1
|
Yekefenhazi D, He Q, Wang X, Han W, Song C, Li W. Chromosome-level genome assembly of Nibea coibor using PacBio HiFi reads and Hi-C technologies. Sci Data 2022; 9:670. [PMID: 36329044 PMCID: PMC9633807 DOI: 10.1038/s41597-022-01804-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Nibea coibor belongs to Sciaenidae and is distributed in the South China Sea, East China Sea, India and the Philippines. In this study, we sequenced the DNA of a male Nibea coibor using PacBio long-read sequencing and generated chromatin interaction data. The genome size of Nibea coibor was estimated to be 611.85~633.88 Mb based on k-mer counts generated with Jellyfish. PacBio sequencing produced 29.26 Gb of HiFi reads, and Hifiasm was used to assemble a 627.60 Mb genome with a contig N50 of 10.66 Mb. We further found the canonical telomeric repeats "TTAGGG" to be present at the telomeres of all 24 chromosomes. The completeness of the assembly was estimated to be 98.9% and 97.8% using BUSCO and Merqury, respectively. Using the combination of ab initio prediction, protein homology and RNAseq annotation, we identified a total of 21,433 protein-coding genes. Phylogenetic analyses showed that Nibea coibor and Nibea albiflora are closely related. The results provide an important basis for research on the genetic breeding and genome evolution of Nibea coibor.
Collapse
Affiliation(s)
- Dinaer Yekefenhazi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qiwei He
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiaopeng Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wei Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Chaowei Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
2
|
Chen Z, Cao X, Lu Q, Zhou J, Wang Y, Wu Y, Mao Y, Xu H, Yang Z. circ01592 regulates unsaturated fatty acid metabolism through adsorbing miR-218 in bovine mammary epithelial cells. Food Funct 2021; 12:12047-12058. [PMID: 34761771 DOI: 10.1039/d1fo02797b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of fatty acids plays a key role in regulating milk flavor and quality. Therefore, to improve the quality of milk, it is particularly important to study the regulatory mechanism of fatty acid metabolism in dairy cows. In this study, the expression profiles at non-lactation, peak-lactation, mid-lactation and late-lactation were constructed by high-throughput sequencing. Considering non-lactation as the control group and the other points as the experimental groups, the differentially expressed genes were screened. ELOVL5 was significantly upregulated and was selected for subsequent analyses. Bioinformatics prediction, a dual-luciferase assay, qPCR analysis and western blot analysis were used for verification. The results showed that ELOVL5 was a downstream target gene of miR-218 that regulated milk fat metabolism. A dual-luciferase assay and expression level analysis showed that circ01592 can directly bind to miR-218 and that overexpression of circ01592 (pcDNA-circ01592) significantly reduced the expression of miR-218 and enhanced the expression of ELOVL5, the target gene of miR-218 in BMECs. A functional study of BMECs showed that circ01592 promoted the synthesis of TAG and increased the content of UFA. The function of miR-218 was opposite to that of circ01592. Overall, the data showed that circ01592 promoted TAG synthesis and fatty acid composition by binding miR-218, alleviating the inhibitory effect of miR-218 on ELOVL5 expression. These mechanisms provide a new research approach and theoretical basis for improving milk quality.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Xie D, Chen C, Dong Y, You C, Wang S, Monroig Ó, Tocher DR, Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Prog Lipid Res 2021; 82:101095. [PMID: 33741387 DOI: 10.1016/j.plipres.2021.101095] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Cuihong You
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Castellón, Spain.
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhu KC, Song L, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional characterization, tissue distribution and nutritional regulation of the Elovl4 gene in golden pompano, Trachinotus ovatus (Linnaeus, 1758). Gene 2020; 766:145144. [PMID: 32916248 DOI: 10.1016/j.gene.2020.145144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The elongases of very long-chain fatty acids (Elovls) are involved in the rate-limiting of the carbon chain elongation reaction in fatty acid (FA) biosynthesis in vertebrates. One member of the Elovls family, Elovl4, has been regarded as a critical enzyme involved in the biosynthesis pathway of polyunsaturated fatty acids (PUFAs). To explore the role of Elovl4 in PUFA synthesis in Trachinotus ovatus, the cDNA of the Elovl4b gene is cloned from T. ovatus (ToElovl4b). The ORF of ToElovl4b was 918 bp and encoded 305 amino acid (aa) protein sequences. Sequence alignment showed that the deduced amino acids contained significant structural features of the Elovl4 family, such as a histidine box motif (HXXHH), multiple transmembrane domains and an endoplasmic reticulum (ER) retention signal. Moreover, phylogenetic analysis revealed that ToElovl4b was highly conserved with that of Rachycentron canadum Elovl4b. Moreover, heterologous expression in yeast demonstrated that ToElovl4b could efficiently elongate 18:2n-6, 18:3n-6 and 20:5n-3 FAs up to 20:2n-6, 20:3n-6 and 22:5n-3, respectively. Furthermore, the tissue expression profile indicated that mRNA expression of ToElovl4b was higher in the gonads and brain than in other tissues. Additionally, nutritional regulation suggested the highest mRNA levels of ToElovl4b in liver and brain were under feeding with 1:1 FO-SO (fish oil, FO; soybean oil, SO) and 1:1 FO-CO (corn oil, CO)), respectively. These new insights were useful for understanding the molecular basis and regulation of LC-PUFA biosynthesis in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Ling Song
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300 Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province 572018, PR China.
| |
Collapse
|
5
|
Ma Q, Hu CT, Yue J, Luo Y, Qiao F, Chen LQ, Zhang ML, Du ZY. High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:665-679. [PMID: 31820205 DOI: 10.1007/s10695-019-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Oxygen deprivation (hypoxia) is a common challenge in water environment, which causes lack of energy and oxidative damage in organisms. Many studies have indicated a number of physiological and metabolic changes under hypoxia, but the effects of dietary nutrients on hypoxia tolerance have not been well evaluated. In the present 7-week feeding trial, we fed zebrafish with low-protein diet (LP), high-protein diet (HP), low-fat diet (LF), high-fat diet (HF), low-carbohydrate diet (LC), and high-carbohydrate diet (HC), respectively. Afterward, the resistance to acute hypoxia challenge, growth, body composition, activities of metabolic enzymes, and expressions of energy homeostasis-related genes and six hifαs genes were measured. The results indicated that only the HC diet could significantly improve the resistance to hypoxia challenge. Moreover, the HC diet feeding caused higher glycogen deposition in the liver and muscle, and these glycogens were significantly reduced after 6-h acute hypoxia challenge. Meanwhile, the lactate content in the liver and blood was increased in the HC groups. At hypoxia status, the relative mRNA expressions of the genes related to glycolysis, ATP production, insulin signaling pathway, and hif-3a (hif1al) were all significantly increased in the muscle of the HC diet-fed fish. This study revealed that high-carbohydrate diet could improve the resistance to hypoxia by activating glycolysis and hif/insulin signaling pathway in zebrafish, mainly in the muscle, to efficiently supply energy. Therefore, our results highlight the importance of dietary carbohydrate in resisting hypoxia in fish.
Collapse
Affiliation(s)
- Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Chun-Ting Hu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Junjiayu Yue
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Tsachaki M, Strauss P, Dunkel A, Navrátilová H, Mladenovic N, Odermatt A. Impact of 17β-HSD12, the 3-ketoacyl-CoA reductase of long-chain fatty acid synthesis, on breast cancer cell proliferation and migration. Cell Mol Life Sci 2020; 77:1153-1175. [PMID: 31302749 PMCID: PMC7109200 DOI: 10.1007/s00018-019-03227-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming of tumor cells involves upregulation of fatty acid (FA) synthesis to support high bioenergetic demands and membrane synthesis. This has been shown for cytosolic synthesis of FAs with up to 16 carbon atoms. Synthesis of long-chain fatty acids (LCFAs), including ω-6 and ω-3 polyunsaturated FAs, takes place at the endoplasmic reticulum. Despite increasing evidence for an important role of LCFAs in cancer, the impact of their synthesis in cancer cell growth has scarcely been studied. Here, we demonstrated that silencing of 17β-hydroxysteroid dehydrogenase type 12 (17β-HSD12), essentially catalyzing the 3-ketoacyl-CoA reduction step in LCFA production, modulates proliferation and migration of breast cancer cells in a cell line-dependent manner. Increased proliferation and migration after 17β-HSD12 knockdown were partly mediated by metabolism of arachidonic acid towards COX2 and CYP1B1-derived eicosanoids. Decreased proliferation was rescued by increased glucose concentration and was preceded by reduced ATP production through oxidative phosphorylation and spare respiratory capacity. In addition, 17β-HSD12 silencing was accompanied by alterations in unfolded protein response, including a decrease in CHOP expression and increase in eIF2α activation and the folding chaperone ERp44. Our study highlights the significance of LCFA biosynthesis for tumor cell physiology and unveils unknown aspects of breast cancer cell heterogeneity.
Collapse
Affiliation(s)
- Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pirmin Strauss
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anja Dunkel
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Hana Navrátilová
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Natasa Mladenovic
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Molecular cloning and functional characterization of elongase (elovl5) and fatty acyl desaturase (fads2) in sciaenid, Nibea diacanthus (Lacepède, 1802). Gene 2019; 695:1-11. [DOI: 10.1016/j.gene.2019.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023]
|
9
|
Liao K, Ran Z, Meng R, Xu J, Cao J, Xu X, Wang Y, Xu S, Yan X. Long-chain polyunsaturated fatty acid biosynthesis and its response to cadmium exposure in silver pomfret. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:61-71. [PMID: 30453168 DOI: 10.1016/j.aquatox.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Despite a close interaction between cadmium (Cd) and long-chain polyunsaturated fatty acid (LC-PUFA) metabolism, the influence of Cd exposure on the endogenous synthesis of LC-PUFA has received little attention. In the present study, we hypothesized that Cd exposure would affect the synthesis of LC-PUFA in the marine fish silver pomfret (Pampus argenteus). Therefore, the molecular basis of LC-PUFA biosynthesis and regulation was investigated as the first step to understanding the mechanisms underpinning the effects of Cd exposure. Thereafter, transcriptional regulation of the genes that participate in LC-PUFA biosynthesis and regulation by Cd exposure were also explored. Our results showed that fatty acyl desaturase 2 (Fads2) and elongases of very long-chain fatty acids 5 (Elovl5), two key enzymes involved in LC-PUFA biosynthesis, enabled silver pomfret to biosynthesize 20:3n-6 and 20:4n-3 from 18:2n-6 and 18:3n-3. The results also raise the possibility that silver pomfret may have the ability to produce docosahexaenoic acid (DHA, 22:6n-3) from endogenous eicosapentaenoic acid (EPA, 20:5n-3). The expression of silver pomfret fads2 and elovl5 was transcriptionally regulated by the peroxisome proliferator activated receptor α (Pparα). The expression of fads2, elovl5 and pparα in the brain was significantly increased in response to Cd exposure. In addition, Cd exposure significantly reduced the DHA concentration and significantly increased the malondialdehyde concentration in the brain of silver pomfret. Cd exposure likely increases brain-specific DHA synthesis from EPA by transcriptionally activating fads2 and elovl5 via Pparα in silver pomfret. This regulation may be a coping mechanism for the reduction of DHA caused by Cd-oxidative stress in the brains of silver pomfret.
Collapse
Affiliation(s)
- Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoshou Ran
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ran Meng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Jiayi Cao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaorong Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
10
|
Zhu KC, Song L, Guo HY, Guo L, Zhang N, Liu BS, Jiang SG, Zhang DC. Identification of Fatty Acid Desaturase 6 in Golden Pompano Trachinotus Ovatus (Linnaeus 1758) and Its Regulation by the PPARαb Transcription Factor. Int J Mol Sci 2018; 20:E23. [PMID: 30577588 PMCID: PMC6337163 DOI: 10.3390/ijms20010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Fatty acid desaturases are rate-limiting enzymes in long-chain polyunsaturated fatty acid biosynthesis. The transcription factor peroxisome proliferator-activated receptor alpha b (PPARαb) regulates lipid metabolism in mammals, however, the mechanism whereby PPARαb regulates fatty acid desaturases is largely unknown in fish. In this study, we report the full length cDNA sequence of Trachinotus ovatus fatty acid desaturase, which encodes a 380 amino acid polypeptide, possessing three characteristic histidine domains. Phylogenetic and gene exon/intron structure analyses showed typical phylogeny: the T. ovatus fatty acid desaturase contained a highly conserved exon/intron architecture. Moreover, functional characterization by heterologous expression in yeast indicated that T. ovatus desaturase was a fatty acid desaturase, with Δ4/Δ5/Δ8 Fad activity. Promoter activity assays indicated that ToFads6 desaturase transcription was positively regulated by PPARαb. Similarly, PPARαb RNA interference decreased ToPPARαb and ToFads6 expression at the mRNA and protein levels in a time-dependent manner. Mutation analyses showed that the M2 binding site of PPARαb was functionally important for protein binding, and transcriptional activity of the ToFads6 promoter was significantly decreased after targeted mutation of M2. Electrophoretic mobile shift assays confirmed that PPARαb interacted with the binding site of the ToFads6 promoter region, to regulate ToFads6 transcription. In summary, PPARαb played a vital role in ToFads6 regulation and may promote the biosynthesis of long-chain polyunsaturated fatty acids by regulating ToFads6 expression.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- Key Laboratory of Fishery Ecology & Environment, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| | - Ling Song
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- Key Laboratory of Fishery Ecology & Environment, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- Key Laboratory of Fishery Ecology & Environment, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- Key Laboratory of Fishery Ecology & Environment, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation-Center, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
- Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China.
- Key Laboratory of Fishery Ecology & Environment, South China Sea Fisheries Research Institute, Guangzhou 510300, China.
| |
Collapse
|
11
|
Zhu KC, Song L, Zhao CP, Guo HY, Zhang N, Guo L, Liu BS, Jiang SG, Zhang DC. The Transcriptional Factor PPARαb Positively Regulates Elovl5 Elongase in Golden Pompano Trachinotus ovatus (Linnaeus 1758). Front Physiol 2018; 9:1340. [PMID: 30319448 PMCID: PMC6167968 DOI: 10.3389/fphys.2018.01340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
The nuclear peroxisome proliferator-activated receptors (PPARs) regulate the transcription of elongases of very long-chain fatty acids (Elovl), which are involved in polyunsaturated fatty acid (PUFA) biosynthesis in mammals. In the present study, we first characterized the function of Elovl5 elongase in Trachinotus ovatus. The functional study showed that ToElovl5 displayed high elongation activity toward C18 and C20 PUFA. To investigate whether PPARαb was a regulator of Elovl5, we also reported the sequence of T. ovatus PPARαb (ToPPARαb). The open reading frame (ORF) sequence encoded 469 amino acids possessing four typical characteristic domains, including an N-terminal hypervariable region, a DNA-binding domain (DBD), a flexible hinge domain and a ligand-binding domain (LBD). Thirdly, promoter activity experiments showed that the region from PGL3-basic-Elovl5-5 (-146 bp to +459 bp) was defined as the core promoter by progressive deletion mutation of Elovl5. Moreover, PPARαb overexpression led to a clear time-dependent enhancement of ToElovl5 promoter expression in HEK 293T cells. Fourth, the agonist of PPARαb prominently increased PPARαb and Elovl5 expression, while PPARαb depletion by RNAi or an inhibitor was correlated with a significant reduction of Elovl5 transcription in T. ovatus caudal fin cells (TOCF). In conclusion, the present study provides the first evidence of the positive regulation of Elovl5 transcription by PPARαb and contributes to a better understanding of the transcriptional mechanism of PPARαb in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Ling Song
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chao-Ping Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs - South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| |
Collapse
|