1
|
Ganem HE, Cohen K, Gildor O, Sha M, Wang Q, Radian A. From effluent to fertilizer: Phosphorus recovery and reuse using granulated iron-oxyhydroxide-montmorillonite composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179613. [PMID: 40344896 DOI: 10.1016/j.scitotenv.2025.179613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Recovering phosphorus (P) from wastewater offers a sustainable solution to managing the anthropogenic P cycle by reducing water pollution and enhancing its use efficiency in agriculture. This study developed a P recovery platform using montmorillonite‑iron-oxyhydroxide composites (FeOx-MMT) granulated with a polycation. The adsorption properties of the granules were compared to a commercially available granulated ferric hydroxide (GFH) and the powdered FeOx-MMT. Then, the spent material (P-loaded FeOx-MMT granules) was tested as a P-fertilizer in comparison to triple-super-phosphate, a commercial fertilizer. Batch adsorption tests showed that GFH had a higher maximum adsorption capacity than FeOx-MMT granules (10 mg∙P∙g-1 vs 3.6 mg∙P∙g-1), yet this trend is reversed when normalized to iron content (32.4 mg∙P∙g-Fe-1 vs 61 mg∙P∙g-Fe-1). In addition, the adsorption of P to FeOx-MMT granules was significantly faster than GFH. In terms of desorption, the FeOx-MMT granules showed higher ability compared to GFH. Consequently, in column experiments with real secondary effluent these trends translated to higher overall removal efficiencies by the FeOx-MMT granules: FeOx-MMT specifically adsorbed phosphate ions while leaving other anions like sulfate, nitrate, and chloride in solution. Positively charged ions such as Ca2+, Mg2+ and NH4+, were also removed by the granulated FeOx-MMT. The result was high volumes of effluent with P concentrations below 0.1 ppm (regulation limit), and granulated composites loaded with high concentrations of P and essential cations. The bioavailability of P from the spent granules in soil was then tested in funnel and tomato-pot experiments. The results suggest that the adsorbed P is released in a manner that can support growth of agricultural crops. This approach supports sustainable phosphorus management, preserving resources, reducing pollution, and promoting food security while enhancing ecological and economic health.
Collapse
Affiliation(s)
- Hasan E Ganem
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Keren Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofir Gildor
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Muzhi Sha
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Department of Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Qian Wang
- Department of Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Hyder US, Elbeshbishy E, McPhee J, AlSayed A, Misir R. Chemical conditioning approach to post-treat temperature-phased anaerobic digestate to improve resource recovery, odour reduction and biosolids quality. ENVIRONMENTAL TECHNOLOGY 2025; 46:2132-2148. [PMID: 39813309 DOI: 10.1080/09593330.2024.2423905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
Biosolids has several challenges, such as its high water content, huge volume, odour, and pathogen presence. Regulations require biosolids to be reused and disposed of safely. Polymer conditioning focuses on volume reduction, leaving pathogen and odour reduction unaddressed. This study evaluates the use of polymer alone and in combination with ferric chloride (FeCl3) and hydrogen peroxide (H2O2) at pH 8.0 to increase the post-treatment efficiency of temperature-phased anaerobic digestate (TPAD). The goal is to reduce volume, recover phosphorus, reduce odour, and eliminate pathogens. This investigation examined various dewatering indices after treating TPAD with cationic polymer alone, polymer and FeCl3, and with polymer, FeCl3, and H2O2 combined at pH 8.0. A combination of 2.5 g/kg dry solids (DS) polymer, 2.1 g/kg DS FeCl3 and 600 mg/l H2O2 at pH 8.0 produced the shortest capillary suction time (CST) of 11.5 s, lowest turbidity of 11 NTU, and lowest specific resistance to filtration (SRF) of 0.08 Terra m (Tm)/kg. Compared to raw TPAD, the combined chemical dose improves dewatering by 99%, odour reduction by 90%, 100% centrate P removal, and a 40% increase in cake solids with 57 MPN/g DS fecal coliforms in the treated cake. There was a 100% reduction in pathogens compared to raw cake. TPAD must be post-treated to reduce volume and odour while producing P rich 'class A' biosolids with a greater range of reuse.HighlightsA combination of polymer, FeCl3, and H2O2 at pH 8.0 improves TPAD post-treatment.Enhancing TPAD dewatering by 99% reduction in CST and SRF.Combined chemical treatment increases TPAD cake solid content by 40%.'Class A' biosolids production with less than 57 MPN/g DS fecal coliform.Phosphorous recovery, odour reduction with polymer, FeCl3 and H2O2 treatment at pH 8.0.
Collapse
Affiliation(s)
- Umme Sharmeen Hyder
- Department of Engineering, University of New Brunswick, NB, Canada
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Elsayed Elbeshbishy
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Joseph McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Ahmed AlSayed
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA
| | - Reshmi Misir
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
3
|
Ma H, Zhang H, Gao Q, Li S, Yu Y, Ma J, Zheng C, Cui M, Wu Z, Zhang H. The Relative Contribution of Root Morphology and Arbuscular Mycorrhizal Fungal Colonization on Phosphorus Uptake in Rice/Soybean Intercropping Under Dry Cultivation. PLANTS (BASEL, SWITZERLAND) 2025; 14:106. [PMID: 39795369 PMCID: PMC11723421 DOI: 10.3390/plants14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice (Oryza sativa L.) and soybean (Glycine max L. Merr.) grown alone or intercropped under two P levels. Two root separation modes between rice and soybean were employed to explore the contribution of AMF association and root plasticity on P uptake in intercrops. The results showed that rice/soybean intercropping resulted in a notable increase in the total biomass and yield compared to monoculture in the field. In the potted experiment, compared to the plastic root separation treatment (PS), the no root separation treatment (NS) increased the total biomass and P uptake by 9.4% and 19.9%, irrespective of the P levels. This was primarily attributable to a considerable enhancement in biomass and phosphorus uptake in soybean by 40.4% and 49.7%, which offset a slight decline in the rice of NS compared to PS by 26.8% and 18.0%, respectively. The results of random forest analysis indicate that the P uptake by the dominant species, soybean, was mainly contributed by root morphology, while rice was more dependent on AMF colonization in the intercropping system. Therefore, dry-cultivated rice/soybean intercropping enhances P uptake and productivity by leveraging complementary belowground strategies, with soybean benefiting primarily from root morphological adjustments and rice relying more on arbuscular mycorrhizal fungi colonization.
Collapse
Affiliation(s)
- Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hongcheng Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Gao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shilin Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yuanyuan Yu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Jiaying Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | | | - Meng Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hualiang Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Yuan D, Hong B, Zhang S, Shan S, Zhang J, Ren C. Preparation of magnetic rice husk carbon nanocomposite for efficiently extracting aflatoxin B1 from rice followed by time-resolved fluorescent immunochromatographic assay. Food Chem X 2025; 25:102145. [PMID: 39850051 PMCID: PMC11754820 DOI: 10.1016/j.fochx.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.16 μg/kg. Recoveries ranged from 85.2 % to 109.4 %, with intra- and inter-day precisions below 11.5 %. The proposed MSPE-TRFICA method offers a viable alternative for the rapid and highly sensitive quantitative detection of AFB1 for quality assurance.
Collapse
Affiliation(s)
- Di Yuan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jingyi Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
5
|
Wiegmann ME, Zhao K, Hube S, Ge L, Lisak G, Wu B. Integrating gravity-driven ceramic membrane filtration with hydroponic system for nutrient recovery from primary municipal wastewater. J Environ Sci (China) 2024; 146:91-102. [PMID: 38969465 DOI: 10.1016/j.jes.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2024]
Abstract
In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.
Collapse
Affiliation(s)
- Megan Elizabeth Wiegmann
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
6
|
Sun Z, Ma M, Liu H, Tao D, Salam SA, Han X, Liu Y, Yong JWH. Exogenous GABA-Ca Alleviates Growth Inhibition Induced by a Low-P Environment in Peanuts ( Arachis hypogaea). Antioxidants (Basel) 2024; 13:1414. [PMID: 39594555 PMCID: PMC11590983 DOI: 10.3390/antiox13111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Phosphorus (P) deficiency is a major global factor constraining peanut production. Exogenous γ-aminobutyric acid (GABA) and Ca2+ are essential to improve stress resilience in peanuts growing under low-P conditions. This study therefore examined the detailed physiological effects of GABA-Ca on restoring peanut growth under low-P conditions. These included the root-shoot ratio, leaf nutrients, photochemical activity, reactive oxygen species (ROS), cyclic electron flow (CEF), ATP synthase activity, and the proton gradient (∆pH), all of which were measured under low-P (LP, 0.5 mM) and optimized-P (1 mM) conditions. Specifically, supplying GABA-Ca under LP conditions regulated the ∆pH by causing adjustments in CEF and ATP synthase activities, buffering the photosystems' activities, restoring the antioxidant enzyme system, and lowering ROS production. Interestingly, exogenous GABA-Ca restored peanut growth under low-P conditions, possibly by the putative signaling crosstalk between GABA and Ca2+. The plausible signal amplification between GABA and Ca2+ suggested that the combination of GABA and Ca, may offer an effective strategy for enhancing peanut adaptation to low-P conditions. Moving forward, the strategic supplementation of GABA-Ca, either during cultivation or through the formulation of novel fertilizers, opens up many possibilities for better and more resilient plant production in soils with low P.
Collapse
Affiliation(s)
- Zhiyu Sun
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingzhu Ma
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaikh Amjad Salam
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Yifei Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
7
|
He N, Huang F, Luo D, Liu Z, Han M, Zhao Z, Sun X. Oilseed flax cultivation: optimizing phosphorus use for enhanced growth and soil health. FRONTIERS IN PLANT SCIENCE 2024; 15:1432875. [PMID: 39323530 PMCID: PMC11422101 DOI: 10.3389/fpls.2024.1432875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Introduction Oilseed flax (Linum usitatissimum L.) yields are phosphate (P) fertilizer-limited, especially in the temperate semiarid dryland regions of North China. However, there are limited studies on the effects of P-fertilizer inputs on plant growth and soil microorganisms in flax planting systems. Methods To address this gap, a field experiment was conducted with four treatments: no P addition and application of 40, 80, and 120 kg P ha-¹, respectively. The aim was to investigate the influence of various P fertilizer inputs on yield, plant dry matter, P use efficiency, as well as the population of soil arbuscular mycorrhizal fungi (AMF) and bacteria in dryland oilseed flax. Results Our results show that the P addition increased the dry matter, and the yield of oilseed increased by ~200% at 120 kg P ha-1 addition with inhibition on the growth of AMF hyphae. The moderate P supply (80 kg ha-1) was adequate for promoting P translocation, P use efficiency, and P recovery efficiency. Soil pH, available P, and available K significantly (p< 0.05) promoted the abundance of the dominant taxa (Acidobacteria_GP6, Sphingobacteria and Bacteroidetes). In addition, it is imperative to comprehend the mechanism of interaction between phosphorus-fertilizer inputs and microbiota in oilseed flax soil. Discussion This necessitates further research to quantify and optimize the moderate phosphorus supply, regulate soil microbes to ensure high phosphorus utilization, and ultimately establish a sustainable system for oilseed flax cultivation in the local area.
Collapse
Affiliation(s)
- Ning He
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Fang Huang
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Zhigang Zhao
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
8
|
Liu Y, Gao J, Zhao Y, Fu Y, Yan B, Wan X, Cheng G, Zhang W. Effects of different phosphorus and potassium supply on the root architecture, phosphorus and potassium uptake, and utilization efficiency of hydroponic rice. Sci Rep 2024; 14:21178. [PMID: 39261634 PMCID: PMC11390967 DOI: 10.1038/s41598-024-72287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Phosphorus (P) and potassium (K) affect seedling growth, root configuration, and nutrient uptake in hydroponic rice, but there are few studies on all growth stages of rice. The purpose of this experiment was to determine the response characteristics of root morphology, plant physiology, and P and K uptake and utilization efficiency to different supplies of P and K. Two local conventional rice varieties (Shennong 265 and Liaojing 294) were used as experimental materials across four treatments, including HPHK (sufficient P and K supply), HPLK (sufficient P supply under low K levels), LPHK (sufficient K supply under low P levels) and LPLK (low P and K levels) in a hydroponic setting. The results showed that HPHK and HPLK significantly decreased the acid phosphatase activity of leaves and roots from full heading to filling stages when compared to LPHK and LPLK. Sufficient supply of P or K significantly increased the accumulation of P and K (aboveground, leaves, stem sheath, and whole plant) and root morphological parameters (root length, root surface area, total root volume, and tips) during major growth stages when compared to LP or LK levels. HPHK was significantly higher than other treatments in terms of dry weight and the root activity at the main growth stage, P and K uptake rates in nutrient solutions at various stages, related P and K efficiency at the maturity stage, yield, effective panicle number, and grain number per panicle. In addition, the effect of HPHK on the above indexes were significantly greater than those of single sufficient supply of P or K. In conclusion, HPHK can improve plant configuration, increase plant P and K absorption and root activity, and increase rice yield and related P and K utilization efficiency.
Collapse
Affiliation(s)
- Ya Liu
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Jiping Gao
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Yanze Zhao
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Yichen Fu
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Bingchun Yan
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Xue Wan
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Guoqing Cheng
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China
| | - Wenzhong Zhang
- Agronomy College, Shenyang Agriculture University, Shenyang, 110086, China.
| |
Collapse
|
9
|
Yin S, Yang L, Yu J, Ban R, Wen Q, Wei B, Guo Z. Optimizing cropland use to reduce groundwater arsenic hazards in a naturally arsenic-enriched grain-producing region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122237. [PMID: 39163674 DOI: 10.1016/j.jenvman.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
In the Hetao Basin, a grain-producing region plagued by naturally occurring arsenic (As) pollution, understanding the role of agricultural cultivation activities in mobilizing As in groundwater is worthwhile. Here we investigated the impact of cropland use characteristics on groundwater As hazards using a model that combines Random Forest (RF) classification with SHapley Additive exPlanation (SHAP). The analysis incorporated eight cropland use characteristics and three natural factors across 1258 groundwater samples as independent variables. Additionally, an optimized cropland use strategy to mitigate groundwater As hazards was proposed. The results revealed that crop cultivation area, especially within a 2500m-radius buffer around sampling points, most significantly influenced the probability of groundwater As concentrations exceeding an irrigation safety threshold of 50 μg/L, achieving an AUC of 0.86 for this prediction. The relative importance of crop areas on As hazards were as follows: sunflower > melon > wheat > maize. Specifically, a high proportion of sunflower area (>30%), particularly in regions with longer cropland irrigation history, tended to elevate groundwater As hazards. Conversely, its negative driving force on groundwater As hazards was more pronounced with the increase in the proportion of wheat area (>5%), in contrast to other crops. Transitioning from sunflower to wheat or melon cultivation in the northeast of the Hetao Basin may contribute to lower groundwater As hazards. This study provides a scientific foundation for balancing food production with environmental safety and public health considerations.
Collapse
Affiliation(s)
- Shuhui Yin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruxin Ban
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Qiqian Wen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhiwei Guo
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Huhhot, 010031, China
| |
Collapse
|
10
|
Hua L, Ye P, Li X, Xu H, Lin F. Anti-Aflatoxigenic Burkholderia contaminans BC11-1 Exhibits Mycotoxin Detoxification, Phosphate Solubilization, and Cytokinin Production. Microorganisms 2024; 12:1754. [PMID: 39338429 PMCID: PMC11434526 DOI: 10.3390/microorganisms12091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The productivity and quality of agricultural crops worldwide are adversely affected by disease outbreaks and inadequate nutrient availability. Of particular concern is the potential increase in mycotoxin prevalence due to crop diseases, which poses a threat to food security. Microorganisms with multiple functions have been favored in sustainable agriculture to address such challenges. Aspergillus flavus is a prevalent aflatoxin B1 (AFB1)-producing fungus in China. Therefore, we wanted to obtain an anti-aflatoxigenic bacterium with potent mycotoxin detoxification ability and other beneficial properties. In the present study, we have isolated an anti-aflatoxigenic strain, BC11-1, of Burkholderia contaminans, from a forest rhizosphere soil sample obtained in Luzhou, Sichuan Province, China. We found that it possesses several beneficial properties, as follows: (1) a broad spectrum of antifungal activity but compatibility with Trichoderma species, which are themselves used as biocontrol agents, making it possible to use in a biocontrol mixture or individually with other biocontrol agents in an integrated management approach; (2) an exhibited mycotoxin detoxification capacity with a degradation ratio of 90% for aflatoxin B1 and 78% for zearalenone, suggesting its potential for remedial application; and (3) a high ability to solubilize phosphorus and produce cytokinin production, highlighting its potential as a biofertilizer. Overall, the diverse properties of BC11-1 render it a beneficial bacterium with excellent potential for use in plant disease protection and mycotoxin prevention and as a biofertilizer. Lastly, a pan-genomic analysis suggests that BC11-1 may possess other undiscovered biological properties, prompting further exploration of the properties of this unique strain of B. contaminans. These findings highlight the potential of using the anti-aflatoxigenic strain BC11-1 to enhance disease protection and improve soil fertility, thus contributing to food security. Given its multiple beneficial properties, BC11-1 represents a valuable microbial resource as a biocontrol agent and biofertilizer.
Collapse
Affiliation(s)
- Lixia Hua
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Pengsheng Ye
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue Li
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Liu X, Zhao G, Xie J, Zhao F, Li Z, Qiao Z, Tong Y. Opportunity Analysis of Phosphorus Recovery from Municipal Wastewater for Cropland Based on the Simulated Vehicle Transport Distance in the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13726-13736. [PMID: 39047191 DOI: 10.1021/acs.est.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With the rapid depletion of phosphate rocks and increasing agricultural demand, establishing a phosphorus (P) flow "loop" rather than a one-way trajectory between cropland and urban areas was imperative. Recovering P from municipal wastewater stood as a viable strategy to mitigate reliance on traditional P-containing chemical fertilizer. This study analyzed the intricate relationships between the potentials of P recovery from municipal wastewater and the P demand of croplands in the populated Yangtze River Delta (YRD), China. An indicator of the P vehicle transport distance was constructed and calculated to estimate the potential to recover and reuse P in agriculture, applying the simulated annealing (SA) algorithm and road networks obtained from OpenStreetMap (OSM). The results indicated that, on a regional scale, recovered P from municipal wastewater could fulfill 14.0% of the cropland P demands in the YRD, with a median P vehicle transport distance of 3.1 km/Mg of P. Notably, the P vehicle transport distance varied largely depending upon the cropland distributions, road density, and P recovery potential from municipal wastewater. The novel methodology developed here determined the optimal transportation routes for P recovery from wastewater treatment plants (WWTPs) to cropland, which played a crucial role in refining the wastewater management strategies aligned with the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Xixi Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guorong Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiawen Xie
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- School of Ecology and Environment, Tibet University, Lhasa, Tibet 850000, People's Republic of China
| |
Collapse
|
12
|
da Silva LJR, da Silva Sandim A, da Silva APR, Deus ACF, Antonangelo JA, Büll LT. Evaluating the agronomic efficiency of alternative phosphorus sources applied in Brazilian tropical soils. Sci Rep 2024; 14:8526. [PMID: 38609406 PMCID: PMC11015031 DOI: 10.1038/s41598-024-58911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding the efficacy of alternative phosphorus (P) sources in tropical soils is crucial for sustainable farming, addressing resource constraints, mitigating environmental impact, improving crop productivity, and optimizing soil-specific solutions. While the topic holds great importance, current literature falls short in providing thorough, region-specific studies on the effectiveness of alternative P sources in Brazilian tropical soils for maize cultivation. Our aim was to assess the agronomic efficiency of alternative P sources concerning maize crop (Zea mays L.) attributes, including height, shoot dry weight, stem diameter, and nutrient accumulation, across five Brazilian tropical soils. In greenhouse conditions, we carried out a randomized complete block design, investigating two factors (soil type and P sources), evaluating five tropical soils with varying clay contents and three alternative sources of P, as well as a commercial source and a control group. We evaluated maize crop attributes such as height, dry weight biomass, and nutrient accumulation, P availability and agronomic efficiency. Our results showed that, although triple superphosphate (TSP) exhibited greater values than alternative P sources (precipitated phosphorus 1, precipitated phosphorus 2 and reactive phosphate) for maize crop attributes (e.g., height, stem diameter, shoot dry weight and phosphorus, nitrogen, sulfur, calcium and magnesium accumulation). For instance, PP1 source increased nutrient accumulation for phosphorus (P), nitrogen (N), and sulfur (S) by 37.05% and 75.98% (P), 34.39% and 72.07% (N), and 41.94% and 72.69% (S) in comparison to PP2 and RP, respectively. Additionally, PP1 substantially increased P availability in soils with high clay contents 15 days after planting (DAP), showing increases of 61.90%, 99.04%, and 38.09% greater than PP2, RP, and TSP. For Ca and Mg accumulation, the highest values were found in the COxisol2 soil when PP2 was applied, Ca = 44.31% and 69.48%; and Mg = 46.23 and 75.79%, greater than PP1 and RP, respectively. Finally, the highest values for relative agronomic efficiency were observed in COxisol2 when PP1 was applied. The precipitated phosphate sources (PP1 and PP2) exhibited a similar behavior to that of the commercial source (TSP), suggesting their potential use to reduce reliance on TSP fertilization, especially in soils with low clay contents. This study emphasized strategies for soil P management, aimed at assisting farmers in enhancing maize crop productivity while simultaneously addressing the effectiveness of alternative P sources of reduced costs.
Collapse
Affiliation(s)
- Lucas Jónatan Rodrigues da Silva
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil.
| | - Aline da Silva Sandim
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Ana Paula Rodrigues da Silva
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Angélica Cristina Fernandes Deus
- Department of Plant Protection, Rural Engineering and Soils, College of Engineering, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | | | - Leonardo Theodoro Büll
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| |
Collapse
|
13
|
Jiang M, Dong C, Bian W, Zhang W, Wang Y. Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci Rep 2024; 14:6480. [PMID: 38499586 PMCID: PMC10948899 DOI: 10.1038/s41598-024-57031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
The application of fertilizer to ensure the steady improvement of crop yield has become the main means of agricultural production. However, it remains to be determined whether fertilization practices with different combinations of nitrogen (N), phosphorus (P), potassium (K), and organic (O) fertilizers play a positive role in the sustainability of maize yield and the soil in which it is grown. Therefore,this meta-analysis extracted 2663 data points from 76 studies to systematically analyze and explore the effects of different fertilization measures on maize yield, soil nutrients, water content and water use efficiency (WUE) in northern China. Articles addressing this topic showed that fertilization effectively increased the soil nutrient content and maize yield. The soil organic matter (SOM) increased by 2.36 (N)-55.38% (NPO), total nitrogen content increased by 6.10 (N)-56.39% (NPO), available phosphorus content increased by 17.12 (N)-474.74% (NPO), and available potassium content changed by - 2.90 (NP)-64.40% (NPO). Soil moisture increased by 3.59% under a single organic fertilizer application and decreased by 4.27-13.40% under the other treatments. Compared with no fertilization, the yield increase of fertilized maize reached 11.65-220.42%. NP, NPK and NPKO contributed the most to increased yield in lithological, black and fluvo-aquic soils, respectively. The effects of different fertilization practices on maize yield varied in response to the same meteorological factors. The WUE increased from 9.51 to 160.72%. In conclusion, rational fertilization can improve the soil nutrient content and increase maize yield. The combined application of chemical and organic fertilizer showed the greatest increase in yield and WUE. Organic fertilizer application alone increased soil moisture. Our results provide a theoretical basis for fertilizer application and for improving the soil structure for maize cultivation in northern China.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Dong
- Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Wenpeng Bian
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Wenbei Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Otieno EO, Lenga FK, Mburu DM, Kiboi MN, Fliessbach A, Ngetich FK. Influence of soil fertility management technologies on phosphorus fractions, sorption characteristics, and use efficiency in humic Nitisols of Upper Eastern Kenya. Heliyon 2023; 9:e22859. [PMID: 38125429 PMCID: PMC10731073 DOI: 10.1016/j.heliyon.2023.e22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Fractions of phosphorus (P) and its sorption characteristics are affected by different soil fertility (FM) technologies which ultimately affect crop growth and productivity. However, the response of P fractions and sorption characteristics to soil fertility technologies that integrate diverse amendments is still poorly understood in acidic Nitisols. A randomized complete block design was layout in an acidic Nitisol to determine fractions of P, its sorption characteristics and use efficiencies in acidic Nitisols under various FM technologies in field conditions. The use of minimum tillage + maize residue + inorganic fertilizer + goat manure (MTCrGF) had the highest impact on and significantly increased resin-Pi, NaHCO3-Pi, and maximum P sorption (Smax) by 182, 76, and 52 mg P kg-1. Moreover, NaOH-Pi and Smax concentrations were higher under conventional tillage + maize residue + inorganic fertilizer + goat manure (CTCrGF) by 216 mg P kg-1 and 49 mg P kg-1 than the control. MTCrGF and CTCrGF also had the lowest P bonding energy (0.04 L mg-1). CTCrGF had the highest P partial productivity factor (0.093 and 0.140 kg biomass kg-1 P) and P agronomic efficiency (0.080 and 0.073 kg biomass kg-1 P) during the two cropping seasons. The results demonstrate the positive influence of combining multiple P sources on soil P fractions, sorption characteristics, and use efficiencies. Notably, combining either conventional or minimum tillage with maize straw and applying integrated manure and inorganic fertilizer (MTCrGF or CTCrGF) can increase the labile P concentrations and reduce the potential depletion of the non-renewable rock phosphate and the use of inorganic phosphatic fertilizers for agricultural production.
Collapse
Affiliation(s)
- Erick O. Otieno
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Land Resource Planning and Management, P.O Box, 62000-00100, Nairobi, Kenya
- Kenyatta University, Department of Agricultural Science and Technology, P.O Box, 43844, 00100, Nairobi, Kenya
| | - Florence K. Lenga
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Land Resource Planning and Management, P.O Box, 62000-00100, Nairobi, Kenya
| | - David M. Mburu
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Land Resource Planning and Management, P.O Box, 62000-00100, Nairobi, Kenya
| | - Milka N. Kiboi
- Research Institute of Organic Agriculture (FiBL), Department of International Cooperation Ackerstrasse 113, 5070, Frick, Switzerland
| | - Andreas Fliessbach
- Research Institute of Organic Agriculture (FiBL), Department of Soil Sciences, Ackerstrasse 113, 5070, Frick, Switzerland
| | - Felix K. Ngetich
- Research Centre for Smallholder Farmers (RCFSF), P.O Box 10451, 30100, Eldoret, Kenya
- Jaramogi Oginga Odinga University of Science and Technology (JOOUST), School of Agricultural and Food Sciences, P.O Box 210, 40601, Bondo, Kenya
| |
Collapse
|
15
|
Naveenarani M, Swamy HKM, Surya Krishna S, Mahadevaiah C, Valarmathi R, Manickavasagam M, Arun M, Hemaprabha G, Appunu C. Isolation and Characterization of Erianthus arundinaceus Phosphate Transporter 1 (PHT1) Gene Promoter and 5' Deletion Analysis of Transcriptional Regulation Regions under Phosphate Stress in Transgenic Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3760. [PMID: 37960116 PMCID: PMC10650210 DOI: 10.3390/plants12213760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71-96% similarity with Arabidopsis thaliana, Zea mays, and the Saccharum hybrid. To elucidate the function of the 5' regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a β-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5' deletion analysis with and without 5' UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5' truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops.
Collapse
Affiliation(s)
- Murugan Naveenarani
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
- Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Huskur Kumaraswamy Mahadeva Swamy
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Channappa Mahadevaiah
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Markandan Manickavasagam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Govindakurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| |
Collapse
|
16
|
Fan Y, Lv G, Chen Y, Chang Y, Li Z. Differential effects of cow dung and its biochar on Populus euphratica soil phosphorus effectiveness, bacterial community diversity and functional genes for phosphorus conversion. FRONTIERS IN PLANT SCIENCE 2023; 14:1242469. [PMID: 37780507 PMCID: PMC10538999 DOI: 10.3389/fpls.2023.1242469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Introduction Continuous monoculture leading to soil nutrient depletion may cause a decline in plantation productivity. Cow dung is typically used as a cheap renewable resource to improve soil nutrient status. In this study, our purpose was to compare the effects of different cow dung return methods (direct return and carbonization return) on soil microbial communities and phosphorus availability in the root zone (rhizosphere soil and non-rhizosphere soil) of P.euphratica seedlings in forest gardens and to explore possible chemical and microbial mechanisms. Methods Field experiments were conducted. Two-year-old P.euphratica seedlings were planted in the soil together with 7.5 t hm-2 of cow dung and biochar made from the same amount of cow dung. Results Our findings indicated that the available phosphorus content in soil subjected to biochar treatment was considerably greater than that directly treated with cow dung, leading to an increase in the phosphorus level of both aboveground and underground components of P.euphratica seedlings. The content of Olsen-P in rhizosphere and non-rhizosphere soil increased by 134% and 110%, respectively.This was primarily a result of the direct and indirect impact of biochar on soil characteristics. Biochar increased the biodiversity of rhizosphere and non-rhizosphere soil bacteria compared with the direct return of cow dung. The Shannon diversity index of carbonized cow manure returning to field is 1.11 times and 1.10 times of that of direct cow manure returning to field and control, and the Chao1 diversity index is 1.20 times and 1.15 times of that of direct cow manure returning to field and control.Compared to the direct addition of cow dung, the addition of biochar increased the copy number of the phosphorus functional genes phoC and pqqc in the rhizosphere soil. In the biochar treatment, the abundance of the phosphate-solubilizing bacteria Sphingomonas and Lactobacillus was significantly higher than that in the other treatments, it is relative abundance was 4.83% and 2.62%, respectively, which indirectly improved soil phosphorus availability. Discussion The results indicated that different cow dung return methods may exert different effects on phosphorus availability in rhizosphere and non-rhizosphere soils via chemical and microbial pathways. These findings indicated that, compared to the direct return of cow dung, biochar return may exert a more significant impact on the availability of phosphorus in both rhizosphere and non-rhizosphere soils, as well as on the growth of P.euphratica seedlings and the microbial community.
Collapse
Affiliation(s)
- Yuxian Fan
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yudong Chen
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yaling Chang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Zhoukang Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
17
|
Liu J, Qiu T, Peñuelas J, Sardans J, Tan W, Wei X, Cui Y, Cui Q, Wu C, Liu L, Zhou B, He H, Fang L. Crop residue return sustains global soil ecological stoichiometry balance. GLOBAL CHANGE BIOLOGY 2023; 29:2203-2226. [PMID: 36607175 DOI: 10.1111/gcb.16584] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/25/2022] [Indexed: 05/28/2023]
Abstract
Although soil ecological stoichiometry is constrained in natural ecosystems, its responses to anthropogenic perturbations are largely unknown. Inputs of inorganic fertilizer and crop residue are key cropland anthropogenic managements, with potential to alter their soil ecological stoichiometry. We conducted a global synthesis of 682 data pairs to quantify the responses of soil carbon (C), nitrogen (N), and phosphorus (P) and grain yields to combined inputs of crop residue plus inorganic fertilizer compared with only inorganic fertilizer application. Crop residue inputs enhance soil C (10.5%-12%), N (7.63%-9.2%), and P (2.62%-5.13%) contents, with an increase in C:N (2.51%-3.42%) and C:P (7.27%-8.00%) ratios, and grain yields (6.12%-8.64%), indicating that crop residue alleviated soil C limitation caused by inorganic fertilizer inputs alone and was able to sustain balanced stoichiometry. Moreover, the increase in soil C and C:N(P) ratio reached saturation in ~13-16 years after crop residue return, while grain yield increase trend discontinued. Furthermore, we identified that the increased C, N, and P contents and C:N(P) ratios were regulated by the initial pH and C content, and the increase in grain yield was not only related to soil properties, but also negatively related to the amount of inorganic N fertilizer input to a greater extent. Given that crop residual improvement varies with soil properties and N input levels, we propose a predictive model to preliminary evaluate the potential for crop residual improvement. Particularly, we suggest that part of the global budget should be used to subsidize crop residue input management strategies, achieving to a win-win situation for agricultural production, ecological protection, and climate change mitigation.
Collapse
Affiliation(s)
- Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
- Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Chinese Academy of Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Yongxing Cui
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Peking University, Beijing, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Chinese Academy of Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lanfa Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
| | - Baitao Zhou
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
| | - Haoran He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Chinese Academy of Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Linchuan Fang
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Chinese Academy of Sciences, Northwest A&F University, Yangling, Shaanxi, China
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
18
|
Ojeda-Rivera JO, Alejo-Jacuinde G, Nájera-González HR, López-Arredondo D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4125-4150. [PMID: 35524816 PMCID: PMC9729153 DOI: 10.1007/s00122-022-04095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Improving phosphorus (P) crop nutrition has emerged as a key factor toward achieving a more resilient and sustainable agriculture. P is an essential nutrient for plant development and reproduction, and phosphate (Pi)-based fertilizers represent one of the pillars that sustain food production systems. To meet the global food demand, the challenge for modern agriculture is to increase food production and improve food quality in a sustainable way by significantly optimizing Pi fertilizer use efficiency. The development of genetically improved crops with higher Pi uptake and Pi-use efficiency and higher adaptability to environments with low-Pi availability will play a crucial role toward this end. In this review, we summarize the current understanding of Pi nutrition and the regulation of Pi-starvation responses in plants, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind these adaptive responses for crop improvement. We discuss on the potential of implementing more integrative, versatile, and effective strategies by incorporating systems biology approaches and tools such as genome editing and synthetic biology. These strategies will be invaluable for producing high-yielding crops that require reduced Pi fertilizer inputs and to develop a more sustainable global agriculture.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
19
|
Ruffatto K, Emaminejad SA, Juneja A, Kurambhatti C, Margenot A, Singh V, Cusick RD. Mapping the National Phosphorus Recovery Potential from Centralized Wastewater and Corn Ethanol Infrastructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8691-8701. [PMID: 35617125 DOI: 10.1021/acs.est.1c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic discharge of excess phosphorus (P) to water bodies and increasingly stringent discharge limits have fostered interest in quantifying opportunities for P recovery and reuse. To date, geospatial estimates of P recovery potential in the United States (US) have used human and livestock population data, which do not capture the engineering constraints of P removal from centralized water resource recovery facilities (WRRFs) and corn ethanol biorefineries where P is concentrated in coproduct animal feeds. Here, renewable P (rP) estimates from plant-wide process models were used to create a geospatial inventory of recovery potential for centralized WRRFs and biorefineries, revealing that individual corn ethanol biorefineries can generate on average 3 orders of magnitude more rP than WRRFs per site, and all corn ethanol biorefineries can generate nearly double the total rP of WRRFs across the US. The Midwestern states that make up the Corn Belt have the largest potential for P recovery and reuse from both corn biorefineries and WRRFs with a high degree of co-location with agricultural P consumption, indicating the untapped potential for a circular P economy in this globally significant grain-producing region.
Collapse
Affiliation(s)
- Kenneth Ruffatto
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seyed Aryan Emaminejad
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Chinmay Kurambhatti
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Andrew Margenot
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Kareeva A, Besterekov U, Abdurazova P, Nazarbek U, Pochitalkina I, Raiymbekov Y. Synthesis of NPK fertilizer from low-grade phosphate raw material. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The article presents the results of studies of the process of obtaining NPK fertilizer from low-grade phosphate raw materials with P2O5 of about 18%. Phosphate raw materials were leached with a mixture of nitric-phosphoric acids with the addition of potassium carbonate, which serves as a source of potassium in the final product. The main parameters determined were the content of the main nutrients P2O5:N:K2O, temperature and time of the leaching process. According to the graphical method, the “apparent” activation energy of the heterogeneous process is found, which is equal to 3.8 kJ/mol indicates the intradiffusion nature of the process. Methods of chemical analysis, scanning electron microscopy and XRD analysis were used for a comprehensive study of raw materials and final products.
Collapse
Affiliation(s)
- Anar Kareeva
- M Auezov South Kazakhstan State University , Shymkent , Kazakhstan
| | | | | | | | - Irina Pochitalkina
- Dmitry Mendeleev University of Chemical Technology of Russia , Moskva , Russian Federation
| | | |
Collapse
|