1
|
Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice. Gene 2024; 906:148239. [PMID: 38325666 DOI: 10.1016/j.gene.2024.148239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hao Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
2
|
Li Z, Gao J, Tian Y, Wang B, Xu J, Fu X, Han H, Wang L, Zhang W, Wang Y, Deng Y, Gong Z, Peng R, Yao Q. ElNFS1, a nitroreductase gene from Enterobacter ludwigii, confers enhanced detoxification and phytoremediation of 4-nitrobenzaldehyde in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120292. [PMID: 36181935 DOI: 10.1016/j.envpol.2022.120292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated. The cytosol-targeted ElNFS1 transgenic plants were selected to comprehensively examine their physio-biochemical responses and phytoremediation potential to 4-NBA. Our results showed that the transgenic plants exhibited strong tolerance to 4-NBA. Overexpression of ElNFS1 could significantly alleviate 4-NBA-induced damages of photosynthetic apparatus and reactive oxygen species overproduction in transgenic plants. The phytoremediation assay revealed that transgenic plants could remove more 4-NBA from the medium than wild-type plants. HPLC and LC-MS assays showed that 4-aminobenzaldehyde was found in the reductive products of 4-NBA. Altogether, the function of ElNFS1 during 4-NBA detoxification was characterized for the first time, which provides a strong theoretical support for the application potential of ElNFS1 transgenic plants on the phytoremediation of 4-NBA.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Zehao Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
3
|
Li Z, Gao J, Wang B, Xu J, Fu X, Han H, Wang L, Zhang W, Deng Y, Wang Y, Gong Z, Tian Y, Peng R, Yao Q. Rice carotenoid biofortification and yield improvement conferred by endosperm-specific overexpression of OsGLK1. FRONTIERS IN PLANT SCIENCE 2022; 13:951605. [PMID: 35909772 PMCID: PMC9335051 DOI: 10.3389/fpls.2022.951605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids, indispensable isoprenoid phytonutrients, are synthesized in plastids and are known to be deficient in rice endosperm. Many studies, involving transgenic manipulations of carotenoid biosynthetic genes, have been performed to obtain carotenoid-enriched rice grains. Nuclear-encoded GOLDEN2-LIKE (GLK) transcription factors play important roles in the regulation of plastid and thylakoid grana development. Here, we show that endosperm-specific overexpression of rice GLK1 gene (OsGLK1) leads to enhanced carotenoid production, increased grain yield, but deteriorated grain quality in rice. Subsequently, we performed the bioengineering of carotenoids biosynthesis in rice endosperm by introducing other three carotenogenic genes, tHMG1, ZmPSY1, and PaCrtI, which encode the enzymes truncated 3-hydroxy-3-methylglutaryl-CoA reductase, phytoene synthase, and phytoene desaturase, respectively. Transgenic overexpression of all four genes (OsGLK1, tHMG1, ZmPSY1, and PaCrtI) driven by rice endosperm-specific promoter GluB-1 established a mini carotenoid biosynthetic pathway in the endosperm and exerted a roughly multiplicative effect on the carotenoid accumulation as compared with the overexpression of only three genes (tHMG1, ZmPSY1, and PaCrtI). In addition, the yield enhancement and quality reduction traits were also present in the transgenic rice overexpressing the selected four genes. Our results revealed that OsGLK1 confers favorable characters in rice endosperm and could help to refine strategies for the carotenoid and other plastid-synthesized micronutrient fortification in bioengineered plants.
Collapse
|
4
|
Li Y, Tian B, Wang Y, Wang J, Zhang H, Wang L, Sun G, Yu Y, Zhang H. The Transcription Factor MYB37 Positively Regulates Photosynthetic Inhibition and Oxidative Damage in Arabidopsis Leaves Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:943153. [PMID: 35903240 PMCID: PMC9315438 DOI: 10.3389/fpls.2022.943153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of electrons from Q A to Q B on the PSII receptor side of Arabidopsis under NaCl stress. Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl stress and decreased Y(NO). These results indicate that MYB37 overexpression increases PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress causes excess electrons and energy in the photosynthetic electron transport chain of Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins under NaCl stress, promote plant growth and improve salt tolerance.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Bei Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Li Z, Tian Y, Wang B, Peng R, Xu J, Fu X, Han H, Wang L, Zhang W, Deng Y, Wang Y, Gong Z, Gao J, Yao Q. Enhanced phytoremediation of selenium using genetically engineered rice plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153665. [PMID: 35279561 DOI: 10.1016/j.jplph.2022.153665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is a micronutrient essential for human and animal health. However, Se is toxic at high levels because the nonspecific substitution of cysteine by selenocysteine could lead to protein malfunction. In an attempt to prevent nonspecific selenocysteine incorporation into proteins, we simultaneously overexpressed the gene encoding selenocysteine lyase from Homo sapiens (HsSL), which specifically catalyzes the decomposition of selenocysteine into elemental Se0 and alanine, and the gene encoding selenocysteine methyltransferase from Astragalus bisulcatus (AbSMT), which methylates selenocysteine into methylselenocysteine in rice. The transgenic plants showed normal growth under standard conditions. Se treatment resulted in higher levels of alanine and methylselenocysteine in transgenic plants than in wild-type plants, which indicated that this approach might have successfully redirected Se flow in the plant. Overexpression of HsSL and AbSMT in rice also endows transgenic plants with hyposensitivity to Se stress at the seed germination stage. The transgenic plants showed enhanced selenate and selenite tolerance, which was simultaneously supported by fresh weight values. Moreover, our phytoremediation assay revealed that the transgenic plants exhibited greatly improved Se elimination capabilities and accumulated about 38.5% and 128.6% more Se than wild-type plants when treated with selenate and selenite, respectively. This study offers hope that genetically modified plants could play a role in the restoration of Se-contaminated environment.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Zehao Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
6
|
Yang G, Peng S, Wang T, Gao X, Li D, Li M, Chen S, Xu Z. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112945. [PMID: 34737155 DOI: 10.1016/j.ecoenv.2021.112945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.
Collapse
Affiliation(s)
- Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Tianyu Wang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Mengge Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Zhenggang Xu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
7
|
Wang F, Niu H, Xin D, Long Y, Wang G, Liu Z, Li G, Zhang F, Qi M, Ye Y, Wang Z, Pei B, Hu L, Yuan C, Chen X. OsIAA18, an Aux/IAA Transcription Factor Gene, Is Involved in Salt and Drought Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:738660. [PMID: 34868122 PMCID: PMC8637529 DOI: 10.3389/fpls.2021.738660] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
Auxin/indoleacetic acid (Aux/IAA) proteins play an important regulatory role in the developmental process of plants and their responses to stresses. A previous study has shown that constitutive expression of OsIAA18, an Aux/IAA transcription factor gene of rice improved salt and osmotic tolerance in transgenic Arabidopsis plants. However, little work is known about the regulatory functions of the OsIAA18 gene in regulating the abiotic stress tolerance of rice. In this study, the OsIAA18 gene was introduced into the rice cultivar, Zhonghua 11 and the OsIAA18 overexpression in rice plants exhibited significantly enhanced salt and drought tolerance compared to the wild type (WT). Moreover, overexpression of OsIAA18 in rice increased endogenous levels of abscisic acid (ABA) and the overexpression of OsIAA18 in rice plants showed hypersensitivity to exogenous ABA treatment at both the germination and postgermination stages compared to WT. Overexpression of OsIAA18 upregulated the genes involved in ABA biosynthesis and signaling pathways, proline biosynthesis pathway, and reactive oxygen species (ROS)-scavenging system in the overexpression of OsIAA18 in rice plants under salt and drought stresses. Proline content, superoxide dismutase (SOD), and peroxidase (POD) activities were significantly increased, whereas malonaldehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radical (O2 -) content were significantly decreased in the transgenic plants under salt and drought stresses. Taken together, we suggest that OsIAA18 plays a positive role in drought and salt tolerance by regulating stress-induced ABA signaling. The OsIAA18 gene has a potential application in genetically modified crops with enhanced tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
- *Correspondence: Feibing Wang,
| | - Haofei Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Dongqing Xin
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yi Long
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Guangpeng Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zongmei Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Gang Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mingyang Qi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yuxiu Ye
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zunxin Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Baolei Pei
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Laibao Hu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Caiyong Yuan
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Xinhong Chen
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|