- Sistemas Genómicos S.L., Ronda de Guglielmo Marconi, 6, 46980 Paterna, Spain; (J.C.T.); (G.P.B.)
| | - Jose A. Traverso
- Department of Cellular Biology, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain;
| | - Emilio A. Carbonell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain; (V.R.)
| | - M. Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain; (A.B.); (M.G.C.)
- Integrative Biology for Plant Stress Group, La Mayora Institute of Subtropical and Mediterranean Horticulture, IHSM-CSIC-UMA, 29750 Malaga, Spain;
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
| | - Andres Belver
- Department of Stress, Development and Signaling of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ CSIC), C/Prof. Albareda 1, 18008 Granada, Spain; (J.E.); (A.B.)
| |
Collapse
|
9
|
Martinez V, Dettleff P, Zamorano P, Galarce N, Borie C, Naish K. Host-pathogen interaction involving cytoskeleton changes as well as non-coding regulation as primary mechanisms for SRS resistance in Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108711. [PMID: 37004895 DOI: 10.1016/j.fsi.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-β), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.
Collapse
Affiliation(s)
- Victor Martinez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa, 11735, Santiago, Chile.
| | - Phillip Dettleff
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa, 11735, Santiago, Chile
| | - Pedro Zamorano
- Cell and Molecular Biology-Genetics Unit, University of Antofagasta, Antofagasta, Chile
| | - Nicolás Galarce
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370146, Chile
| | - Consuelo Borie
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370146, Chile
| | - Kerry Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, United States
| |
Collapse
|
10
|
Jones CLC, Shafer ABA, Frost PC. Characterizing nutritional phenotypes using experimental nutrigenomics: Is there nutrient-specificity to different types of dietary stress? Mol Ecol 2023; 32:1073-1086. [PMID: 36528862 DOI: 10.1111/mec.16825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The ability to directly measure and monitor poor nutrition in individual animals and ecological communities is hampered by methodological limitations. In this study, we use nutrigenomics to identify nutritional biomarkers in a freshwater zooplankter, Daphnia pulex, a ubiquitous primary consumer in lakes and a sentinel of environmental change. We grew animals in six ecologically relevant nutritional treatments: nutrient replete, low carbon (food), low phosphorus, low nitrogen, low calcium and high Cyanobacteria. We extracted RNA for transcriptome sequencing to identify genes that were nutrient responsive and capable of predicting nutritional status with a high degree of accuracy. We selected a list of 125 candidate genes, which were subsequently pruned to 13 predictive potential biomarkers. Using a nearest-neighbour classification algorithm, we demonstrate that these potential biomarkers are capable of classifying our samples into the correct nutritional group with 100% accuracy. The functional annotation of the selected biomarkers revealed some specific nutritional pathways and supported our hypothesis that animal responses to poor nutrition are nutrient specific and not simply different presentations of slow growth or energy limitation. This is a key step in uncovering the causes and consequences of nutritional limitation in animal consumers and their responses to small- and large-scale changes in biogeochemical cycles.
Collapse
Affiliation(s)
- Catriona L C Jones
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada.,Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
11
|
Sant Anna Iwanicki N, Delalibera Júnior I, de Carvalho LLB, Eilenberg J, De Fine Licht HH. Comparative transcriptomics of growth metabolism and virulence reveal distinct morphogenic profiles of yeast-like cells and hyphae of the fungus Metarhizium rileyi. Fungal Genet Biol 2023; 164:103766. [PMID: 36513262 DOI: 10.1016/j.fgb.2022.103766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Metarhizium rileyiis an entomopathogenic fungus with a narrow host range which distinguishes it from other Metarhiziumspecies with broad host ranges. This species is also unique because the initial yeast-like growth on solid media is only observed in liquid culture in other Metharizium species. A lack of knowledge about the metabolism and genetic signatures of M. rileyiduring this yeast-like phase on solid and in liquid media is a bottleneck for its large-scale production as a commercial biocontrol agent.In this study wefound that M. rileyiyeast-like cells produced on solid medium infected and killed the important insect pest Spodoptera frugiperda with comparable efficiency as yeast-like cells grown in liquid medium. Secondly, we used comparative transcriptomic analysis to investigate theactive genes and genomic signatures of the M. rileyi yeast-like morphotypes produced on solid and in liquid media. Yeast-like cells grown in liquid medium had upregulated genes relating specifically to signal transduction andparticular membrane transporters. Thirdly, we compared the transcriptomic profiles of yeast-like phases of M. rileyi with those of M. anisopliae. The yeast-like phase of M. rileyi grown on solid medium upregulated unique genes not found in otherMetarhiziumspecies including specific membrane proteins and several virulence factors. Orthologous genes associated with heat shock protein, iron permease, membrane proteins and key virulence traits (e.g. collagen-like protein Mcl1) were upregulated in both species. Comparative transcriptome analyses of gene expression showed more differences than similarities between M. anisopliae and M. rileyi yeast-like cells.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP 13418-900, Brazil.
| | - Italo Delalibera Júnior
- Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP 13418-900, Brazil
| | - Lana L B de Carvalho
- Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP CEP 13418-900, Brazil
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| |
Collapse
|
12
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
13
|
Clément AA, Lamarche D, Masse MH, Légaré C, Tai LH, Fleury Deland L, Battista MC, Bouchard L, D’Aragon F. Time-course full profiling of circulating miRNAs in neurologically deceased organ donors: a proof of concept study to understand the onset of the cytokine storm. Epigenetics 2022; 17:1546-1561. [DOI: 10.1080/15592294.2022.2076048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphnée Lamarche
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Fleury Deland
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Frédérick D’Aragon
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Zeng D, Guo X. Mantle Transcriptome Provides Insights into Biomineralization and Growth Regulation in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:82-96. [PMID: 34989931 DOI: 10.1007/s10126-021-10088-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Growth of the eastern oyster Crassostrea virginica, a major aquaculture species in the USA, is highly variable and not well understood at molecular levels. As growth of mollusks is confined in shells constructed by the mantle, mantle transcriptomes of large (fast-growing) and small (slow-growing) eastern oysters were sequenced and compared in this study. Transcription was observed for 31,186 genes, among which 104 genes were differentially expressed between the large and small oysters, including 48 upregulated and 56 downregulated in large oysters. Differentially expressed genes (DEGs) included genes from diverse pathways highlighting the complexity of shell formation and growth regulations. Seventeen of the 48 upregulated DEGs were related to shell matrix formation, most of which were upregulated in large oysters, indicating that large oysters are more active in biomineralization and shell formation. Genomic and transcriptomic analyses identified 22 genes encoding novel polyalanine containing proteins (Pacps) with characteristic motifs for matrix function that are tandemly duplicated on one chromosome, all specifically expressed in mantle and at higher levels in large oysters, suggesting that these expanded Pacps play important roles in shell formation and growth. Analysis of sequence variation identified 244,964 SNPs with 328 associated with growth. This study provides novel candidate genes and markers for shell formation and growth, and suggests that genes related to shell formation are important for the complex regulation of growth in the eastern oyster and possibly other bivalve mollusks. Results of this study show that both transcriptional modulation and functional polymorphism are important in determining growth.
Collapse
Affiliation(s)
- Dan Zeng
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, New Jersey, 08349, USA
- College of Life and Environmental Science, Hunan University of Arts and Science, 3150 Dongting Road, Wuling District, Changde, Hunan, 415000, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, New Jersey, 08349, USA.
| |
Collapse
|
15
|
Bechen LL, Johnson MG, Broadhead GT, Levin RA, Overson RP, Jogesh T, Fant JB, Raguso RA, Skogen KA, Wickett NJ. Differential gene expression associated with a floral scent polymorphism in the evening primrose Oenothera harringtonii (Onagraceae). BMC Genomics 2022; 23:124. [PMID: 35151274 PMCID: PMC8840323 DOI: 10.1186/s12864-022-08370-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(−)-linalool; some plants emit (R)-(−)-linalool (linalool+ plants) while others do not (linalool- plants). However, the genes associated with differential production of this floral volatile in Oenothera are unknown. We used RNA-Seq to broadly characterize differential gene expression involved in (R)-(−)-linalool biosynthesis. To identify genes that may be associated with the polymorphism for this trait, we used RNA-Seq to compare gene expression in six different Oenothera harringtonii tissues from each of three linalool+ and linalool- plants. Results Three clusters of differentially expressed genes were enriched for terpene synthase activity: two were characterized by tissue-specific upregulation and one by upregulation only in plants with flowers that produce (R)-(−)-linalool. A molecular phylogeny of all terpene synthases identified two putative (R)-(−)-linalool synthase transcripts in Oenothera harringtonii, a single allele of which is found exclusively in linalool+ plants. Conclusions By using a naturally occurring polymorphism and comparing different tissues, we were able to identify candidate genes putatively involved in the biosynthesis of (R)-(−)-linalool. Expression of these genes in linalool- plants, while low, suggests a regulatory polymorphism, rather than a population-specific loss-of-function allele. Additional terpene biosynthesis-related genes that are up-regulated in plants that emit (R)-(−)-linalool may be associated with herbivore defense, suggesting a potential economy of scale between plant reproduction and defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08370-6.
Collapse
|
16
|
Wu X, Shukla R, Alganem K, Zhang X, Eby HM, Devine EA, Depasquale E, Reigle J, Simmons M, Hahn MK, Au-Yeung C, Asgariroozbehani R, Hahn CG, Haroutunian V, Meller J, Meador-Woodruff J, McCullumsmith RE. Transcriptional profile of pyramidal neurons in chronic schizophrenia reveals lamina-specific dysfunction of neuronal immunity. Mol Psychiatry 2021; 26:7699-7708. [PMID: 34272489 PMCID: PMC8761210 DOI: 10.1038/s41380-021-01205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
While the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser-capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed overrepresented groups of gene sets in schizophrenia, particularly in immunity and synapse-related pathways, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected other pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, postsynaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. Considering the effects of antipsychotic treatment on gene expression, we applied a novel bioinformatics approach to compare our differential expression gene profiles with 51 antipsychotic treatment datasets, demonstrating that our results were not influenced by antipsychotic treatment. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Hunter M. Eby
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Emily A. Devine
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Erica Depasquale
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - James Reigle
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Micah Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8,Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Christy Au-Yeung
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada, M5T 1R8,Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Chang-Gyu Hahn
- Department of Psychiatry, Vickie & Jack Farber Institute for Neuroscience, Jefferson University Hospitals, Philadelphia, PA, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, NY, USA,James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), Bronx, NY, USA
| | - Jarek Meller
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - James Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA,Neurosciences Institute, ProMedica, Toledo, OH, USA,Author for correspondence: Robert E. McCullumsmith, M.D., Ph.D., Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Avenue, Block Health Science Building, Mail Stop 1007, Toledo, OH 43614,
| |
Collapse
|
17
|
Oberti H, Spangenberg G, Cogan N, Reyno R, Feijoo M, Murchio S, Dalla-Rizza M. Genome-wide analysis of Claviceps paspali: insights into the secretome of the main species causing ergot disease in Paspalum spp. BMC Genomics 2021; 22:766. [PMID: 34702162 PMCID: PMC8549174 DOI: 10.1186/s12864-021-08077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. RESULTS C. paspali isolates had compact genomes and secretome which accounted for 4.6-4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. CONCLUSIONS Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.
Collapse
Affiliation(s)
- H Oberti
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - G Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - N Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - R Reyno
- Instituto Nacional de Investigación Agropecuaria (INIA). Programa Pasturas y Forrajes. Estación Experimental INIA Tacuarembó, Ruta 5 km, 386, Tacuarembó, Uruguay
| | - M Feijoo
- Centro Universitario Regional del Este (CURE), Polo de Desarrollo Universitario: Patogenicidad, toxicidad y genética en los ecosistemas pastoriles de la región Este de Uruguay, Ruta 8 km, 281, Treinta y Tres, Uruguay
| | - S Murchio
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - M Dalla-Rizza
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay.
| |
Collapse
|
18
|
Lamin A/C Is Dispensable to Mechanical Repression of Adipogenesis. Int J Mol Sci 2021; 22:ijms22126580. [PMID: 34205295 PMCID: PMC8234021 DOI: 10.3390/ijms22126580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) maintain the musculoskeletal system by differentiating into multiple lineages, including osteoblasts and adipocytes. Mechanical signals, including strain and low-intensity vibration (LIV), are important regulators of MSC differentiation via control exerted through the cell structure. Lamin A/C is a protein vital to the nuclear architecture that supports chromatin organization and differentiation and contributes to the mechanical integrity of the nucleus. We investigated whether lamin A/C and mechanoresponsiveness are functionally coupled during adipogenesis in MSCs. siRNA depletion of lamin A/C increased the nuclear area, height, and volume and decreased the circularity and stiffness. Lamin A/C depletion significantly decreased markers of adipogenesis (adiponectin, cellular lipid content) as did LIV treatment despite depletion of lamin A/C. Phosphorylation of focal adhesions in response to mechanical challenge was also preserved during loss of lamin A/C. RNA-seq showed no major adipogenic transcriptome changes resulting from LIV treatment, suggesting that LIV regulation of adipogenesis may not occur at the transcriptional level. We observed that during both lamin A/C depletion and LIV, interferon signaling was downregulated, suggesting potentially shared regulatory mechanism elements that could regulate protein translation. We conclude that the mechanoregulation of adipogenesis and the mechanical activation of focal adhesions function independently from those of lamin A/C.
Collapse
|
19
|
Coenye T. Do results obtained with RNA-sequencing require independent verification? Biofilm 2021; 3:100043. [PMID: 33665610 PMCID: PMC7823214 DOI: 10.1016/j.bioflm.2021.100043] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
|
20
|
Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum. Funct Integr Genomics 2021; 21:341-353. [PMID: 33660117 DOI: 10.1007/s10142-021-00780-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Growth is one of the most important traits of aquaculture breeding programs. Understanding the mechanisms underlying growth differences between individuals can contribute to improving growth rates through more efficient breeding schemes. Ruditapes philippinarum is an economically important marine bivalve. In order to gain insights into the molecular mechanisms to growth variability in marine shellfish, we conducted the transcriptome sequencing and examined the expression differences in growth-related gene and molecular pathways involved in growth trait of R. philippinarum. In this study, we investigated the molecular and gene expression differences in fast-growing and slow-growing Manila clam and focused on the analysis of the differential expression patterns of specific genes associated with growth by RNA-seq and qPCR analysis. A total of 61 differentially expressed genes (DEGs) were captured significantly differentially expressed, and were categorized into Ras signaling pathway, hedgehog signaling pathway, AMPK signaling pathway, p53 signaling pathway, regulation of actin cytoskeleton, focal adhesion, mTOR signaling pathway, VEGF signaling pathway, and TGF-beta signaling pathway. A total of 34 growth-related genes were validated significantly and up/downregulated at fast growing and slow growing of R. philippinarum. Functional enrichment analysis revealed the insulin signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway play pivotal roles in molecular function and regulation of growth trait in R. philippinarum. The growth-related genes and pathways obtained here provide important insights into the molecular basis of physiological acclimation, metabolic activity, and growth variability in marine bivalves.
Collapse
|
21
|
Gregoriou ME, Reczko M, Kakani EG, Tsoumani KT, Mathiopoulos KD. Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes (Basel) 2021; 12:355. [PMID: 33670896 PMCID: PMC7997189 DOI: 10.3390/genes12030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
In most diploid organisms, mating is a prerequisite for reproduction and, thus, critical to the maintenance of their population and the perpetuation of the species. Besides the importance of understanding the fundamentals of reproduction, targeting the reproductive success of a pest insect is also a promising method for its control, as a possible manipulation of the reproductive system could affect its destructive activity. Here, we used an integrated approach for the elucidation of the reproductive system and mating procedures of the olive fruit fly, Bactrocera oleae. Initially, we performed a RNAseq analysis in reproductive tissues of virgin and mated insects. A comparison of the transcriptomes resulted in the identification of genes that are differentially expressed after mating. Functional annotation of the genes showed an alteration in the metabolic, catalytic, and cellular processes after mating. Moreover, a functional analysis through RNAi silencing of two differentially expressed genes, yellow-g and troponin C, resulted in a significantly reduced oviposition rate. This study provided a foundation for future investigations into the olive fruit fly's reproductive biology to the development of new exploitable tools for its control.
Collapse
Affiliation(s)
- Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| | - Martin Reczko
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece;
| | - Evdoxia G. Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA 02115, USA;
- Verily Life Sciences, South San Francisco, CA 94080, USA
| | - Konstantina T. Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.-E.G.); (K.T.T.)
| |
Collapse
|
22
|
Zhang G, Meng Q, Blencowe M, Agrawal R, Gomez-Pinilla F, Yang X. Multi-Tissue Multi-Omics Nutrigenomics Indicates Context-Specific Effects of Docosahexaenoic Acid on Rat Brain. Mol Nutr Food Res 2020; 64:e2000788. [PMID: 33063454 PMCID: PMC8046846 DOI: 10.1002/mnfr.202000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Indexed: 11/09/2022]
Abstract
SCOPE The influence of docosahexaenoic acid (DHA) on cardiometabolic and cognitive phenotypes, and multi-omic alterations in the brain under two metabolic conditions is explored to understand context-specific nutritional effects. METHODS AND RESULTS Rats are randomly assigned to a DHA-rich or a control chow diet while drinking water or high fructose solution, followed by profiling of metabolic and cognitive phenotypes and the transcriptome and DNA methylome of the hypothalamus and hippocampus. DHA reduces serum triglyceride and improves insulin resistance and memory exclusively in the fructose-consuming rats. In hippocampus, DHA affects genes related to synapse functions in the chow group but immune functions in the fructose group; in hypothalamus, DHA alters immune pathways in the chow group but metabolic pathways in the fructose group. Network modeling reveals context-specific regulators of DHA effects, including Klf4 and Dusp1 for chow condition and Lum, Fn1, and Col1a1 for fructose condition in hippocampus, as well as Cyr61, JunB, Ier2, and Pitx2 under chow condition and Hcar1, Cdh1, and Osr1 under fructose condition in hypothalamus. CONCLUSION DHA exhibits differential influence on epigenetic loci, genes, pathways, and metabolic and cognitive phenotypes under different dietary contexts, supporting population stratification in DHA studies to achieve precision nutrition.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Molecular Cloning and Polymorphism Analysis of PmFGF18 from Pinctada fucata martensii. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 18 (FGF18) plays an important functional role in skeletal growth and development. The FGF18 gene was characterized in pearl oyster Pinctada fucata martensii (PmFGF18) with the full-length sequence containing an open reading frame of 714 bp encoding 237 amino acids. The domain analysis of PmFGF18 showed a distinctive FGF domain, with a high similarity to FGF18 protein sequences from Crassostrea gigas (43.35%) and C. virginica (37.43%). PmFGF18 expression was revealed in all analyzed tissues with a significantly higher expression level in the fast-growing group than the slow-growing group. The analysis of PmFGF18 polymorphism demonstrated 33 SNPs (single nucleotide polymorphisms) in the CDS and promoter region of PmFGF18 sequence. Association analysis revealed 19 SNPs (2 SNPs from CDS and 17 SNPs from the promoter region) associating significantly with growth traits. Among the associated SNPs, one SNP g.50918198 A > C was verified in the other breeding line. Therefore, PmFGF18 can be utilized as a candidate gene for growth, and its related SNPs could be used in selective breeding of P. f. martensii for the improvement of growth traits.
Collapse
|
24
|
Carbohydrate Accumulation and Differential Transcript Expression in Winter Wheat Lines with Different Levels of Snow Mold and Freezing Tolerance after Cold Treatment. PLANTS 2020; 9:plants9111416. [PMID: 33113921 PMCID: PMC7690702 DOI: 10.3390/plants9111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022]
Abstract
Winter wheat (Triticum aestivum L.) undergoes a period of cold acclimation in order to survive the ensuing winter, which can bring freezing temperatures and snow mold infection. Tolerance of these stresses is conferred in part by accumulation of carbohydrates in the crown region. This study investigates the contributions of carbohydrate accumulation during a cold treatment among wheat lines that differ in their snow mold tolerance (SMT) or susceptibility (SMS) and freezing tolerance (FrT) or susceptibility (FrS). Two parent varieties and eight recombinant inbred lines (RILs) were analyzed. The selected RILs represent four combinations of tolerance: SMT/FrT, SMT/FrS, SMS/FrT, and SMS/FrS. It is hypothesized that carbohydrate accumulation and transcript expression will differ between sets of RILs. Liquid chromatography with a refractive index detector was used to quantify carbohydrate content at eight time points over the cold treatment period. Polysaccharide and sucrose content differed between SMT and SMS RILs at various time points, although there were no significant differences in glucose or fructose content. Glucose and fructose content differed between FrT and FrS RILs in this study, but no significant differences in polysaccharide or sucrose content. RNAseq was used to investigate differential transcript expression, followed by modular enrichment analysis, to reveal potential candidates for other mechanisms of tolerance, which included expected pathways such as oxidative stress, chitinase activity, and unexpected transcriptional pathways. These differences in carbohydrate accumulation and differential transcript expression begin to give insight into the differences of wheat lines when exposed to cold temperatures.
Collapse
|
25
|
Zhang H, Xu H, Liu H, Pan X, Xu M, Zhang G, He M. PacBio single molecule long-read sequencing provides insight into the complexity and diversity of the Pinctada fucata martensii transcriptome. BMC Genomics 2020; 21:481. [PMID: 32660426 PMCID: PMC7359550 DOI: 10.1186/s12864-020-06894-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii is an economically valuable shellfish for seawater pearl production, and production of pearls depends on its growth. To date, the molecular mechanisms of the growth of this species remain poorly understood. The transcriptome sequencing has been considered to understanding of the complexity of mechanisms of the growth of P. f. martensii. The recently released genome sequences of P. f. martensii, as well as emerging Pacific Bioscience (PacBio) single-molecular sequencing technologies, provide an opportunity to thoroughly investigate these molecular mechanisms. RESULTS Herein, the full-length transcriptome was analysed by combining PacBio single-molecule long-read sequencing (PacBio sequencing) and Illumina sequencing. A total of 20.65 Gb of clean data were generated, including 574,561 circular consensus reads, among which 443,944 full-length non-chimeric (FLNC) sequences were identified. Through transcript clustering analysis of FLNC reads, 32,755 consensus isoforms were identified, including 32,095 high-quality consensus sequences. After removing redundant reads, 16,388 transcripts were obtained, and 641 fusion transcripts were derived by performing fusion transcript prediction of consensus sequences. Alternative splicing analysis of the 16,388 transcripts was performed after accounting for redundancy, and 9097 gene loci were detected, including 1607 new gene loci and 14,946 newly discovered transcripts. The original boundary of 11,235 genes on the chromosomes was corrected, 12,025 complete open reading frame sequences and 635 long non-coding RNAs (LncRNAs) were predicted, and functional annotation of 13,482 new transcripts was achieved. Two thousand three hundred eighteen alternative splicing events were detected. A total of 228 differentially expressed transcripts (DETs) were identified between the largest (L) and smallest (S) pearl oysters. Compared with the S, the L showed 99 and 129 significantly up-and down-regulated DETs, respectively. Six of these DETs were further confirmed by quantitative real-time RT-PCR (RT-qPCR) in independent experiment. CONCLUSIONS Our results significantly improve existing gene models and genome annotations, optimise the genome structure, and in-depth understanding of the complexity and diversity of the differential growth patterns of P. f. martensii.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hanzhi Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiru Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolan Pan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
26
|
Iwanicki NS, Júnior ID, Eilenberg J, De Fine Licht HH. Comparative RNAseq Analysis of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Specific Transcriptome Signatures of Filamentous and Yeast-Like Development. G3 (BETHESDA, MD.) 2020; 10:2141-2157. [PMID: 32354703 PMCID: PMC7341153 DOI: 10.1534/g3.120.401040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
The fungus Metarhizium anisopliae is a facultative insect pathogen used as biological control agent of several agricultural pests worldwide. It is a dimorphic fungus that is able to display two growth morphologies, a filamentous phase with formation of hyphae and a yeast-like phase with formation of single-celled blastospores. Blastospores play an important role for M. anisopliae pathogenicity during disease development. They are formed solely in the hemolymph of infected insects as a fungal strategy to quickly multiply and colonize the insect's body. Here, we use comparative genome-wide transcriptome analyses to determine changes in gene expression between the filamentous and blastospore growth phases in vitro to characterize physiological changes and metabolic signatures associated with M. anisopliae dimorphism. Our results show a clear molecular distinction between the blastospore and mycelial phases. In total 6.4% (n = 696) out of 10,981 predicted genes in M. anisopliae were differentially expressed between the two phases with a fold-change > 4. The main physiological processes associated with up-regulated gene content in the single-celled yeast-like blastospores during liquid fermentation were oxidative stress, amino acid metabolism (catabolism and anabolism), respiration processes, transmembrane transport and production of secondary metabolites. In contrast, the up-regulated gene content in hyphae were associated with increased growth, metabolism and cell wall re-organization, which underlines the specific functions and altered growth morphology of M. anisopliae blastospores and hyphae, respectively. Our study revealed significant transcriptomic differences between the metabolism of blastospores and hyphae. These findings illustrate important aspects of fungal morphogenesis in M. anisopliae and highlight the main metabolic activities of each propagule under in vitro growth conditions.
Collapse
Affiliation(s)
- Natasha Sant'Anna Iwanicki
- Department of Entomology and Acarology, ESALQ- University of São Paulo, Av Padua Dias, 11-P.O. Box 9-13418-900, Piracicaba, SP, Brazil and
| | - Italo Delalibera Júnior
- Department of Entomology and Acarology, ESALQ- University of São Paulo, Av Padua Dias, 11-P.O. Box 9-13418-900, Piracicaba, SP, Brazil and
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
27
|
Talla SB, Rempel E, Endris V, Jenzer M, Allgäuer M, Schwab C, Kazdal D, Stögbauer F, Volckmar AL, Kocsmar I, Neumann O, Schirmacher P, Zschäbitz S, Duensing S, Budczies J, Stenzinger A, Kirchner M. Immuno-oncology gene expression profiling of formalin-fixed and paraffin-embedded clear cell renal cell carcinoma: Performance comparison of the NanoString nCounter technology with targeted RNA sequencing. Genes Chromosomes Cancer 2020; 59:406-416. [PMID: 32212351 DOI: 10.1002/gcc.22843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023] Open
Abstract
Inflammatory gene signatures are currently being explored as predictive biomarkers for immune checkpoint blockade, and particularly for the treatment of renal cell cancers. From a diagnostic point of view, the nCounter analysis platform and targeted RNA sequencing are emerging alternatives to microarrays and comprehensive transcriptome sequencing in assessing formalin-fixed and paraffin-embedded (FFPE) cancer samples. So far, no systematic study has analyzed and compared the technical performance metrics of these two approaches. Filling this gap, we performed a head-to-head comparison of two commercially available immune gene expression assays, using clear cell renal cell cancer FFPE specimens. We compared the nCounter system that utilizes a direct hybridization technology without amplification with an NGS assay that is based on targeted RNA-sequencing with preamplification. We found that both platforms displayed high technical reproducibility and accuracy (Pearson coefficient: ≥0.96, concordance correlation coefficient [CCC]: ≥0.93). A density plot for normalized expression of shared genes on both platforms showed a comparable bi-modal distribution and dynamic range. RNA-Seq demonstrated relatively larger signaling intensity whereas the nCounter system displayed higher inter-sample variability. Estimated fold changes for all shared genes showed high correlation (Spearman coefficient: 0.73). This agreement is even better when only significantly differentially expressed genes were compared. Composite gene expression profiles, such as an interferon gamma (IFNg) signature, can be reliably inferred by both assays. In summary, our study demonstrates that focused transcript read-outs can reliably be achieved by both technologies and that both approaches achieve comparable results despite their intrinsic technical differences.
Collapse
Affiliation(s)
- Suranand B Talla
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eugen Rempel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Jenzer
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ildiko Kocsmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
28
|
Mizoguchi B, Valenzuela N. Alternative splicing and thermosensitive expression of Dmrt1 during urogenital development in the painted turtle, Chrysemys picta. PeerJ 2020; 8:e8639. [PMID: 32219017 PMCID: PMC7085901 DOI: 10.7717/peerj.8639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The doublesex and mab-3 related transcription factor 1 (Dmrt1) is a highly conserved gene across numerous vertebrates and invertebrates in sequence and function. Small aminoacid changes in Dmrt1 are associated with turnovers in sex determination in reptiles. Dmrt1 is upregulated in males during gonadal development in many species, including the painted turtle, Chrysemys picta, a reptile with temperature-dependent sex determination (TSD). Dmrt1 is reported to play different roles during sex determination and differentiation, yet whether these functions are controlled by distinct Dmrt1 spliceoforms remains unclear. While Dmrt1 isoforms have been characterized in various vertebrates, no study has investigated their existence in any turtle. METHODS We examine the painted turtle to identify novel Dmrt1 isoforms that may be present during urogenital development using PCR, profile their expression by RNA-seq across five embryonic stages at male- and female-producing temperatures, and validate their expression pattern via qPCR with transcript-specific fluorescent probes. RESULTS A novel Dmrt1 spliceoform was discovered for the first time in chelonians, lacking exons 2 and 3 (Dmrt1 ΔEx2Ex3). Dmrt1 canonical and ΔEx2Ex3 transcripts were differentialy expressed by temperature at stages 19 and 22 in developing gonads of painted turtles, after the onset of sex determination, and displayed a significant male-biased expression pattern. This transcriptional pattern differs from studies in other turtles and vertebrates that reported Dmrt1 differential expression before or at the onset of sex determination. This study provides the first insight into Dmrt1 transcriptional diversity in turtles and opens the door for future functional studies of the alternative Dmrt1 transcript uncovered here. CONCLUSIONS The discovery of an isoform in turtles indicate that alternative splicing may be a common feature of Dmrt1 across vertebrates, as isoforms are also found in crocodilians, birds, mammals and fish, and this variation remains unexplained. The relatively late-onset of Dmrt1 expression observed here contrasts with other turtles, indicating that Dmrt1 is not the topmost male sex -determining factor in C. picta. When placed in a phylogenetic context, this discrepancy underscores the divergent regulation of Dmrt1, and of sexual development more generally, across vertebrates.
Collapse
Affiliation(s)
- Beatriz Mizoguchi
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
29
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Yebra-Pimentel ES, Gebert M, Jansen HJ, Jong-Raadsen SA, Dirks RPH. Deep transcriptome analysis of the heat shock response in an Atlantic sturgeon (Acipenser oxyrinchus) cell line. FISH & SHELLFISH IMMUNOLOGY 2019; 88:508-517. [PMID: 30862517 DOI: 10.1016/j.fsi.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Despite efforts to restore Atlantic sturgeon in European rivers, aquaculture techniques result in animals with high post-release mortality due to, among other reasons, their low tolerance to increasing water temperature. Marker genes to monitor heat stress are needed in order to identify heat-resistant fish. Therefore, an Atlantic sturgeon cell line was exposed to different heat shock protocols (30 °C and 35 °C) and differences in gene expression were investigated. In total 3020 contigs (∼1.5%) were differentially expressed. As the core of the upregulated contigs corresponded to heat shock proteins (HSP), the heat shock factor (HSF) and the HSP gene families were annotated in Atlantic sturgeon and mapped via Illumina RNA sequencing to identify heat-inducible family members. Up to 6 hsf and 76 hsp genes were identified in the Atlantic sturgeon transcriptome resources, 16 of which were significantly responsive to the applied heat shock. The previously studied hspa1 (hsp70) gene was only significantly upregulated at the highest heat shock (35 °C), while a set of 5 genes (hspc1, hsph3a, hspb1b, hspb11a, and hspb11b) was upregulated at all conditions. Although the hspc1 (hsp90a) gene was previously used as heat shock-marker in sturgeons, we found that hspb11a is the most heat-inducible gene, with up to 3296-fold higher expression in the treated cells, constituting the candidate gene markers for in vivo trials.
Collapse
Affiliation(s)
- Elena Santidrián Yebra-Pimentel
- ZF-screens B.V., 2333CH, Leiden, the Netherlands; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, 0454, Oslo, Norway.
| | - Marina Gebert
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, 23562, Lübeck, Germany
| | | | | | | |
Collapse
|
31
|
Le Luyer J, Auffret P, Quillien V, Leclerc N, Reisser C, Vidal-Dupiol J, Ky CL. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019; 20:111. [PMID: 30727965 PMCID: PMC6366105 DOI: 10.1186/s12864-019-5443-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cultured pearls are unique gems produced by living organisms, mainly molluscs of the Pinctada genus, through the biomineralization properties of pearl sac tissue. Improvement of P. margaritifera pearl quality is one of the biggest challenges that Polynesian research has faced to date. To achieve this goal, a better understanding of the complex mechanisms related to nacre and pearl formation is essential and can now be approached through the use of massive parallel sequencing technologies. The aim of this study was to use RNA-seq to compare whole transcriptome expression of pearl sacs that had producing pearls with high and low quality. For this purpose, a comprehensive reference transcriptome of P. margaritifera was built based on multi-tissue sampling (mantle, gonad, whole animal), including different living stages (juvenile, adults) and phenotypes (colour morphotypes, sex). Results Strikingly, few genes were found to be up-regulated for high quality pearls (n = 16) compared to the up-regulated genes in low quality pearls (n = 246). Biomineralization genes up-regulated in low quality pearls were specific to prismatic and prism-nacre layers. Alternative splicing was further identified in several key biomineralization genes based on a recent P. margaritifera draft genome. Conclusion This study lifts the veil on the multi-level regulation of biomineralization genes associated with pearl quality determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - P Auffret
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - V Quillien
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - N Leclerc
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - C Reisser
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - J Vidal-Dupiol
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, Place Eugène Bataillon CC 80, 34095, Montpellier, France
| | - C-L Ky
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.
| |
Collapse
|
32
|
Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci Rep 2019; 9:1217. [PMID: 30718778 PMCID: PMC6362035 DOI: 10.1038/s41598-018-38083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Transcript abundance of histone variants, modifiers of histone and DNA in bovine in vivo oocytes and embryos were measured as mean transcripts per million (TPM). Six of 14 annotated histone variants, 8 of 52 histone methyl-transferases, 5 of 29 histone de-methylases, 5 of 20 acetyl-transferases, 5 of 19 de-acetylases, 1 of 4 DNA methyl-transferases and 0 of 3 DNA de-methylases were abundant (TPM >50) in at least one stage studied. Overall, oocytes and embryos contained more varieties of mRNAs for histone modification than for DNA. Three expression patterns were identified for histone modifiers: (1) transcription before embryonic genome activation (EGA) and down-regulated thereafter such as PRMT1; (2) low in oocytes but transiently increased for EGA such as EZH2; (3) high in oocytes but decreased by EGA such as SETD3. These expression patterns were altered by in vitro culture. Additionally, the presence of mRNAs for the TET enzymes throughout pre-implantation development suggests persistent de-methylation. Together, although DNA methylation changes are well-recognized, the first and second orders of significance in epigenetic changes by in vivo embryos may be histone variant replacements and modifications of histones.
Collapse
|
33
|
Zhao C, Wang P, Qiu L. RNA-Seq-based transcriptome analysis of reproduction- and growth-related genes in Lateolabrax japonicus ovaries at four different ages. Mol Biol Rep 2018; 45:2213-2225. [PMID: 30386972 DOI: 10.1007/s11033-018-4383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Lateolabrax japonicus is an abundant marine aquatic fish species that is commonly cultured in East Asia due to its high commercial value. In this study, RNA-Seq analysis of L. japonicus was carried out to identify reproduction- and growth-related genes expressed in L. japonicus ovaries at different ages using Illumina sequencing technology. In total, 334,388,688 high-quality reads were obtained in four libraries, i.e., 4-year-old ovaries (4th_Ovary), 3-year-old ovaries (3rd_Ovary), 2-year-old ovaries (2nd_Ovary), and 1-year-old ovaries (1st_Ovary). The reads were then de novo assembled into 101,860 unigenes with an average unigene length of 879 bp. In total, 30,142 unigenes (29.59%) were annotated in public databases, including Nr database (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of proteins (COG), based on sequence similarity. Comparative analysis revealed that there were 35,749, 43,657, and 36,819 differentially expressed genes (DEGs) in three comparisons (4th_Ovary versus 3rd_Ovary, 4th_Ovary versus 2rd_Ovary, and 4th_Ovary versus 1st_Ovary, respectively). In total, 24,295 DEGs were different expressed in 4th_Ovary. Enrichment and pathway analyses of the DEGs were also carried out to excavate the candidate genes related to reproduction and growth, and 402 genes that potential involved in the regulation of reproduction and growth were identified, e.g., GnRHR (GnRH receptor), GHR 2 (growth hormone receptor 2), I_LGF1R (insulin-like growth factor 1 receptor), etc. Our findings expanded the genomic resources of L. japonicus and provided fundamental information for further studies.
Collapse
Affiliation(s)
- Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China. .,Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS, Beijing, 100141, China.
| |
Collapse
|
34
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
35
|
Wang Q, Hao R, Zhao X, Huang R, Zheng Z, Deng Y, Chen W, Du X. Identification of EGFR in pearl oyster (Pinctada fucata martensii) and correlation analysis of its expression and growth traits. Biosci Biotechnol Biochem 2018; 82:1073-1080. [PMID: 29621937 DOI: 10.1080/09168451.2018.1459174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Marine pearl production is directly influenced by the growth speed of Pinctada fucata martensii. However, the slow growth rate of this organism remains the main challenge in aquaculture production. Epidermal growth factor receptor (EGFR), an important receptor of tyrosine kinases in animals, plays versatile functions in development, growth and tissue regeneration. In this study, we described the characteristic and function of an EGFR gene identified from P. f. martensii (PmEGFR). PmEGFR possesses a typical EGFR structure and is expressed in all studied tissues, with the highest expression level in adductor muscle. PmEGFR expression level is significantly higher in the fast-growing group than that in the slow-growing one. Correlation analysis represents that shell height and shell weight show positive correlation with PmEGFR expression (p < 0.05), and total weight and tissue weight exhibit positive correlation with it (p < 0.01). This study indicates that PmEGFR is a valuable functional gene associated with growth traits.
Collapse
Affiliation(s)
- Qingheng Wang
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China.,b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| | - Ruijuan Hao
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China
| | - Xiaoxia Zhao
- c Environment Protection Monitoring Station, Environmental Protection Agency of Zhanjiang , Zhanjiang , China
| | - Ronglian Huang
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China.,b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| | - Zhe Zheng
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China.,b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| | - Yuewen Deng
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China.,b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| | - Weiyao Chen
- b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| | - Xiaodong Du
- a Fisheries College, Guangdong Ocean University , Zhanjiang , China.,b Pearl Breeding and Processing Engineering Technology, Research Centre of Guangdong Province , Zhanjiang , China
| |
Collapse
|
36
|
Saavedra C, Milan M, Leite RB, Cordero D, Patarnello T, Cancela ML, Bargelloni L. A Microarray Study of Carpet-Shell Clam ( Ruditapes decussatus) Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland. Front Physiol 2017; 8:943. [PMID: 29234285 PMCID: PMC5712350 DOI: 10.3389/fphys.2017.00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG) were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC), i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS), enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo), and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO) annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others, some genes related to the IIS, such as the ParaHox gene Xlox, CCAR and the CCN family of secreted proteins, in the regulation of growth in bivalves.
Collapse
Affiliation(s)
- Carlos Saavedra
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castelló de la Plana, Spain
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Universitá di Padova, Polo di Agripolis, Legnaro, Italy
| | - Ricardo B Leite
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - David Cordero
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castelló de la Plana, Spain
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Universitá di Padova, Polo di Agripolis, Legnaro, Italy
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine and Academic Biomedical Centre, Universidade do Algarve, Faro, Portugal
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione, Universitá di Padova, Polo di Agripolis, Legnaro, Italy
| |
Collapse
|
37
|
Müller M, Seifert S, Lübbe T, Leuschner C, Finkeldey R. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech. PLoS One 2017; 12:e0184167. [PMID: 28873454 PMCID: PMC5584803 DOI: 10.1371/journal.pone.0184167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/19/2017] [Indexed: 12/23/2022] Open
Abstract
Despite the ecological and economic importance of European beech (Fagus sylvatica L.) genomic resources of this species are still limited. This hampers an understanding of the molecular basis of adaptation to stress. Since beech will most likely be threatened by the consequences of climate change, an understanding of adaptive processes to climate change-related drought stress is of major importance. Here, we used RNA-seq to provide the first drought stress-related transcriptome of beech. In a drought stress trial with beech saplings, 50 samples were taken for RNA extraction at five points in time during a soil desiccation experiment. De novo transcriptome assembly and analysis of differential gene expression revealed 44,335 contigs, and 662 differentially expressed genes between the stress and normally watered control group. Gene expression was specific to the different time points, and only five genes were significantly differentially expressed between the stress and control group on all five sampling days. GO term enrichment showed that mostly genes involved in lipid- and homeostasis-related processes were upregulated, whereas genes involved in oxidative stress response were downregulated in the stressed seedlings. This study gives first insights into the genomic drought stress response of European beech, and provides new genetic resources for adaptation research in this species.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Lower-Saxony, Germany
| | - Sarah Seifert
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Lower-Saxony, Germany
| | - Torben Lübbe
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Lower-Saxony, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Lower-Saxony, Germany
| | - Reiner Finkeldey
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Lower-Saxony, Germany
- University of Kassel, Kassel, Hesse, Germany
| |
Collapse
|
38
|
Tu J, Tian C, Zhao P, Sun J, Wang M, Fan Q, Yuan Y. Identification and profiling of growth-related microRNAs in Chinese perch (Siniperca chuatsi). BMC Genomics 2017; 18:489. [PMID: 28659132 PMCID: PMC5490230 DOI: 10.1186/s12864-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in the regulation of diverse biological processes in eukaryotes. Chinese perch (Siniperca chuatsi) is one of the most economically important fish species widely cultured in China. Growth is an extremely important characteristic in fish. Individual differences in body size are common in Siniperca chuatsi, which significantly influence the aquaculture production of Siniperca chuatsi. However, the underline growth-related regulatory factors, such as miRNAs, are still unknown. Results To investigate the growth-related miRNAs in Siniperca chuatsi, two RNA libraries from four growth-related tissues (brain, pituitary, liver, and muscle) of Siniperca chuatsi at 6-month stage with relatively high or low growth rates (big-size group or small-size group) were obtained and sequenced using Solexa sequencing. A total of 252 known miRNAs and 12 novel miRNAs were identified. The expression patterns of these miRNAs in big-size group and small-size group were compared, and the results showed that 31 known and 5 novel miRNAs were differently expressed (DE). Furthermore, to verify the Solexa sequencing, five DE miRNAs were randomly selected and quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results showed that their expression patterns were consistent with those of Solexa sequencing. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of target genes of DE miRNAs was performed. It showed that the target genes were involved in multiple biological processes including metabolic process, suggesting that metabolic process played an important role in growth of fish. Conclusions Siniperca chuatsi is a popular and economically important species in aquaculture. In this study, miRNAs in Siniperca chuatsi with different growth rates were identified, and their expression profiles were compared. The data provides the first large-scale miRNA profiles related to growth of Siniperca chuatsi, which is expected to contribute to a better understanding of the role of miRNAs in regulating the biological processes of growth and possibly useful for Siniperca chuatsi breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiagang Tu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changxu Tian
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Peiqi Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junxiao Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qixue Fan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei, 430070, China.
| |
Collapse
|
39
|
Donor and recipient contribution to phenotypic traits and the expression of biomineralisation genes in the pearl oyster model Pinctada margaritifera. Sci Rep 2017; 7:2696. [PMID: 28578397 PMCID: PMC5457395 DOI: 10.1038/s41598-017-02457-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/12/2017] [Indexed: 11/08/2022] Open
Abstract
Grafting associates two distinct genotypes, each of which maintains its own genetic identity throughout the life of the grafted organism. Grafting technology is well documented in the plant kingdom, but much less so in animals. The pearl oyster, Pinctada margaritifera, produces valuable pearls as a result of the biomineralisation process of a mantle graft from a donor inserted together with a nucleus into the gonad of a recipient oyster. To explore the respective roles of donor and recipient in pearl formation, a uniform experimental graft was designed using donor and recipient oysters monitored for their growth traits. At the same time, phenotypic parameters corresponding to pearl size and quality traits were recorded. Phenotypic interaction analysis demonstrated: 1) a positive correlation between recipient shell biometric parameters and pearl size, 2) an individual donor effect on cultured pearl quality traits. Furthermore, the expressions of biomineralisation biomarkers encoding proteins in the aragonite or prismatic layer showed: 1) higher gene expression levels of aragonite-related genes in the large donor phenotype in the graft tissue, and 2) correlation of gene expression in the pearl sac tissue with pearl quality traits and recipient biometric parameters. These results emphasize that pearl size is mainly driven by the recipient and that pearl quality traits are mainly driven by the donor.
Collapse
|
40
|
Wei J, Liu B, Fan S, Li H, Chen M, Zhang B, Su J, Meng Z, Yu D. Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2017; 62:247-256. [PMID: 28126621 DOI: 10.1016/j.fsi.2017.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The pearl oyster Pinctada fucata is commonly cultured for marine pearls in China. To culture pearls, a mantle piece from a donor pearl oyster is grafted with a nucleus into a receptor. This transplanted mantle piece may be rejected by the immune system of the recipient oyster, thus reducing the success of transplantation. However, there have been limited studies about the oyster's immune defense against allograft. In this study, hemocyte transcriptome analysis was performed to detect the immune responses to allograft in P. fucata at 0 h and 48 h after a transplant. The sequencing reaction produced 92.5 million reads that were mapped against the reference genome sequences of P. fucata. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify all immune-related differentially expressed genes (DEGs). Compared with patterns at 0 h, a total of 798 DEGs were identified, including 410 up-regulated and 388 down-regulated genes at 48 h. The expression levels of interleukin receptor and toll-like receptor in hemocytes were increased significantly 48 h post-transplant, indicating that the oyster immune response was induced. Finally, altered levels of 18 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide the basis for further analysis of the immune rejection of allotransplantation.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haimei Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingqiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zihao Meng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
41
|
Lee CT, Teles R, Kantarci A, Chen T, McCafferty J, Starr JR, Brito LCN, Paster BJ, Van Dyke TE. Resolvin E1 Reverses Experimental Periodontitis and Dysbiosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2796-806. [PMID: 27543615 DOI: 10.4049/jimmunol.1600859] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a biofilm-induced inflammatory disease characterized by dysbiosis of the commensal periodontal microbiota. It is unclear how natural regulation of inflammation affects the periodontal biofilm. Promoters of active resolution of inflammation, including resolvin E1 (RvE1), effectively treat inflammatory periodontitis in animal models. The goals of this study were 1) to compare periodontal tissue gene expression in different clinical conditions, 2) to determine the impact of local inflammation on the composition of subgingival bacteria, and 3) to understand how inflammation impacts these changes. Two clinically relevant experiments were performed in rats: prevention and treatment of ligature-induced periodontitis with RvE1 topical treatment. The gingival transcriptome was evaluated by RNA sequencing of mRNA. The composition of the subgingival microbiota was characterized by 16S rDNA sequencing. Periodontitis was assessed by bone morphometric measurements and histomorphometry of block sections. H&E and tartrate-resistant acid phosphatase staining were used to characterize and quantify inflammatory changes. RvE1 treatment prevented bone loss in ligature-induced periodontitis. Osteoclast density and inflammatory cell infiltration in the RvE1 groups were lower than those in the placebo group. RvE1 treatment reduced expression of inflammation-related genes, returning the expression profile to one more similar to health. Treatment of established periodontitis with RvE1 reversed bone loss, reversed inflammatory gene expression, and reduced osteoclast density. Assessment of the rat subgingival microbiota after RvE1 treatment revealed marked changes in both prevention and treatment experiments. The data suggest that modulation of local inflammation has a major role in shaping the composition of the subgingival microbiota.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Ricardo Teles
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Jon McCafferty
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Jacqueline R Starr
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | | | - Bruce J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| |
Collapse
|
42
|
Yin F, Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides. PLoS One 2016; 11:e0160751. [PMID: 27508934 PMCID: PMC4979964 DOI: 10.1371/journal.pone.0160751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND & AIMS Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. METHODOLOGY/PRINCIPAL FINDINGS Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis indicated that dietary BG intervention induced 79 and 205 characterized DEGs in the jejunum and liver, respectively. In addition, 255 and 165 TSEGs were detected in the liver and jejunum of BG-fed group, while 162 and 211 TSEGs genes were observed in the liver and jejunum of BD-fed birds, respectively. Bioinformatic analysis with both IPA and DAVID-BR further revealed a significant enrichment of DEGs and TSEGs in the biological processes for reducing the synthesis, storage, transportation and secretion of lipids in the jejunum, while those in the liver were for enhancing the oxidation of ingested lipids and fatty acids. In particular, transcriptional regulators of THRSP and EGR-1 as well as several DEGs involved in the PPAR-α signaling pathway were significantly induced by dietary BG intervention for lipid catabolism. CONCLUSIONS Our results demonstrate that BG reduces body fat deposition via regulation of gene expression, which is involved in the biological events relating to the reduction of synthesis, storage, transportation and secretion, and improvement of oxidation of lipids and fatty acids.
Collapse
Affiliation(s)
- Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xuejiang Shi
- Next Generation Sequencing Platforms, Clinical Genomics Centre, the UHN/MSH Gene Profiling Facility, Toronto, Ontario, Canada
| | - Xiaojian Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Steve Leeson
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi). Genetica 2016; 144:445-55. [PMID: 27393605 DOI: 10.1007/s10709-016-9913-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.
Collapse
|
44
|
Rondon R, Akcha F, Alonso P, Menard D, Rouxel J, Montagnani C, Mitta G, Cosseau C, Grunau C. Transcriptional changes in Crassostrea gigas oyster spat following a parental exposure to the herbicide diuron. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:47-55. [PMID: 26994368 DOI: 10.1016/j.aquatox.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is the main oyster species produced in the world, and a key coastal economic resource in France. High mortalities affect Pacific oysters since 2008 in France and Europe. Their origins have been attributed to a combination of biotic and abiotic factors, underlining the importance of environment quality. The impact of water pollution has been pointed out and one of the pollutants, the genotoxic herbicide diuron, occurs at high concentrations all along the French coasts. Previous work has revealed that a parental exposure to diuron had a strong impact on hatching rates and offspring development even if spats were not exposed to diuron themselves. In this study, we explored for the first time the transcriptional changes occurring in oyster spats (non exposed) originating from genitors exposed to an environmentally relevant concentration of diuron during gametogenesis using the RNAseq methodology. We identified a transcriptomic remodeling revealing an effect of the herbicide. Different molecular pathways involved in energy production, translation and cell proliferation are particularly disturbed. This analysis revealed modulated candidate genes putatively involved in response to oxidative stress and mitochondrial damage in offspring of genitors exposed to diuron. Complementary measures of the activity of enzymes involved in these latter processes corroborate the results obtained at the transcriptomic level. In addition, our results suggested an increase in energy production and mitotic activity in 5-month-spats from diuron-exposed genitors. These results could correspond to a "catch-up growth" phenomenon allowing the spats from diuron-exposed genitors, which displayed a growth delay at 3 months, to gain a normal size when they reach the age of 6 months. These results indicate that exposure to a concentration of diuron that is frequently encountered in the field during the oyster's gametogenesis stage can impact the next generation and may result in fitness disturbance.
Collapse
Affiliation(s)
- R Rondon
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France; Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - P Alonso
- CNRS, IHPE UMR 5244, Univ. Perpignan Via Domitia, IFREMER, Univ. Montpellier, F-34095 Montpellier, France
| | - D Menard
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - J Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - C Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France.
| | - G Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - C Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - C Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
45
|
Shi Y, He MX. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata. Sci Rep 2016; 6:22063. [PMID: 26911653 PMCID: PMC4766514 DOI: 10.1038/srep22063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
46
|
Willems E, Guerrero-Bosagna C, Decuypere E, Janssens S, Buyse J, Buys N, Jensen P, Everaert N. Differential Expression of Genes and DNA Methylation associated with Prenatal Protein Undernutrition by Albumen Removal in an avian model. Sci Rep 2016; 6:20837. [PMID: 26861190 PMCID: PMC4748411 DOI: 10.1038/srep20837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Previously, long-term effects on body weight and reproductive performance have been demonstrated in the chicken model of prenatal protein undernutrition by albumen removal. Introduction of such persistent alterations in phenotype suggests stable changes in gene expression. Therefore, a genome-wide screening of the hepatic transcriptome by RNA-Seq was performed in adult hens. The albumen-deprived hens were created by partial removal of the albumen from eggs and replacement with saline early during embryonic development. Results were compared to sham-manipulated hens and non-manipulated hens. Grouping of the differentially expressed (DE) genes according to biological functions revealed the involvement of processes such as ‘embryonic and organismal development’ and ‘reproductive system development and function’. Molecular pathways that were altered were ‘amino acid metabolism’, ‘carbohydrate metabolism’ and ‘protein synthesis’. Three key central genes interacting with many DE genes were identified: UBC, NR3C1, and ELAVL1. The DNA methylation of 9 DE genes and 3 key central genes was examined by MeDIP-qPCR. The DNA methylation of a fragment (UBC_3) of the UBC gene was increased in the albumen-deprived hens compared to the non-manipulated hens. In conclusion, these results demonstrated that prenatal protein undernutrition by albumen removal leads to long-term alterations of the hepatic transcriptome in the chicken.
Collapse
Affiliation(s)
- Els Willems
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium.,Linköping University, IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping 581 83, Sweden
| | - Carlos Guerrero-Bosagna
- Linköping University, IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping 581 83, Sweden
| | - Eddy Decuypere
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium
| | - Steven Janssens
- KU Leuven, Department of Biosystems, Research Group Livestock Genetics, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium
| | - Johan Buyse
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium
| | - Nadine Buys
- KU Leuven, Department of Biosystems, Research Group Livestock Genetics, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium
| | - Per Jensen
- Linköping University, IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping 581 83, Sweden
| | - Nadia Everaert
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30 box 2456, 3001 Leuven, Belgium.,University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
47
|
Engels AC, Brady PD, Kammoun M, Finalet Ferreiro J, DeKoninck P, Endo M, Toelen J, Vermeesch JR, Deprest J. Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion. Dis Model Mech 2016; 9:221-8. [PMID: 26744354 PMCID: PMC4770142 DOI: 10.1242/dmm.021626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/29/2015] [Indexed: 01/25/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a malformation leading to pulmonary hypoplasia, which can be treated in utero by fetal tracheal occlusion (TO). However, the changes of gene expression induced by TO remain largely unknown but could be used to further improve the clinically used prenatal treatment of this devastating malformation. Therefore, we aimed to investigate the pulmonary transcriptome changes caused by surgical induction of diaphragmatic hernia (DH) and additional TO in the fetal rabbit model. Induction of DH was associated with 378 upregulated genes compared to controls when allowing a false-discovery rate (FDR) of 0.1 and a fold change (FC) of 2. Those genes were again downregulated by consecutive TO. But DH+TO was associated with an upregulation of 157 genes compared to DH and controls. When being compared to control lungs, 106 genes were downregulated in the DH group and were not changed by TO. Therefore, the overall pattern of gene expression in DH+TO is more similar to the control group than to the DH group. In this study, we further provide a database of gene expression changes induced by surgical creation of DH and consecutive TO in the rabbit model. Future treatment strategies could be developed using this dataset. We also discuss the most relevant genes that are involved in CDH. Summary: Rabbit fetuses with induced diaphragmatic hernia and treated with prenatal tracheal occlusion have a similar pulmonary transcriptome as unaffected controls. This study describes a valuable database of gene expressions in this model.
Collapse
Affiliation(s)
- Alexander C Engels
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Paul D Brady
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Molka Kammoun
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Julio Finalet Ferreiro
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Philip DeKoninck
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Masayuki Endo
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Pediatrics, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, Almeida GT, Gomes MR, Pires DS, Setubal JC, DeMarco R, Verjovski-Almeida S. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLoS Negl Trop Dis 2015; 9:e0004334. [PMID: 26719891 PMCID: PMC4699917 DOI: 10.1371/journal.pntd.0004334] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search- and download-tool (http://schistosoma.usp.br/). This database provides new ways to explore the schistosome genome and transcriptome and will facilitate molecular research on this important parasite. Schistosomiasis is a public health problem caused by parasites of the genus Schistosoma, of which S. mansoni is the primary causative agent. The parasite has a complex life cycle; their sexual reproductive stage is dependent on female and male adult worms mating inside the mesenteric circulation of the human host, with the female releasing hundreds of eggs daily. This phase of the life cycle is responsible for the development of pathology, which is proportional to the number of eggs accumulating in the liver and intestine of the human host. Genome and transcriptome sequencing of this parasite represent important advances in schistosome research, but there is still a need for integrated analyses to better understand the biology of this parasite. In this study, we describe the first large-scale transcriptomes of eggs, and female and male adult worms, the parasite forms that are mainly responsible for the pathology of schistosomiasis. We were able to cross-reference the gene transcription regions with promoter regions, thus improving the gene annotations. Moreover, we identified the expression of novel protein-coding genes not yet described in the current genome annotation, advancing the biological knowledge regarding this parasite.
Collapse
Affiliation(s)
- Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S. Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - Felipe Beckedorff
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas F. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Katia C. Oliveira
- Núcleo de Enteroparasitas, Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Giulliana T. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monete R. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - David S. Pires
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2015; 16:27520-34. [PMID: 26593905 PMCID: PMC4661900 DOI: 10.3390/ijms161126042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/01/2022] Open
Abstract
The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.
Collapse
|
50
|
Rosani U, Varotto L, Gerdol M, Pallavicini A, Venier P. IL-17 signaling components in bivalves: Comparative sequence analysis and involvement in the immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:255-268. [PMID: 26026244 DOI: 10.1016/j.dci.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
The recent discovery of soluble immune-regulatory molecules in invertebrates takes advantage of the rapid growth of next generation sequencing datasets. Following protein domain searches in the transcriptomes of 31 bivalve spp. and in few available mollusk genomes, we retrieved 59 domains uniquely identifying interleukin 17 (IL-17) and 96 SEFIR domains typical of IL-17 receptors and CIKS/ACT1 proteins acting downstream in the IL-17 signaling pathway. Compared to the Chordata IL-17 family members, we confirm a separate clustering of the bivalve domain sequences and a consistent conservation pattern of amino acid residues. Analysis performed at transcript and genome level allowed us to propose an updated view of the components outlining the IL-17 signaling pathway in Mytilus galloprovincialis and Crassostrea gigas (in both species, homology modeling reduced the variety of IL-17 domains to only two 3D structures). Digital expression analysis indicated more heterogeneous expression levels for the mussel and oyster IL-17 ligands than for IL-17 receptors and CIKS/CIKSL proteins. Besides, new qPCR analyses confirmed such gene expression trends in hemocytes and gills of mussels challenged with heat-killed bacteria. These results uphold the involvement of an ancient IL-17 signaling pathway in the bivalve immune responses and, likewise in humans, suggest the possibility of distinctive modulatory roles of individual IL-17s/IL-17 receptors. Overall, the common evidence of pro-inflammatory cytokines and inter-related intracellular signaling pathways in bivalves definitely adds complexity to the invertebrate immunity.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - Laura Varotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy.
| |
Collapse
|