1
|
Nie Z, Zhang N, Guo L, Lv C, Zhang Y, Wang C, Wu H. Growth hormone improved oxidative stress in follicle fluid by influencing Nrf2/Keap1 expression in women of advanced age undergoing IVF. Gynecol Endocrinol 2022; 38:222-226. [PMID: 35112648 DOI: 10.1080/09513590.2021.2003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To investigate whether growth hormone (GH) can improve oxidative stress (OS) by affecting) /nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) in women of advanced age undergoing in vitro fertilization (IVF). METHODS This retrospective study enrolled 141 patients, including 65 aged C patients (patients not treated with GH) and 76 aged GH patients (patients treated with GH). The outcomes included IVF-ET results, OS markers in follicle fluid (FF) and Nrf2 and Keap1 mRNA and protein expressions in granulosa cells (GCs). RESULTS The results showed that GH improved the available blastocyst (p=.047) and implantation rate (p=.043) in women of advanced age undergoing IVF. The malondialdehyde (MDA) content of FF was significantly higher in the aged-C group than in the aged-GH group (p=.013). The antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT) were significantly lower in the aged-C group than in the aged-GH group (p= .000, p= .049, p= .012 respectively). Nrf2 mRNA and protein expression was significantly higher and Keap1 mRNA and protein expression was lower in the aged-GH group than in the aged-C group (p= .000, p= .000 respectively). CONCLUSIONS The study showed that GH improved embryo quality and implantation rate and alleviated OS in FF, which may be related to Nrf2/Keap1.
Collapse
Affiliation(s)
- Zhaoyan Nie
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Zhang
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Guo
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiting Lv
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congmin Wang
- Department of reproductive medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haifeng Wu
- Department of medical laboratory, Hebei Chest Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Mancini A, Di Segni C, Bruno C, Olivieri G, Guidi F, Silvestrini A, Meucci E, Orlando P, Silvestri S, Tiano L, Pontecorvi A. Oxidative stress in adult growth hormone deficiency: different plasma antioxidant patterns in comparison with metabolic syndrome. Endocrine 2018; 59:130-136. [PMID: 29143180 DOI: 10.1007/s12020-017-1468-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/02/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Growth hormone deficiency (GHD) is a condition associated with increased cardiovascular risk and insulin-resistance. Oxidative stress (OS) could be a mechanism underlying both these phenomena. In order to investigate plasma antioxidant defenses in such condition, we evaluated adults with GHD, compared with controls and metabolic syndrome patients (MetS), studying plasma total antioxidant capacity (TAC) and coenzyme Q10 (CoQ10, lipophilic antioxidant) levels, both in its oxidized and reduced forms, correlating this data with metabolic and hormonal pattern. MATERIALS AND METHODS In this case-control study, 51 GHD, 36 controls, and 35 MetS were enrolled. An evaluation of hormonal and metabolic parameters was performed. TAC was measured using the system metmyoglobin -H202 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS● is proportional to antioxidant in sample. CoQ10 was assayed by electrochemical method. RESULTS Despite HOMA index was higher in both GHD and MetS (2.2 ± 0.3 and 3.1 ± 0.3 vs. 1.2 ± 0.2 in controls), only in MetS we observed lower LAG levels (64.5 ± 3.1 s vs. 82.8 ± 5.8 in GHD and 80.6 ± 6.6 in controls), suggesting an increased consumption of antioxidants. LAG significantly correlated with uric acid only in MetS (r 2 = 0.65, p < 0.001), suggesting a different pattern of antioxidants. CoQ10 exhibited a trend toward lower levels in GHD, although not significant. CONCLUSIONS Our data indicate that GHD, although sharing with MetS various metabolic features, including increased HOMA levels, showed a different pattern of plasma antioxidants, suggesting inadequate reactivity toward radical production rather than an antioxidants consumption as in MetS.
Collapse
Affiliation(s)
- Antonio Mancini
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy.
| | - Chantal Di Segni
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Giulio Olivieri
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Francesco Guidi
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Largo F. Vito 1, Rome, 00168, Italy.
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Largo F. Vito 1, Rome, 00168, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Alfredo Pontecorvi
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| |
Collapse
|
3
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
4
|
Comparing the Behavioural Effects of Exogenous Growth Hormone and Melatonin in Young and Old Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5863402. [PMID: 28050228 PMCID: PMC5165162 DOI: 10.1155/2016/5863402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/25/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) and melatonin are two hormones with quite different physiological effects. Curiously, their secretion shows parallel and severe age-related reductions. This has promoted many reports for studying the therapeutic supplementation of both hormones in an attempt to avoid or delay the physical, physiological, and psychological decay observed in aged humans and in experimental animals. Interestingly, the effects of the external administration of low doses of GH and of melatonin were surprisingly similar, as both hormones caused significant improvements in the functional capabilities of aged subjects. The present report aims at discerning the eventual difference between cognitive and motor effects of the two hormones when administered to young and aged Wistar rats. The effects were tested in the radial maze, a test highly sensitive to the age-related impairments in working memory and also in the rotarod test, for evaluating the motor coordination. The results showed that both hormones caused clear improvements in both tasks. However, while GH improved the cognitive capacity and, most importantly, the physical stamina, the effects of melatonin should be attributed to its antioxidant, anxiolytic, and neuroprotective properties.
Collapse
|
5
|
Keane J, Tajouri L, Gray B. The effect of recombinant human growth hormone and insulin-like growth factor-1 on the mitochondrial function and viability of peripheral blood mononuclear cells in vitro. Appl Physiol Nutr Metab 2014; 40:105-15. [PMID: 25531671 DOI: 10.1139/apnm-2014-0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study investigated whether the putative physiological benefits induced by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are countered at supra-physiological concentrations because of an augmentation in the production of mitochondrial-derived free radicals with a subsequent increase in oxidative damage, compromising mitochondrial function. To test this hypothesis, peripheral blood mononuclear cells were incubated for 4 h with either recombinant human GH (rhGH) (range = 0.25-100 μg/L) or recombinant IGF-1 (rIGF-1) (range = 100-600 μg/L) and along with control samples were subsequently analyzed by flow cytometry for the determination of cellular viability, mitochondrial membrane potential (Δψm), mitochondrial superoxide (O2(-)) generation, and mitochondrial permeability transition pore (mtPTP) activity. Results showed levels of mitochondrial O2(-) generation to be significantly reduced compared with control samples (lymphocytes: 21.5 ± 1.6 AU; monocytes: 230.2 ± 9.8 AU) following rhGH treatment at both concentrations of 5 μg/L (13.5 ± 1.3 AU, P ≤ 0.05) and 10 μg/L (12.3 ± 1.5 AU, P ≤ 0.05) in lymphocytes and at 10 μg/L (153.4 ± 11.4 AU, P ≤ 0.05) in monocytes. However, no significant effect was found at either higher rhGH concentrations or following treatment with any concentration of rIGF-1. In addition, neither of the 2 hormones had any significant effect on Δψm, mtPTP activity, or on cellular viability. In conclusion, physiological concentrations of rhGH elicited a protective cellular effect through the reduction of oxidative free radicals within mitochondria. This antioxidant effect was diminished at supra-physiological concentrations but not to a level that would elicit disruption of mitochondrial function.
Collapse
Affiliation(s)
- James Keane
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | | | | |
Collapse
|
6
|
Li C, Xia M, Abais JM, Liu X, Li N, Boini KM, Li PL. Protective role of growth hormone against hyperhomocysteinemia-induced glomerular injury. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:551-61. [PMID: 23529346 DOI: 10.1007/s00210-013-0848-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
Abstract
The present study investigated the protective role of growth hormone (GH) against hyperhomocysteinemia (hHcys)-induced activations of reactive oxygen species/hypoxia-inducible factor (HIF)-1α, epithelial-mesenchymal transition (EMT), and consequent glomerular injury. A hHcys model was induced by folate free diet in mice. The urine protein excretion significantly increased while plasma GH levels dramatically decreased in hHcys. Real-time reverse transcription polymerase chain reaction showed that GH receptor (GHR) level increased in the cortex of hHcys mice, which mainly occurred in podocytes as shown by confocal microscopy. Recombinant mouse growth hormone (rmGH) treatment (0.02 mg/kg, once a day for 6 weeks) significantly restored the plasma GH, inhibited GHR upregulation and attenuated proteinuria. Correspondingly, rmGH treatment also blocked hHcys-induced decrease in the expression of podocin, a podocyte slit diaphragm molecule, and inhibited the increases in the expression of desmin, a podocyte injury marker. It was also demonstrated that in hHcys the expression of epithelial markers, p-cadherin and ZO-1, decreased, while the expression of mesenchymal markers, antifibroblast-specific protein 1 (FSP-1) and α-SMA, increased in podocytes, which together suggest the activation of EMT in podocytes. Nicotinamide adenine dinucleotide phosphate oxidase (Nox)-dependent superoxide anion (O2 (.-)) and hypoxia-inducible factor-1α (HIF-1α) level in the hHcys mice cortex was markedly enhanced. These hHcys-induced EMT enhancement and Nox-dependent O2 (.-)/HIF-1α activation were significantly attenuated by rmGH treatment. HIF-1α level increased in Hcys-treated cultured podocytes, which were blocked by rmGH treatment. Meanwhile, homocysteine (Hcys)-induced EMT in cultured podocytes was significantly reversed by HIF-1α siRNA. All these results support the view that GH ameliorates hHcys-induced glomerular injury by reducing Nox-dependent O2 (.-)/HIF-1α signal pathway and EMT.
Collapse
Affiliation(s)
- Caixia Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Commonwealth University, 410 N, 12th Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lacorte LM, Seiva FR, Rinaldi JC, Delella FK, Moroz A, Sarobo C, Godinho AF, Fávaro WJ, Fernandes AA, Felisbino SL. Caffeine reduces cadmium accumulation in the organism and enhances the levels of antioxidant protein expression in the epididymis. Reprod Toxicol 2013; 35:137-43. [DOI: 10.1016/j.reprotox.2012.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/04/2012] [Accepted: 10/16/2012] [Indexed: 11/16/2022]
|
8
|
Li CX, Xia M, Han WQ, Li XX, Zhang C, Boini KM, Liu XC, Li PL. Reversal by growth hormone of homocysteine-induced epithelial-to-mesenchymal transition through membrane raft-redox signaling in podocytes. Cell Physiol Biochem 2011; 27:691-702. [PMID: 21691087 DOI: 10.1159/000330078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/28/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is an important pathogenic mechanism mediating glomerular injury or sclerosis in a variety of renal and systemic diseases such as hyperhomocysteinemia (hHcys). The present study was designed to test whether Hcys-induced EMT in podocytes is reversed by growth hormone (GH), a hormone regulating cell differentiation and growth and to explore the cellular and molecular mechanism mediating its action. It was found that Hcys induced significant EMT in podocytes, as shown by marked decreases in slit diaphragm-associated protein P-cadherin and zonula occludens-1 as epithelial markers and by dramatic increases in the expression of mesenchymal markers, fibroblast specific protein-1 and α-smooth muscle actin, which were detected by all examinations via immunocytochemistry, real time RT-PCR and Western blot analysis. When podocytes were treated with GH at 25 ng/mL, however, Hcys failed to induce podocyte EMT. Using electromagnetic spin resonance spectrometry, Hcys-induced superoxide (O(2).(-)) production via NADPH oxidase was found to be significantly inhibited by GH (66%). Functionally, GH was shown to substantially inhibit Hcys-induced increases in the permeability of podocyte monolayers and to block the decrease in podocin expression in these cells. In addition, NADPH oxidase subunit, gp91(phox) and GH receptors aggregated in membrane raft clusters, which produced O(2).(-) in response to Hcys and could be blocked by GH, membrane raft disruptors filipin and MCD or NADPH oxidase inhibitor, apocynin. It is concluded that Hcys-induced podocyte EMT is associated with transmembrane membrane raft-redox signaling and that GH reverses this Hcys-induced EMT protecting podocytes from functional disturbance.
Collapse
Affiliation(s)
- Cai-Xia Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|
10
|
Chuffa LGA, Amorim JPA, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PFF, Seiva FRF, Novelli ELB, de Mello Júnior W, Martinez M, Almeida-Francia CCD, Martinez FE. Long-term exogenous melatonin treatment modulates overall feed efficiency and protects ovarian tissue against injuries caused by ethanol-induced oxidative stress in adult UChB rats. Alcohol Clin Exp Res 2011; 35:1498-508. [PMID: 21438888 DOI: 10.1111/j.1530-0277.2011.01486.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic ethanol intake leads to reproductive damage including reactive oxygen species formation, which accelerates the oxidative process. Melatonin is known to regulate the reproductive cycle, food/liquid intake, and it may also act as a potent antioxidant indoleamine. The aim of this study was to verify the effects of alcoholism and melatonin treatment on overall feed efficiency and to analyze its protective role against the oxidative stress in the ovarian tissue of UChB rats (submitted to 10% [v/v] voluntary ethanol consumption). METHODS Forty adult female rats (n = 10/group) were finally selected for this study: UChB Co: drinking water only; and UChB EtOH: drinking ethanol at 2 to 6 ml/100 g/d + water, both receiving 0.9% NaCl + 95% ethanol 0.04 ml as vehicle. Concomitantly, UChB Co + M and UChB EtOH + M groups were infused with vehicle + melatonin (100 μg/100 g body weight/d) intraperitoneally over 60 days. All animals were euthanized by decapitation during the morning estrus (4 am). RESULTS Body weight gain was reduced with ethanol plus melatonin after 40 days of treatment. In both melatonin-treated groups, it was observed a reduction in food-derived calories and liquid intake toward the end of treatment. The amount of consumed ethanol dropped during the treatment. Estrous cycle was longer in rats that received both ethanol and melatonin, with prolonged diestrus. Following to oxidative status, lipid hydroperoxide levels were higher in the ovaries of ethanol-preferring rats and decreased after melatonin treatment. Additionally, antioxidant activities of superoxide dismutase, glutathione peroxidase activity, and glutathione reductase activity were increased in melatonin-treated groups. CONCLUSIONS We suggest that melatonin is able to affect feed efficiency and, conversely, it protects the ovaries against the oxidative stress arising from ethanol consumption.
Collapse
Affiliation(s)
- Luiz Gustavo A Chuffa
- Structural and Cell Biology Program, Institute of Biology, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chuffa LGA, Amorim JPA, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PFF, Seiva FRF, Novelli ELB, Mello Júnior W, Martinez M, Martinez FE. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat. Braz J Med Biol Res 2011; 44:217-23. [PMID: 21344135 DOI: 10.1590/s0100-879x2011007500018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023] Open
Abstract
Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight(-1)·day(-1)) both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day) and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), catalase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.
Collapse
Affiliation(s)
- L G A Chuffa
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Agarwal M, Naghi J, Philip K, Phan A, Willix RD, Schwarz ER. Growth hormone and testosterone in heart failure therapy. Expert Opin Pharmacother 2010; 11:1835-44. [PMID: 20486829 DOI: 10.1517/14656566.2010.485615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Heart failure is a progressive disease affecting millions of people worldwide. The disease carries a significantly high morbidity and mortality risk. There are multiple pharmaceutical options to decrease this risk and prolong survival; however, despite optimization of medical management, several patients still await heart transplant, the only definitive cure for heart failure. To slow the progression of disease preventing need for transplantation, improve clinical symptoms, and improve heart failure outcomes, there is a persistent need to discover new therapeutic strategies. Of interest, low growth hormone and testosterone levels have been associated with a worsening degree of heart failure. Many studies have begun to show a clinical improvement in heart failure symptoms when these levels are corrected with hormonal therapy. These findings, although mixed, are promising and indicate that both testosterone and growth hormone therapy should be considered as adjunctive therapy in advanced heart failure patients. AREAS COVERED IN THIS REVIEW This review discusses the physiology of both of these natural hormones, their therapeutic effects in heart failure and data from the published literature on studies using growth hormone or testosterone in patients with chronic heart failure. An extensive search of PubMed was conducted for topics on heart failure, growth hormone, insulin-like growth factor, testosterone, their physiology and pathophysiology, and trials in which they have been used as therapeutic interventions between 1989 and 2009. WHAT THE READER WILL GAIN The reader will gain an understanding of the intricate balance of both of these hormones in the disease state of heart failure. In addition, the trials conducted using these hormones in pharmacotherapy for heart failure are discussed along with proposed theories for interstudy variability. TAKE HOME MESSAGE Testosterone deficiency and growth hormone resistance are positively associated with a poor state of heart failure. Treatment of deficiency improves outcomes in heart failure; however, there is a significant paucity of data with regard to testosterone and heart failure as well as a significant amount of study variability with growth hormone and heart failure.
Collapse
Affiliation(s)
- Megha Agarwal
- Cedars Sinai Medical Center Los Angeles, Cedars Sinai Heart Institute, 8700 Beverly Boulevard, Suite 6215, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The present study was designed to compare the cardioprotective effects of the combination of lisinopril with growth hormone over lisinopril alone in doxorubicin (Dox)-induced cardiomyopathy in rats. Forty male Wister albino rats were divided into 4 groups: group 1, control group; group 2, received Dox; group 3, received lisinopril + Dox; and group 4, received lisinopril + Dox + growth hormone. Dox (cumulative dose) was administered to rats in 6 equal intraperitoneal injections over a period of 2 weeks. Histopathological changes and plasma aspartate aminotransferase, lactate dehydrogenase, and creatine kinase and plasma levels of matrix metalloproteinase (MMP)-2, tissue inhibitor matrix metalloproteinase (TIMP)-1, and cardiac inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) expression were determined 9 weeks after the first dose of Dox. Dox produced cardiac structural injury and significant elevation in plasma levels of cardiac enzymes, MMP-2, and cardiac iNOS mRNA expression together with significant reduction in plasma TIMP-1 level. Lisinopril significantly decreases plasma MMP-2 level and cardiac iNOS mRNA expression by 13% and 15%, respectively, in group 3 compared with 36% and 47%, respectively, in group 4 as compared with group 2. In addition, compared with Dox group, lisinopril significantly increases plasma TIMP-1 level by 23% compared with 49% in group 4. We can conclude that the combination of lisinopril and growth hormone produced better cardioprotective effect against Dox-induced cardiomyopathy. This effect may be attributed on their antiremodeling actions by regulating plasma MMP-2/TIMP-1 levels and to the reduction of cardiac iNOS mRNA expression.
Collapse
|
14
|
Seiva FRF, Amauchi JF, Rocha KKR, Ebaid GX, Souza G, Fernandes AAH, Cataneo AC, Novelli ELB. Alcoholism and alcohol abstinence: N-acetylcysteine to improve energy expenditure, myocardial oxidative stress, and energy metabolism in alcoholic heart disease. Alcohol 2009; 43:649-56. [PMID: 20004343 DOI: 10.1016/j.alcohol.2009.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/21/2009] [Accepted: 09/09/2009] [Indexed: 01/19/2023]
Abstract
Alcoholism has been associated with a wide range of pathologic conditions, including alcoholic heart disease (AHD). Because AHD may be associated with oxidative stress, antioxidant compounds, such as N-acetylcysteine (NAC) could be useful to control the damage done by alcohol (ethanol) consumption. To investigate the NAC effects on alcoholism and alcohol abstinence, initially, 30 male Wistar rats were divided into two groups: (C, N=6) given standard chow and water; (E, N=24) receiving standard chow and aqueous ethanol solution in semi-voluntary research. After 30 days of ethanol-exposure, (E) group was divided into four subgroups (N=6/group):(E-E) continued drinking 30% ethanol-solution; (E-NAC) drinking ethanol-solution containing 2g/L NAC; (AB) changed ethanol solution to water; (AB-NAC) changed ethanol to aqueous solution of 2g/L NAC. After 15 days of the E-group division, E-E rats had lower body weight and feed efficiency, as well as higher energy-expenditure resting metabolic rate (RMR)/body weight and VO(2) consumption/surface area. These calorimetric changes were reflected on the cardiac tissue. E-E rats had higher heart weight/body weight ratio and myocardial lipid hydroperoxide (LH), indicating AHD with hypertrophy and oxidative stress. Myocardial superoxide dismutase was higher, whereas glutathione-peroxidase (GSH-peroxidase) was lower in E-E rats than in C. The higher myocardial hydroxyacyl coenzyme-A dehydrogenase (OHADH), OHADH/citrate synthase (CS), and lactate dehydrogenase (LDH)/CS in E-E rats indicated higher fatty acid degradation relative to aerobic metabolism predisposing the lipotoxicity. AB rats had lower RMR/body weight than E-E, normalized myocardial oxidative stress, and energy metabolism. E-NAC and AB-NAC had lower RMR/body weight, myocardial LH, LDH/CS, and higher GSH-peroxidase than E-E and AB, respectively, demonstrating lower oxidative stress and higher myocardial carbohydrate oxidation. In conclusion, the present study brought new insights on alcohol consumption and AHD because ethanol-exposure enhanced energy-expenditure and induced a number of calorimetric changes, which were reflected in body weight and myocardial lipotoxicity. NAC preventing ethanol-induced calorimetric changes and reducing myocardial oxidative stress enhanced carbohydrate oxidation, thus optimizing myocardial energy metabolism in both alcoholic and abstinence condition.
Collapse
|
15
|
Schubert R, Schmitz N, Pietzner J, Tandi C, Theisen A, Dresel R, Christmann M, Zielen S. Growth hormone supplementation increased latency to tumourigenesis in Atm-deficient mice. Growth Factors 2009; 27:265-73. [PMID: 19626507 DOI: 10.1080/08977190903112663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Growth hormone (GH) is important for cell growth and differentiation, has multiple effects on lymphoid tissue and may promote blast cell proliferation and cancer development. We studied the effect of GH on longevity and tumour formation in Atm-deficient mice, an established model of the human cancer prone syndrome ataxia telangiectasia (AT). AT is a devastating recessive disorder that is characterized by progressive cerebellar ataxia, immunodeficiency, chromosomal instability and cancer susceptibility. Since AT patients also show endocrinological abnormalities the question has been raised as to whether GH therapy could be beneficial and/or increase the cancer risk in AT. We found that treatment with GH significantly increased longevity of Atm-deficient mice. In addition, GH ameliorated locomotoric behaviour and improved T-cell immunity. Thus, our data demonstrated that GH treatment is not necessarily accompanied by increased cancer development in diseases with chromosomal instability and cancer susceptibility and might be beneficial for AT patients.
Collapse
Affiliation(s)
- Ralf Schubert
- Pediatric Children's Hospital, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hormonal regulation of pro-inflammatory and lipid peroxidation processes in liver of old ovariectomized female rats. Biogerontology 2009; 11:229-43. [PMID: 19633997 DOI: 10.1007/s10522-009-9242-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/10/2009] [Indexed: 12/20/2022]
Abstract
There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in pro-inflammatory cytokines. On the other hand, oxidative stress has been implicated in the pathogenesis of several alterations due to menopause, and can arise through the increased production of lipid peroxides (LPO) and/or a deficiency of antioxidant defense. The aim of the present study was to investigate the effect of aging and ovariectomy on various physiological parameters related to inflammation and oxidative stress in livers obtained from old female rats and the influence of chronic exogenous administration of estrogens, phytoestrogens and growth hormone on these. Thirty-six female Wistar rats of 22 months of age were used in the present study. Twelve of them remained intact, and the other 24 had been ovariectomized at 12 months of age. Intact animals were divided into two groups and treated for 10 weeks with GH or saline, and ovariectomized animals were divided into four groups and treated for the same time with GH, estrogens, phytoestrogens or saline. A group of 2 month old intact female rats was used as young control. Protein expression of iNOS, HO-1, IL-6, TNFalpha, and IL-1beta were determined by Western blot analysis. The levels of NO( x ), LPO, TNFalpha, IL-1beta, IL-6 and IL-10 were determined in different fractions of the liver. Levels of LPO in the liver homogenates as well as iNOS protein expression and NO( x ) levels were increased in old rats as compared to young animals; this effect was more evident in ovariectomized animals. Pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 were significantly increased and anti-inflammatory IL-10 decreased during ageing and after ovariectomy. Aging also significantly increased expression of HO-1 protein and ovariectomized rats showed an additional increase. Hormonal administration to the ovariectomized groups decreased NO( x ), LPO levels and pro-inflammatory cytokines as compared with untreated rats. Significant rise in IL-10 and reductions in the iNOS, IL-6, TNFalpha and IL-1beta proteins expression were also found. Oxidative stress and inflammation induced during aging in the liver are more marked in castrated than in intact old females. Administration of the different hormonal replacement therapies was able to inhibit the induction of pro-inflammatory cytokines and iNOS, decreased the levels of oxidative stress markers and had therapeutic potential in the prevention of liver injury.
Collapse
|
17
|
Improvement of leucocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol 2009; 80:70-9. [DOI: 10.1016/j.jri.2009.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/04/2008] [Accepted: 02/16/2009] [Indexed: 01/21/2023]
|
18
|
Sihag S, Li AY, Cresci S, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 2009; 46:201-12. [PMID: 19061896 PMCID: PMC2681265 DOI: 10.1016/j.yjmcc.2008.10.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/25/2022]
Abstract
Heart failure is a cause of significant morbidity and mortality in developed nations, and results from a complex interplay between genetic and environmental factors. To discover gene regulatory networks underlying heart failure, we analyzed DNA microarray data based on left ventricular free-wall myocardium from 59 failing (32 ischemic cardiomyopathy, 27 idiopathic dilated cardiomyopathy) and 33 non-failing explanted human hearts from the Cardiogenomics Consortium. In particular, we sought to investigate cardiac gene expression changes at the level of individual genes, as well as biological pathways which contain groups of functionally related genes. Utilizing a combination of computational techniques, including Comparative Marker Selection and Gene Set Enrichment Analysis, we identified a subset of downstream gene targets of the master mitochondrial transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), whose expression is collectively decreased in failing human hearts. We also observed decreased expression of the key PGC-1alpha regulatory partner, estrogen-related receptor alpha (ERRalpha), as well as ERRalpha target genes which may participate in the downregulation of mitochondrial metabolic capacity. Gene expression of the antiapoptotic Raf-1/extracellular signal-regulated kinase (ERK) pathway was decreased in failing hearts. Alterations in PGC-1alpha and ERRalpha target gene sets were significantly correlated with an important clinical parameter of disease severity - left ventricular ejection fraction, and were predictive of failing vs. non-failing phenotypes. Overall, our results implicate PGC-1alpha and ERRalpha in the pathophysiology of human heart failure, and define dynamic target gene sets sharing known interrelated regulatory mechanisms capable of contributing to the mitochondrial dysfunction characteristic of this disease process.
Collapse
Affiliation(s)
- Smita Sihag
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Allie Y. Li
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sharon Cresci
- Center for Cardiovascular Research, Department of Medicine, Genetics, Molecular Biology & Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carmen C. Sucharov
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | - John J. Lehman
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|