1
|
Yagi K, Ohmura T, Suginome M. Direct Access to Benzofurans and Indoles from Ethylene with 2-Methylphenols/Anilines through Iridium-Catalyzed Dehydrogenative Annulation. J Am Chem Soc 2025. [PMID: 40413773 DOI: 10.1021/jacs.5c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The direct conversion of o-cresol and 2-methylphenols to 2-methylbenzofurans was achieved by an Ir/DTBE-DPPE-catalyzed reaction under an atmosphere of ethylene (1 atm). The reaction involves the initial selective formation of a C-C bond at the benzylic C(sp3)-H bond of 2-methylphenols with ethylene without the accommodation of the C(sp2)-H bonds at the 6-positions, which is followed by subsequent C-O bond-forming annulation along with associated dehydrogenation and double bond migration steps. The reaction conditions also allowed for the direct conversion of o-toluidine and 2-methylanilines into 2-methylindoles.
Collapse
Affiliation(s)
- Kaito Yagi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Abdu Musad Saleh E, Firoz KH, Uthirapathy S, Asiri M, M M R, Kundlas M, Kumar VR, Ray S, Sadeq Yousif Z, Ridha-Salman H. Recent advances in catalytic approaches for the synthesis of 3-substituted indoles: mechanisms and strategies. RSC Adv 2025; 15:12255-12290. [PMID: 40248238 PMCID: PMC12004118 DOI: 10.1039/d5ra00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
This review provides a comprehensive overview of recent advances in the synthesis of 3-substituted indoles, highlighting various catalytic methodologies employed to improve the reaction efficiency, selectivity, and sustainability. This article discusses base-catalyzed methods, amino acid catalysts, Brønsted acid catalysts, and Lewis acids and their unique roles in enhancing the synthesis of these valuable compounds. Additionally, the application of ionic liquids, surfactants, and heteropolyacid-based catalysts was explored for their green chemistry benefits, demonstrating reduced environmental impact and improved reaction outcomes. Electrochemical approaches using simple electrodes and phase-transfer catalysts are also examined as eco-friendly and efficient alternatives. This review underscores the broad versatility and applicability of these catalytic systems in synthesizing 3-substituted indoles, which are important intermediates in pharmaceuticals, material sciences, and natural product synthesis while emphasizing the need for continued innovation toward more sustainable and efficient synthesis methods.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Kakul Hussin Firoz
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | | | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - V Ramesh Kumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Subhashree Ray
- Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha-751003 India
| | | | | |
Collapse
|
3
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
4
|
Melder JJ, Heldner ML, Kugler R, Ziegenhagen LA, Rominger F, Rudolph M, Hashmi ASK. Easy Access to Functionalized Indolines and Tetrahydroquinolines via a Photochemical Cascade Cyclization Reaction. J Am Chem Soc 2024; 146:14521-14527. [PMID: 38743878 DOI: 10.1021/jacs.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, the development of a light-mediated synthesis of functionalized indolines and tetrahydroquinolines is reported. These structural motifs are considered as highly valuable targets, attributed to their widespread occurrence in pharmaceuticals and natural products. The gold-mediated approach offers a direct route to functionalized indolines in yields of up to 81% under mild photochemical conditions. Thereby, easily accessible Boc-protected N-aryl-allylamine and homoallylamine derivatives were reacted with sp3-hybridized haloalkanes in an intermolecular cascade cyclization reaction. A broad scope of substrates, including a variety of different substituents on the aromatic backbone as well as various haloalkanes, could be utilized. Indoline derivatives, which are functionalized in position 2, are also accessible by applying ortho-allylic anilines. Moreover, the synthetic appeal was demonstrated for a total synthesis of the anti-inflammatory agent AN669 in three reaction steps in an overall yield of 64%.
Collapse
Affiliation(s)
- Julian J Melder
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Maxi L Heldner
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Robin Kugler
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Levi A Ziegenhagen
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Li F, Yuan Y, Lyu D, Yi Y, Zhang J, Sun T, Gao G. Palladium-Catalyzed Domino Heck/Cross-Coupling Cyclization Reaction: Diastereoselective Synthesis of Furan-Containing Indolines. J Org Chem 2024. [PMID: 38805672 DOI: 10.1021/acs.joc.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, a palladium-catalyzed diastereoselective dearomatization/cross-coupling cyclization reaction between N-arylacyl indoles and (E)-β-chlorovinyl ketones is reported. Through this cyclization/cycloisomerization cascade, a series of furan-containing indolines were obtained in yields up to 95%. The reaction features readily accessible starting materials, benzyl Pd(II)-catalyzed cycloisomerization of (E)-β-chlorovinyl ketones, the sequential formation of three bonds and bis-heterocycles, and excellent diastereoselectivity. More importantly, the carbene-secondary benzyl migratory insertion is proven to be a critical process in the sequential cyclizations.
Collapse
Affiliation(s)
- Furong Li
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Donghao Lyu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yujie Yi
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jingli Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Guanbin Gao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Zhou HY, Dong L. Synthesis of acridones via Ir(III)-catalyzed amination annulation of oxazoles with anthranils. Org Biomol Chem 2024; 22:4036-4040. [PMID: 38698770 DOI: 10.1039/d4ob00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An unprecedented Ir(III)-catalyzed C-H activation/amination/annulation of 2-phenyloxazoles with anthranils for the highly selective preparation of acridone derivatives in one-pot under controlled conditions is reported. This protocol is characterized by atom economy and high regioselectivity. A wide range of anthranils with 2-phenyloxazoles were well tolerated and afforded the desired products in moderate to good yields, in which the anthranil serves as a convenient amination reagent.
Collapse
Affiliation(s)
- Han-Yi Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Zhang JK, Fang YC, Chen JH, Shan J, Bai M, Huang Q, Chen YZ, Han WY. Iodomethane in C1 chemistry: application in palladium-catalyzed [2 + 2 + 1] annulation. Org Biomol Chem 2024; 22:3204-3208. [PMID: 38563260 DOI: 10.1039/d4ob00329b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.
Collapse
Affiliation(s)
- Jin-Ke Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Yu-Chen Fang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P. R. China
| | - Jia-He Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Mei Bai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Qiang Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
8
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
9
|
Munawar S, Zahoor AF, Mansha A, Bokhari TH, Irfan A. Update on novel synthetic approaches towards the construction of carbazole nuclei: a review. RSC Adv 2024; 14:2929-2946. [PMID: 38239436 PMCID: PMC10794906 DOI: 10.1039/d3ra07270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Tanveer Hussain Bokhari
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| |
Collapse
|
10
|
Fan R, Wen H, Chen Z, Xia Y, Fang W. A General Protocol toward Synthesis of 3-Methylindoles Using Acenaphthoimidazolyidene-Ligated Oxazoline Palladacycle. Org Lett 2024; 26:22-28. [PMID: 38127726 DOI: 10.1021/acs.orglett.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An efficient catalytic strategy toward the synthesis of N-substituted 3-methylindoles from inactive o-dihaloarenes and N-allylamines was developed by using a 1,3-bis(2,6-diisopropylphenyl)acenaphthoimidazol-2-ylidene (AnIPr)-ligated oxazoline palladacycle. It enabled a very broad substrate scope tolerating different functional groups, electronic properties, and steric bulkiness and afforded desired products in good to excellent yields. Importantly, it showed great potential to synthesize several bioactive compounds and key intermediates of natural products in high yields.
Collapse
Affiliation(s)
- Ruoqian Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Haili Wen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
11
|
Liu G, Zheng M, Tian R, Zhou Y. Site-Selective Synthesis of Antitumor C5-Aminated Indoles via Neighboring Aldehyde Group Assisted Catellani Reaction. Org Lett 2023; 25:9231-9236. [PMID: 38105532 DOI: 10.1021/acs.orglett.3c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A palladium/norbornene (NBE) cooperative catalytic system was developed to access C5-aminated indoles, starting from readily available C4-idonated indoles. Good yields and exclusive site selectivity were achieved for a broad substrate scope, including drug molecule core architectures. Control experiments found that both aldehyde on the C3 position and sulfonyl protecting group on the N1 position were vital for the transformation. Preliminary bioactivity evaluation identified a promising leading compound 3af with potent antitumor proliferative activity against several cancer cells.
Collapse
Affiliation(s)
- Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
13
|
Jordan SJ, Wilson L, Ren J, Gupta K, Barnes S, Geisler WM. Natural Clearance of Chlamydia trachomatis Infection Is Associated With Distinct Differences in Cervicovaginal Metabolites. J Infect Dis 2023; 228:1119-1126. [PMID: 37163744 PMCID: PMC10582912 DOI: 10.1093/infdis/jiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Natural clearance of Chlamydia trachomatis in women occurs in the interval between screening and treatment. In vitro, interferon-γ (IFN-γ)-mediated tryptophan depletion results in C. trachomatis clearance, but whether this mechanism occurs in vivo remains unclear. We previously found that women who naturally cleared C. trachomatis had lower cervicovaginal levels of tryptophan and IFN-γ compared to women with persisting infection, suggesting IFN-γ-independent pathways may promote C. trachomatis clearance. METHODS Cervicovaginal lavages from 34 women who did (n = 17) or did not (n = 17) naturally clear C. trachomatis were subjected to untargeted high-performance liquid chromatography mass-spectrometry to identify metabolites and metabolic pathways associated with natural clearance. RESULTS In total, 375 positively charged metabolites and 149 negatively charged metabolites were annotated. Compared to women with persisting infection, C. trachomatis natural clearance was associated with increased levels of oligosaccharides trehalose, sucrose, melezitose, and maltotriose, and lower levels of indoline and various amino acids. Metabolites were associated with valine, leucine, and isoleucine biosynthesis pathways. CONCLUSIONS The cervicovaginal metabolome in women who did or did not naturally clear C. trachomatis is distinct. In women who cleared C. trachomatis, depletion of various amino acids, especially valine, leucine, and isoleucine, suggests that amino acids other than tryptophan impact C. trachomatis survival in vivo.
Collapse
Affiliation(s)
- Stephen J Jordan
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jie Ren
- Department of Biostatics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Kanupriya Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William M Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Jain A, Regina A, Kumari A, Patra R, Paranjothy M, Rana NK. Reusable Supported Pyridine-Mediated Cascade Synthesis of trans-2,3-Dihydroindoles via In Situ-Generated N-Ylide. Org Lett 2023; 25:3790-3795. [PMID: 37184141 DOI: 10.1021/acs.orglett.3c01295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Merrifield resin-anchored pyridines were prepared and applied as reusable mediators for trans-selective cascade synthesis of 2,3-dihydroindoles. The developed approach relied on in situ N-ylide formation followed by Michael substitution reactions. The cascade reaction was also carried out efficiently with simple pyridine. The products were further transformed into synthetically valuable compounds, and supported pyridine was reused for multiple cycles. Density functional theory calculations confirmed the trans-selectivity as the lower-energy pathway.
Collapse
Affiliation(s)
- Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Anitta Regina
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
15
|
Yan X, Pi C, Cui X, Cui X, Wu Y. 2-Butyne Biscarbonate as a "Bridge" in Rhodium(III)-Catalyzed [4 + 2] Cyclization and Diels-Alder Reaction. Org Lett 2023; 25:2953-2957. [PMID: 37087759 DOI: 10.1021/acs.orglett.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Described herein is the development of an unprecedented approach to construct multiple heterocycles with high selectivity through Rh(III)-catalyzed two- or three-component cyclization reaction from simple and readily available starting materials: N-methoxybenzamides, 2-butyne biscarbonate, and maleimides. This methodology provides an efficient strategy for the synthesis of diverse and complicated heterocycles in a one-pot manner and displays excellent features of extremely mild reaction conditions, easy operation, excellent regioselectivity, and good functional group compatibility.
Collapse
Affiliation(s)
- Xinxin Yan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiaofan Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
16
|
Zhang M, Zhao P, Wu D, Qiu Z, Zhao C, Zhang W, Li F, Zhou J, Liu L. Brønsted Acid-Catalyzed Reaction of N-arylnaphthalen-2-amines with Quinone Esters for the Construction of Carbazole and C-N Axially Chiral Carbazole Derivatives. J Org Chem 2023. [PMID: 36812409 DOI: 10.1021/acs.joc.2c02518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We demonstrated here an efficient synthetic method of carbazole derivatives from readily available N-arylnaphthalen-2-amines and quinone esters catalyzed by Brønsted acid. With this strategy, a series of carbazole derivatives were obtained in good to excellent yields (76 to >99) under mild conditions. Large scale reaction illustrated the synthetic utility of this protocol. Meanwhile, a series of C-N axially chiral carbazole derivatives were also constructed in moderate to good yields (36-89% yield) with moderate to excellent atroposelectivities (44-94% ee) by using chiral phosphoric acid as a catalyst, which provides a novel strategy for the atroposelective construction of C-N axially chiral compounds and a new member of the C-N atropisomers.
Collapse
Affiliation(s)
- Mingliang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Pin Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dongqing Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Zhichao Qiu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Chenyue Zhao
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Wenyu Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
17
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
18
|
Zhao H, Ding S, Li D, Chai M, Dai L, Li J, Jiang Y, Weng T, Wang J. Stereoselective Construction of Unsymmetrically Linked Heterocycles via Palladium-Catalyzed Alkyne Insertion/Cycloimidoylation Cascade. J Org Chem 2023; 88:1613-1624. [PMID: 36642919 DOI: 10.1021/acs.joc.2c02660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel strategy to access unsymmetrically linked heterocycles via palladium-catalyzed acylcycloimidoylation of alkyne-tethered carbamoyl chlorides with isocyanides has been developed. Functionalized isocyanides were successfully applied as imine-containing heterocycle precursors to capture the vinyl-PdII intermediate, which was generated from a syn-carbopalladation of alkyne, followed by subsequent intramolecular C-H bond activation/imidoylative Heck reactions. Methylene oxindoles within Z-tetrasubstituted olefins were obtained in high yields with excellent stereoselectivities. Broad functional groups were well tolerated under mild reaction conditions.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Lixiong Dai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jing Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People's Republic of China
| | - Yuchen Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tongqing Weng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
19
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
|
21
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
22
|
Han XQ, Liu JY, Lu JB, Liang RX, Jia YX. Dearomatizing [2+2+1] Spiroannulation of Indoles with Alkynes. Org Lett 2023; 25:261-266. [PMID: 36546773 DOI: 10.1021/acs.orglett.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A palladium-catalyzed dearomatizing [2+2+1] spiroannulation of indoles with two molecular internal alkynes is developed in the presence of Cu(OAc)2/O2 as the oxidant, in which a domino sequence including C-H activation of indole followed by consecutive Heck reactions is involved. A range of 3,3'-spiroindolines bearing tetrasubstituted cyclopentadiene moieties and exocyclic C═C bonds at C2 are obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| |
Collapse
|
23
|
Chen S, Yang Y, Chen C, Wang C. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Ye T, Zhao J, Zheng WX, Zhang J, Wang Z, Zhang FL. Synthesis of structurally diverse silicon-incorporated indolines via silyl radical-triggered radical cascade reactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Structurally diverse silicon-incorporated indolines were synthesized via a silyl radical-triggered radical addition–translocation–cyclization (RATC) process.
Collapse
|
25
|
Li F, Li HM, Xiu RF, Zhang JK, Cui BD, Wan NW, Chen YZ, Han WY. Palladium-Catalyzed Domino Reaction for the Assembly of Norbornane-Containing Chromones with Dimethyl Squarate as the Solid C1 Source. Org Lett 2022; 24:9392-9397. [PMID: 36524990 DOI: 10.1021/acs.orglett.2c03713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reported herein is a novel palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, bridged olefins, and dimethyl squarate allowing the construction of chromone-containing polycyclic compounds in good to high yields. Importantly, dimethyl squarate is first employed as the solid C1 source in organic synthesis. Gram-scale experiments, late-stage modification of natural products, as well as transformations of products show potential for further synthetic elaborations.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Hui-Min Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Ren-Feng Xiu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Jin-Ke Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
26
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Zhao X, Fan C, He J, Luo Y. Rh-Catalyzed [3+2] Annulation of Cyclic Ketimines and Alkynyl Chloride: A Strategy for Accessing Unsymmetrically Substituted and Highly Functionalizable Indenes. Org Lett 2022; 24:9169-9173. [PMID: 36503272 PMCID: PMC9791992 DOI: 10.1021/acs.orglett.2c02717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkynyl chlorides were found to be extraordinarily novel electrophiles, which could afford a single regioisomer of the [3+2] annulation adducts with cyclic ketimines by rhodium catalysis. The alkenyl chloride moiety in the products provided a valuable functional handle for further diverse transformations. Therefore, this research provided not only a synthetic protocol for accessing unsymmetrically substituted indenyl amines but also a highly divergent solution for decorating the substituting group by postmanipulation of the chloride.
Collapse
Affiliation(s)
- Xu Zhao
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenrui Fan
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Jianbo He
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Yunfei Luo
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,
| |
Collapse
|
28
|
Metal, iodine and oxidant-free electrosynthesis of substituted indoles from 1-(2-aminophenyl)alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Boron Trifluoride Etherate Promoted Regioselective 3-Acylation of Indoles with Anhydrides. Molecules 2022; 27:molecules27238281. [PMID: 36500373 PMCID: PMC9741063 DOI: 10.3390/molecules27238281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
An efficient, high-yielding and scalable procedure for the regioselective 3-acylation of indoles with anhydrides promoted by boron trifluoride etherate under mild conditions was reported. This novel protocol provided a simple way to prepare 3-(benzofuran-2-yl) indole in three steps.
Collapse
|
30
|
Zhang Z, Gu J, Ji L, Liu X, Zhang T, Lv Y, Liu F, Jia Z, Loh TP. Triaryl Carbonium Ion-Pair-Mediated Cooperative Aerobic Dehydrogenation of N-Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Gu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Liang Ji
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Xiaoxiao Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Ting Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Yongheng Lv
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
31
|
Wu Z, Lv G, Zheng L, Tang J, Chen J, Liu J, Li H, Wu Y. Mild construction of N-fused polycyclic compounds via Rh(III)/EosinY co-catalyze C−H activation. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Qin L, Deng G, Du L, Cui B, Wan N, Chen Y. Deracemisation of racemic 2-substituted indolines by monoamine oxidase from Pseudomonas monteilii ZMU-T01. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
34
|
Ma J, Jiang Y, Zhuang X, Chen H, Shen Y, Mao Z, Rao G, Wang R. Discovery of novel indole and indoline derivatives against Candida albicans as potent antifungal agents. Bioorg Med Chem Lett 2022; 71:128826. [PMID: 35661686 DOI: 10.1016/j.bmcl.2022.128826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
With the widespread use of azole antifungals in the clinic, the drug resistance has been emerging continuously. In this work, we have designed and prepared a series of novel indole and indoline derivatives, and in vitro antifungal activity against C. albicans were evaluated. The results showed that title compounds exhibited good antifungal effect on Azole-resistant C. albicans. Further mechanism study demonstrated that S18 could inhibit the biofilm formation and hyphae growth of C. albicans through the Ras-cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- Jia Ma
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China; College of Pharmacy, Dali University, Dali 671000, PR China
| | - Yuan Jiang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xinying Zhuang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Huiting Chen
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yunhong Shen
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Zewei Mao
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Gaoxiong Rao
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming 650500, PR China; College of Pharmacy, Dali University, Dali 671000, PR China.
| |
Collapse
|
35
|
Pu WY, Chen XY, Dong L. Rh(III)-catalyzed [5+1] spirocyclization to produce novel benzimidazole-incorporated spirosuccinimides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
36
|
Wang Y, Zhang Q, Hao Y, Luo C, Huang X, Guo L, Wu Y. C–H Activation-Engaged Synthesis of Diverse Fused-Heterocycles from the Reactions of 3-Phenyl-1,2,4-oxadiazol-5(2 H)-ones with Vinylene Carbonate. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuerong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Yingdi Hao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| |
Collapse
|
37
|
Zhu J, Yang L, Wu J, Deng Z, Qu X. Engineering Imine Reductase for Efficient Biosynthesis of 1-Aryl-Tetrahydro-β-Carbolines and Their N-Methylation Products. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinmei Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lu Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
38
|
Zhao S, Cai X, Lu Y, Hu J, Xiong Z, Jin J, Li Y, Wang H, Wu JQ. Cp*Ir(III) and Cp*Rh(III)-catalyzed annulation of salicylaldehydes with fluorinated vinyl tosylates. Chem Commun (Camb) 2022; 58:8966-8969. [PMID: 35861224 DOI: 10.1039/d2cc02194c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild, selective and redox-neutral Cp*Ir(III)- and Cp*Rh(III)-catalyzed C-H activation/annulation of salicylaldehydes with fluorovinyl tosylates is reported. The use of monofluorovinyl tosylate favors the synthesis of C2- and C3-substitution-free chromones via C-H activation/β-F elimination/annulation, whereas difluorovinyl tosylate leads to the construction of C2-fluoroalkoxy chromones. Mild reaction conditions and good functional-group tolerance were observed. Further functionalization of the resulting chromones via halogenation, alkynylation, alkylation and hydrocyanation was successfully realized.
Collapse
Affiliation(s)
- Shuwen Zhao
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Yuying Lu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| | - Yin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, China.
| |
Collapse
|
39
|
Chen H, Zhou Y, Lei P, Wang H, Yan Q, Properzi R, Wang W, Jing L, Chen F. Visible-light-driven intramolecular xanthylation of remote unactivated C(sp3)-H bonds. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
40
|
Xing Q, Xiao F, Mao G, Deng GJ. A Four-Component Reaction for the Synthesis of Thienopyrrolediones under Transition Metal Free Conditions. Org Lett 2022; 24:4377-4382. [PMID: 35695322 DOI: 10.1021/acs.orglett.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A three-starting-material four-component reaction strategy is described to construct thienopyrrolediones (TPDs) from the simplest raw materials, elemental sulfur, aldehydes, and β-ketoamides, under transition metal free conditions. Compared with traditional multistep reaction sequences, this process is simple, efficient, environmentally friendly, and atom-economic and has laid the foundation for further development of an easily synthesized TPD unit.
Collapse
Affiliation(s)
- Qiaoyan Xing
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
41
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Fang F, Zheng H, Mao G, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Tetrahydrobenzo[ c]carbazolones through NaI-Catalyzed Formal [4 + 2] Annulation. J Org Chem 2022; 87:6052-6063. [PMID: 35470673 DOI: 10.1021/acs.joc.2c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel strategy for the preparation of functional carbazoles through NaI-catalyzed formal [4 + 2] annulation of 2-(indol-3-yl)cyclohexanones and alkynes/alkenes has been developed. The present approach started from easily available raw materials and provided a variety of tetrahydrobenzo[c]carbazolones in satisfactory yields under metal- and solvent-free conditions. Furthermore, the products could be further transformed into structurally valuable carbazole-based conjugated derivatives.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.,College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Haolin Zheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
43
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c00580
expr 911091169 + 878873796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
44
|
Qi H, Chi D, Chen S. Pd-Catalyzed C-H Functionalization of Indole-Containing Alkene-Tethered Aryl Halides with Alkynes To Construct Indole Alkaloid Scaffolds. Org Lett 2022; 24:2910-2914. [PMID: 35394792 DOI: 10.1021/acs.orglett.2c00882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient and straightforward approach for the construction of indole alkaloid scaffolds from indole-containing alkene-tethered aryl halides and alkynes through a sequential C-H activation, five-membered palladacycle formation, and alkyne insertion process has been described. The approach provides a series of indole alkaloid compounds in moderate to excellent yields with good functional tolerance.
Collapse
Affiliation(s)
- Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
45
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022; 24:2613-2618. [PMID: 35377649 DOI: 10.1021/acs.orglett.2c00580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A rhodium-catalyzed cyclization of azobenzenes and vinylene carbonate via C-H bond activation to construct indazolo[2,3-a]quinolines has been developed. This protocol offers an efficient method for synthesis of the titled products in good yields with broad functional group tolerance. In this reaction, three C-C bonds and C-N bond are formed in one pot, and vinylene carbonate (VC) acts as C1 and C2 synthons as well as "vinylene transfer" agent and acylation reagent in the construction of target-fused heterocycles. Moreover, the products exhibit favorable fluorescence properties, which indicate their potential application as fluorescent materials and biosensors.
Collapse
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
46
|
Feng XQ, Wang HC, Li Z, Tang L, Sun X, Yang K. Transition-metal-catalyzed remote C-H functionalization of thioethers. RSC Adv 2022; 12:10835-10845. [PMID: 35424975 PMCID: PMC8988276 DOI: 10.1039/d2ra01268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, transition-metal-catalyzed direct C-H bond functionalization has been recognized as one of most efficient approaches for the derivatization of thioethers. Within this category, both mono- and bidentate-directing group strategies achieved the remote C(sp2)-H and C(sp3)-H functionalization of thioethers, respectively. This review systematically introduces the major advances and their mechanisms in the field of transition-metal-catalyzed remote C-H functionalization of thioethers from 2010 to 2021.
Collapse
Affiliation(s)
- Xiao-Qing Feng
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - He-Cheng Wang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Long Tang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| |
Collapse
|
47
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
48
|
Zhu Y, Shuai W, Zhao M, Pan X, Pei J, Wu Y, Bu F, Wang A, Ouyang L, Wang G. Unraveling the Design and Discovery of c-Jun N-Terminal Kinase Inhibitors and Their Therapeutic Potential in Human Diseases. J Med Chem 2022; 65:3758-3775. [PMID: 35200035 DOI: 10.1021/acs.jmedchem.1c01947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, are encoded by three genes: jnk1, jnk2, and jnk3. JNKs are involved in the pathogenesis and development of many diseases, such as neurodegenerative diseases, inflammation, and cancers. Therefore, JNKs have become important therapeutic targets. Many JNK inhibitors have been discovered, and some have been introduced into clinical trials. However, the study of isoform-selective JNK inhibitors is still a challenging task. To further develop novel JNK inhibitors with clinical value, a comprehensive understanding of JNKs and their corresponding inhibitors is required. In this Perspective, we introduced the JNK signaling pathways and reviewed different chemical types of JNK inhibitors, focusing on their structure-activity relationships and biological activities. The challenges and strategies for the development of JNK inhibitors are also discussed. It is hoped that this Perspective will provide valuable references for the development of novel selective JNK inhibitors.
Collapse
Affiliation(s)
- Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
50
|
Fe3O4@SiO2@Methotrexate as efficient and nanomagnetic catalyst for the synthesis of 9-(aryl)thiazolo [4,5-d] [1,2,4]triazolo [1,5-a]pyrimidin-2(3H)-ones via a cooperative anomeric based oxidation: A joint experimental and computational mechanistic study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|