1
|
Ono M, Ito T. Hearing loss-related altered neuronal activity in the inferior colliculus. Hear Res 2024; 449:109033. [PMID: 38797036 DOI: 10.1016/j.heares.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Gentile Polese A, Nigam S, Hurley LM. 5-HT1A Receptors Alter Temporal Responses to Broadband Vocalizations in the Mouse Inferior Colliculus Through Response Suppression. Front Neural Circuits 2021; 15:718348. [PMID: 34512276 PMCID: PMC8430226 DOI: 10.3389/fncir.2021.718348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.
Collapse
Affiliation(s)
- Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Sunny Nigam
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
| | - Laura M. Hurley
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
5
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
6
|
Balaram P, Hackett TA, Polley DB. Synergistic Transcriptional Changes in AMPA and GABA A Receptor Genes Support Compensatory Plasticity Following Unilateral Hearing Loss. Neuroscience 2018; 407:108-119. [PMID: 30176318 DOI: 10.1016/j.neuroscience.2018.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 01/11/2023]
Abstract
Debilitating perceptual disorders including tinnitus, hyperacusis, phantom limb pain and visual release hallucinations may reflect aberrant patterns of neural activity in central sensory pathways following a loss of peripheral sensory input. Here, we explore short- and long-term changes in gene expression that may contribute to hyperexcitability following a sudden, profound loss of auditory input from one ear. We used fluorescence in situ hybridization to quantify mRNA levels for genes encoding AMPA and GABAA receptor subunits (Gria2 and Gabra1, respectively) in single neurons from the inferior colliculus (IC) and auditory cortex (ACtx). Thirty days after unilateral hearing loss, Gria2 levels were significantly increased while Gabra1 levels were significantly decreased. Transcriptional rebalancing was more pronounced in ACtx than IC and bore no obvious relationship to the degree of hearing loss. By contrast to the opposing, synergistic shifts in Gria2 and Gabra1 observed 30 days after hearing loss, we found that transcription levels for both genes were equivalently reduced after 5 days of hearing loss, producing no net change in the excitatory/inhibitory transcriptional balance. Opposing transcriptional shifts in AMPA and GABA receptor genes that emerge several weeks after a peripheral insult could promote both sensitization and disinhibition to support a homeostatic recovery of neural activity following auditory deprivation. Imprecise transcriptional changes could also drive the system toward perceptual hypersensitivity, degraded temporal processing and the irrepressible perception of non-existent environmental stimuli, a trio of perceptual impairments that often accompany chronic sensory deprivation.
Collapse
Affiliation(s)
- P Balaram
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114, USA; Dept. of Otolaryngology, Harvard Medical School, Boston MA 02114, USA
| | - T A Hackett
- Dept. of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Vanderbilt University Medical Center, Nashville TN 37232 USA
| | - D B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114, USA; Dept. of Otolaryngology, Harvard Medical School, Boston MA 02114, USA.
| |
Collapse
|
7
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
8
|
Auditory midbrain coding of statistical learning that results from discontinuous sensory stimulation. PLoS Biol 2018; 16:e2005114. [PMID: 30048446 PMCID: PMC6065201 DOI: 10.1371/journal.pbio.2005114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Detecting regular patterns in the environment, a process known as statistical
learning, is essential for survival. Neuronal adaptation is a key mechanism in
the detection of patterns that are continuously repeated across short (seconds
to minutes) temporal windows. Here, we found in mice that a subcortical
structure in the auditory midbrain was sensitive to patterns that were repeated
discontinuously, in a temporally sparse manner, across windows of minutes to
hours. Using a combination of behavioral, electrophysiological, and molecular
approaches, we found changes in neuronal response gain that varied in mechanism
with the degree of sound predictability and resulted in changes in frequency
coding. Analysis of population activity (structural tuning) revealed an increase
in frequency classification accuracy in the context of increased overlap in
responses across frequencies. The increase in accuracy and overlap was
paralleled at the behavioral level in an increase in generalization in the
absence of diminished discrimination. Gain modulation was accompanied by changes
in gene and protein expression, indicative of long-term plasticity.
Physiological changes were largely independent of corticofugal feedback, and no
changes were seen in upstream cochlear nucleus responses, suggesting a key role
of the auditory midbrain in sensory gating. Subsequent behavior demonstrated
learning of predictable and random patterns and their importance in auditory
conditioning. Using longer timescales than previously explored, the combined
data show that the auditory midbrain codes statistical learning of temporally
sparse patterns, a process that is critical for the detection of relevant
stimuli in the constant soundscape that the animal navigates through. Some things are learned simply because they are there and not because they are
relevant at that moment in time. This is particularly true of surrounding
sounds, which we process automatically and continuously, detecting their
repetitive patterns or singularities. Learning about rewards and punishment is
typically attributed to cortical structures in the brain and known to occur over
long time windows. Learning of surrounding regularities, on the other hand, is
attributed to subcortical structures and has been shown to occur in seconds. The
brain can, however, also detect the regularity in sounds that are
discontinuously repeated across intervals of minutes and hours. For example, we
learn to identify people by the sound of their steps through an unconscious
process involving repeated but isolated exposures to the coappearance of sound
and person. Here, we show that a subcortical structure, the auditory midbrain,
can code such temporally spread regularities. Neurons in the auditory midbrain
changed their response pattern in mice that heard a fixed tone whenever they
went into one room in the environment they lived in. Learning of temporally
spread sound patterns can, therefore, occur in subcortical structures.
Collapse
|
9
|
Petersen CL, Hurley LM. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain. Integr Comp Biol 2018; 57:865-877. [PMID: 28985384 DOI: 10.1093/icb/icx055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world.
Collapse
Affiliation(s)
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
10
|
Lu Y, Liu Y, Curry RJ. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit. J Physiol 2018; 596:1981-1997. [PMID: 29572827 DOI: 10.1113/jp275735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Binaural excitatory inputs to coincidence detection neurons in nucleus laminaris (NL) play essential roles in interaural time difference coding for sound localization. Here, we show that the two excitatory inputs are physiologically nearly completely segregated. Synaptic integration shows linear summation of EPSPs, ensuring high efficiency of coincidence detection of the bilateral excitatory inputs. We further show that the two excitatory inputs to single NL neurons are symmetrical in synaptic strength, kinetics and short-term plasticity. Modulation of the EPSCs by metabotropic glutamate receptors (mGluRs) is identical between the two excitatory inputs, maintaining balanced bilateral excitation under neuromodulatory conditions. Unilateral hearing deprivation reduces synaptic excitation and paradoxically strengthens mGluR modulation of EPSCs, suggesting activity-dependent anti-homeostatic regulation, a novel synaptic plasticity in response to sensory manipulations. ABSTRACT Neurons in the avian nucleus laminaris (NL) receive bilateral excitatory inputs from the cochlear nucleus magnocellularis, via morphologically symmetrical dorsal (ipsilateral) and ventral (contralateral) dendrites. Using in vitro whole-cell patch recordings in chicken brainstem slices, we investigated synaptic integration and modulation of the bilateral inputs to NL under normal and hearing deprivation conditions. We found that the two excitatory inputs onto single NL neurons were nearly completely segregated, and integration of the two inputs was linear for EPSPs. The two inputs had similar synaptic strength, kinetics and short-term plasticity. EPSCs in low but not middle and high frequency neurons were suppressed by activation of group I and II metabotropic glutamate receptors (mGluR I and II), with similar modulatory strength between the ipsilateral and contralateral inputs. Unilateral hearing deprivation by cochlea removal reduced the excitatory transmission on the deprived dendritic domain of NL. Interestingly, EPSCs evoked at the deprived domain were modulated more strongly by mGluR II than at the counterpart domain that received intact input in low frequency neurons, suggesting anti-homeostatic regulation. This was supported by a stronger expression of mGluR II protein on the deprived neuropils of NL. Under mGluR II modulation, EPSCs on the deprived input show transient synaptic facilitation, forming a striking contrast with normal hearing conditions under which pure synaptic depression is observed. These results demonstrate physiological symmetry and thus balanced bilateral excitatory inputs to NL neurons. The activity-dependent anti-homeostatic plasticity of mGluR modulation constitutes a novel mechanism regulating synaptic transmission in response to sensory input manipulations.
Collapse
Affiliation(s)
- Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Yuwei Liu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
11
|
Hsu WT, Hsu CC, Wen MH, Lin HC, Tsai HT, Su P, Sun CT, Lin CL, Hsu CY, Chang KH, Hsu YC. Increased risk of depression in patients with acquired sensory hearing loss: A 12-year follow-up study. Medicine (Baltimore) 2016; 95:e5312. [PMID: 27858911 PMCID: PMC5591159 DOI: 10.1097/md.0000000000005312] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Acquired sensory hearing loss (SHL) is suggested to be associated with depression. However, some studies have reported conflicting results. Our study investigated the relationship between the prevalence of SHL and the incidence of depression over 12 years of follow-up by using data from the Taiwan National Health Insurance Research Database (NHIRD). We sought to determine the association between SHL and subsequent development of depression and discuss the pathophysiological mechanism underlying the association.Patients with SHL were identified from the NHIRD (SHL cohort). A non-SHL cohort, comprising patients without SHL frequency-matched with the SHL patients according to age group, sex, and the year of diagnosis of SHL at the ratio of 1:4, was constructed, and the incidence of depression was evaluated in both cohorts. A multivariable model was adjusted for age, sex, and comorbidity.The SHL cohort and non-SHL cohort comprised 5043 patients with SHL and 20,172 patients without SHL, respectively. The incidences density rates were 9.50 and 4.78 per 1000 person-years in the SHL cohort and non-SHL cohort, respectively. After adjustment for age, sex, and comorbidities, the risk of depression was higher in the SHL cohort than in the non-SHL cohort (hazard ratio = 1.73, 95% confidence interval = 1.49-2.00).Acquired SHL may increase the risk of subsequent depression. The results demonstrated that SHL was an independent risk factor regardless of sex, age, and comorbidities. Moreover, a strong association between hearing loss and subsequent depression among Taiwanese adults of all ages, particularly those aged ≤49 and >65 years and without using steroids for the treatment of SHL was observed. Prospective clinical and biomedical studies on the relationship between hearing loss and depression are warranted for determining the etiopathology.
Collapse
Affiliation(s)
- Wei-Ting Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Chih-Chao Hsu
- Department of Otorhinolaryngology and Head and Neck Surgery, Mackay Memorial Hospital, Taipei
| | - Ming-Hsun Wen
- Department of Otorhinolaryngology and Head and Neck Surgery, Far Eastern Memorial Hospital, New Taipei City
| | - Hong-Ching Lin
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung
- Department of Audiology and Speech-Language Pathology, Mackay Medical College
| | - Hsun-Tien Tsai
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Peijen Su
- Department of Audiology and Speech-Language Pathology, Mackay Medical College
- Department of Family Medicine, Mackay Memorial Hospital, Taipei
| | - Chi-Te Sun
- Fu Jen Catholic University Graduate Institution of Business Administration
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital
| | - Chung-Yi Hsu
- Graduate Institute of Clinical Medical Sciences, Center College of Medicine
| | - Kuang-Hsi Chang
- Department of Public Health, China Medical University, Taichung
- Correspondence: Yi-Chao Hsu, Institute of Biomedical Sciences, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City 252, Taiwan (e-mail: ); Kuang-Hsi Chang, Department of Public Health, China Medical University, Taichung, Taiwan (e-mail: )
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
- Correspondence: Yi-Chao Hsu, Institute of Biomedical Sciences, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City 252, Taiwan (e-mail: ); Kuang-Hsi Chang, Department of Public Health, China Medical University, Taichung, Taiwan (e-mail: )
| |
Collapse
|
12
|
Keesom SM, Hurley LM. Socially induced serotonergic fluctuations in the male auditory midbrain correlate with female behavior during courtship. J Neurophysiol 2016; 115:1786-96. [PMID: 26792882 PMCID: PMC4869479 DOI: 10.1152/jn.00742.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/16/2016] [Indexed: 11/22/2022] Open
Abstract
Cues from social partners trigger the activation of socially responsive neuromodulatory systems, priming brain regions including sensory systems to process these cues appropriately. The fidelity with which neuromodulators reflect the qualities of ongoing social interactions in sensory regions is unclear. We addressed this issue by using voltammetry to monitor serotonergic fluctuations in an auditory midbrain nucleus, the inferior colliculus (IC), of male mice (Mus musculus) paired with females, and by concurrently measuring behaviors of both social partners. Serotonergic activity strongly increased in male mice as they courted females, relative to serotonergic activity in the same males during trials with no social partners. Across individual males, average changes in serotonergic activity were negatively correlated with behaviors exhibited by female partners, including broadband squeaks, which relate to rejection of males. In contrast, serotonergic activity did not correlate with male behaviors, including ultrasonic vocalizations. These findings suggest that during courtship, the level of serotonergic activity in the IC of males reflects the valence of the social interaction from the perspective of the male (i.e., whether the female rejects the male or not). As a result, our findings are consistent with the hypothesis that neuromodulatory effects on neural responses in the IC may reflect the reception, rather than the production, of vocal signals.
Collapse
Affiliation(s)
- Sarah M Keesom
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana; and Program in Neuroscience, Indiana University, Bloomington, Indiana
| |
Collapse
|