1
|
Kim SP, Jeong I, Kang N, Kim M, Kim OK. Black Ginger Extract Suppresses Fat Accumulation by Regulating Lipid Metabolism in High-Fat Diet-Fed Mice. J Med Food 2024; 27:922-930. [PMID: 39023772 DOI: 10.1089/jmf.2024.k.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
This study investigated the antiobesity effects of black ginger extract (BGE) in high-fat diet (HFD)-induced obese mice. Mice were divided into six groups: normal diet control (NC, AIN-93G normal diet), 60% HFD control (HFD), HFD containing metformin at 250 mg/kg b.w. (Met, positive control), and HFD containing BGE at 5, 10, or 20 mg/kg b.w. for 15 weeks. BGE administration significantly prevented HFD-induced increases in weight gain, organ weight, and adipose tissue mass. Furthermore, it resulted in decreased adipogenesis and lipogenesis-related factors, including phosphorylated mitogen-activated protein kinase, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding proteins, sterol regulatory element-binding protein 1, phosphorylated cAMP response element-binding protein, glucose-6-phosphate dehydrogenase, fatty acid synthase, dephosphorylated ATP-citrate lyase, dephosphorylated acetyl-CoA carboxylase, and lipoprotein lipase, in white adipose tissues. Moreover, BGE administration enhanced lipolysis in white adipose tissue, as evidenced by elevated levels of adipose triglyceride lipase, phosphorylated hormone-sensitive lipase, and protein kinase A, along with reduced levels of perilipin and phosphodiesterase 3B. BGE induced thermogenesis in brown adipose tissues, as reflected by the increased expression of AMP-activated protein kinase, uncoupling protein 1, and carnitine palmitoyltransferase 1 and decreased levels of fatty acid-binding protein 4. In conclusion, this study provides comprehensive evidence supporting the antiobesity effects of BGE, elucidating the underlying molecular mechanisms involved in preventing weight gain, suppressing adipogenesis, promoting lipolysis, and stimulating thermogenesis. These findings suggest the potential therapeutic utility of BGE in combating obesity and associated metabolic disorders (KHGASP-2023-034).
Collapse
Affiliation(s)
- Sun Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Inae Jeong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Namgil Kang
- R&D Division, Nutrione Co., Ltd., Seoul, Republic of Korea
| | - Minkyung Kim
- R&D Division, Nutrione Co., Ltd., Seoul, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Park GS, Shin J, Hong S, Saini RK, Gopal J, Oh JW. Evaluating the Diverse Anticancer Effects of Laos Kaempferia parviflora (Black Ginger) on Human Melanoma Cell Lines. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1371. [PMID: 39202650 PMCID: PMC11356165 DOI: 10.3390/medicina60081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Cancer has become a consistent concern globally and increasingly fatal. Malignant melanoma is a rising concern, with its increased mortality. Kaempferia parviflora Wall. ex Baker (K. parviflora (KP)), commonly known as black ginger, is well known for its medicinal contributions. For the first time, in the following study we investigated the antimelanoma potential of Laos KP extracts in human cell lines. KP extracts (KPE) in methanol, DCM, and ethyl acetate showed strong cell inhibition in both melanomas, with KPE-DCM being particularly effective in inhibiting melanoma cell migration, invasion, and proliferation by inducing cell cycle arrest and apoptosis, while KPE-Hexane exhibited a low cell inhibition rate and a more limited effect. KPE affected the increased expression of caspase-3, PARP andBax and the decreased expression of the BcL-2, Mu-2-related death-inducing gene (MUDENG, MuD) protein. Furthermore, KPE enhanced apoptotic cells in the absence and presence of the pancaspase inhibitor Z-VAD-FMK. Interestingly, these apoptotic cells were significantly suppressed by the caspase inhibitor. Moreover, elevated mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) levels, suggestive of KPE's mitochondrial-mediated apoptosis in melanoma cells, were also confirmed. KPE treatment increased MMP levels, and upregulated the generation of ROS in A375 cells but not in A2058 cells. However, pretreatment with an ROS scavenger (NAC) suppressed KPE-induced cell death and ROS generation. These results clearly pointed out KPE-induced mitochondrial-mediated apoptotic cell death as the mechanism behind the inhibition of the human melanoma cells. Future studies exploring the role of specific ROS sources and their interaction with mitochondrial dynamics could deepen the existing understanding on KPE-induced apoptosis.
Collapse
Affiliation(s)
- Gyun Seok Park
- Department of Bio-Resources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| | - Seongwoo Hong
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| | - Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea; (J.S.); (S.H.)
| |
Collapse
|
3
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Ding K, Jiang W, Zhangwang J, Wang Y, Zhang J, Lei M. The potential of traditional herbal active ingredients in the treatment of sarcopenia animal models: focus on therapeutic effects and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3483-3501. [PMID: 37526688 DOI: 10.1007/s00210-023-02639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Sarcopenia is a major global public health problem that harms individual physical function. In 2018, the European Working Group on Sarcopenia in the Elderly 2 classified sarcopenia into primary and secondary sarcopenia. However, information on the pathogenesis and effective treatment of primary and secondary sarcopenia is limited. Traditional herbal active ingredients have biological activities that promote skeletal muscle health, showing potential preventive and therapeutic effects on sarcopenia. Therefore, this narrative review aims to provide a comprehensive overview of global traditional herbal active ingredients' beneficial therapeutic effects and molecular mechanisms on sarcopenia-related animal models. For this purpose, we conducted a literature search in three databases, PubMed, Web of Science, and Embase, consistent with the review objectives. After the screening, 12 animal studies met the review themes. The review results showed that the pathological mechanisms in sarcopenia-related animal models include imbalanced protein metabolism, oxidative stress, inflammation, apoptosis, insulin resistance, endoplasmic reticulum stress, impaired mitochondrial biogenesis, and autophagy-lysosome system aggravation. Eleven traditional herbal active ingredients exerted positive anti-sarcopenic effects by ameliorating these pathological mechanisms. This narrative review will provide meaningful insight into future studies regarding traditional herbal active ingredients for treating sarcopenia.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juejue Zhangwang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
5
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Temviriyanukul P, Chansawhang A, Karinchai J, Phochantachinda S, Buranasinsup S, Inthachat W, Pitchakarn P, Chantong B. Kaempferia parviflora Extracts Protect Neural Stem Cells from Amyloid Peptide-Mediated Inflammation in Co-Culture Model with Microglia. Nutrients 2023; 15:nu15051098. [PMID: 36904098 PMCID: PMC10004790 DOI: 10.3390/nu15051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The existence of neuroinflammation and oxidative stress surrounding amyloid beta (Aβ) plaques, a hallmark of Alzheimer's disease (AD), has been demonstrated and may result in the activation of neuronal death and inhibition of neurogenesis. Therefore, dysregulation of neuroinflammation and oxidative stress is one possible therapeutic target for AD. Kaempferia parviflora Wall. ex Baker (KP), a member of the Zingiberaceae family, possesses health-promoting benefits including anti-oxidative stress and anti-inflammation in vitro and in vivo with a high level of safety; however, the role of KP in suppressing Aβ-mediated neuroinflammation and neuronal differentiation has not yet been investigated. The neuroprotective effects of KP extract against Aβ42 have been examined in both monoculture and co-culture systems of mouse neuroectodermal (NE-4C) stem cells and BV-2 microglia cells. Our results showed that fractions of KP extract containing 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone protected neural stem cells (both undifferentiated and differentiated) and microglia activation from Aβ42-induced neuroinflammation and oxidative stress in both monoculture and co-culture system of microglia and neuronal stem cells. Interestingly, KP extracts also prevented Aβ42-suppressed neurogenesis, possibly due to the contained methoxyflavone derivatives. Our data indicated the promising role of KP in treating AD through the suppression of neuroinflammation and oxidative stress induced by Aβ peptides.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.P.); (B.C.)
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: (P.P.); (B.C.)
| |
Collapse
|
7
|
Razak AM, Zakaria SNA, Abdul Sani NF, Ab Rani N, Hakimi NH, Mohd Said M, Tan JK, Gan HK, Mad Nordin MF, Makpol S. A subcritical water extract of soil grown Zingiber officinale Roscoe: Comparative analysis of antioxidant and anti-inflammatory effects and evaluation of bioactive metabolites. Front Pharmacol 2023; 14:1006265. [PMID: 36843947 PMCID: PMC9945201 DOI: 10.3389/fphar.2023.1006265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Ginger (Zingiber officinale Roscoe) can scavenge free radicals, which cause oxidative damage and inflamm-ageing. This study aimed to evaluate the antioxidant and anti-inflammatory effects of soil ginger's sub-critical water extracts (SWE) on different ages of Sprague Dawley (SD) rats. The antioxidant properties and yield of SWE of soil- and soilless-grown ginger (soil ginger and soilless ginger will be used throughout the passage) were compared and evaluated. Methods: Three (young), nine (adult), and twenty-one (old) months old SD rats were subjected to oral gavage treatments with either distilled water or the SWE of soil ginger at a concentration of 200 mg/kg body weight (BW) for three months. Results: Soil ginger was found to yield 46% more extract than soilless ginger. While [6]-shogaol was more prevalent in soilless ginger, and [6]-gingerol concentration was higher in soil ginger (p < 0.05). Interestingly, soil ginger exhibited higher antioxidant activities than soilless ginger by using 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay. With ginger treatment, a reduced levels of tumour necrosis factor-α (TNF-α) and C-reactive protein (CRP) but not interleukin-6 (IL-6) were observed in young rats. In all ages of SD rats, ginger treatment boosted catalase activity while lowering malondialdehyde (MDA). Reduction of urine 15-isoprostane F2t in young rats, creatine kinase-MM (CK-MM) in adult and old rats and lipid peroxidation (LPO) in young and adult rats were also observed. Discussion: The findings confirmed that the SWE of both soil and soilless grown ginger possessed antioxidant activities. Soil ginger produced a higher yield of extracts with a more prominent antioxidant activity. The SWE of soil ginger treatment on the different ages of SD rats ameliorates oxidative stress and inflammation responses. This could serve as the basis for developing a nutraceutical that can be used as a therapeutic intervention for ageing-related diseases.
Collapse
Affiliation(s)
- Azraul Mumtazah Razak
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia,Faculty of Health Sciences, University College of MAIWP International, Kuala Lumpur, Malaysia
| | - Siti Nor Asyikin Zakaria
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Fathiah Abdul Sani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mazlina Mohd Said
- Centre of Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Suzana Makpol,
| |
Collapse
|
8
|
Huang J, Tagawa T, Ma S, Suzuki K. Black Ginger ( Kaempferia parviflora) Extract Enhances Endurance Capacity by Improving Energy Metabolism and Substrate Utilization in Mice. Nutrients 2022; 14:3845. [PMID: 36145222 PMCID: PMC9501856 DOI: 10.3390/nu14183845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Black ginger (Kaempferia parviflora) extract (KPE), extracted from KP, a member of the ginger family that grows in Thailand, has a good promotion effect on cellular energy metabolism and therefore has been used to enhance exercise performance and treatment of obesity in previous studies. However, the effect of single-dose administration of KPE on endurance capacity has not been thoroughly studied, and whether the positive effect of KPE on cellular energy metabolism can have a positive effect on exercise capacity in a single dose is unknown. In the present study, we used a mouse model to study the effects of acute KPE administration 1 h before exercise on endurance capacity and the underlying mechanisms. The purpose of our study was to determine whether a single administration of KPE could affect endurance performance in mice and whether the effect was produced through a pro-cellular energy metabolic pathway. We found that a single administration of KPE (62.5 mg/kg·bodyweight) can significantly prolong the exercise time to exhaustion. By measuring the mRNA expression of Hk2, Slc2a4 (Glut4), Mct1, Ldh, Cd36, Cpt1β, Cpt2, Lpl, Pnpla2 (Atgl), Aco, Acadm (Mcad), Hadh, Acacb (Acc2), Mlycd (Mcd), Pparg, Ppargc1a (Pgc-1α), Tfam, Gp, Gs, Pfkm, Pck1 (Pepck), G6pc (G6pase), Cs, and Pfkl in skeletal muscle and liver, we found that acute high-concentration KPE administration significantly changed the soleus muscle gene expression levels (p < 0.05) related to lipid, lactate, and glycogen metabolism and mitochondrial function. In gastrocnemius muscle and liver, glycogen metabolism-related gene expression is significantly changed by a single-dose administration of KPE. These results suggest that KPE has the potential to improve endurance capacity by enhancing energy metabolism and substrate utilization in muscles and liver.
Collapse
Affiliation(s)
- Jiapeng Huang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Takashi Tagawa
- Maruzen Pharmaceuticals Co., Ltd., Hiroshima 7293102, Japan
| | - Sihui Ma
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| |
Collapse
|
9
|
Optimization of Ultrasound-Assisted Extraction of Yields and Total Methoxyflavone Contents from Kaempferia parviflora Rhizomes. Molecules 2022; 27:molecules27134162. [PMID: 35807408 PMCID: PMC9268270 DOI: 10.3390/molecules27134162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The major bioactive components of Kaempferia parviflora (KP) rhizomes, 3,5,7,3′,4′-pentamethoxyflavone (PMF), 5,7-dimethoxyflavone (DMF), and 5,7,4′-trimethoxyflavone (TMF), were chosen as the quantitative and qualitative markers for this plant material. In order to extract bioactive components (total methoxyflavones) from KP rhizomes, ultrasound-assisted extraction (UAE) was proposed as part of this study. Plackett–Burman design (PBD) and Box–Behnken design (BBD) were utilized to optimize the effects of UAE on extraction yields and total methoxyflavone contents in KP rhizomes. First, PBD was utilized to determine the effect of five independent variables on total yields and total methoxyflavone contents. The results indicated that the concentration of the extracting solvent (ethanol), the extraction time, and the ratio of solvent to solid were significant independent terms. Subsequently, BBD with three-level factorial experiments was used to optimize the crucial variables. It was discovered that the concentration of ethanol was the most influential variable on yields and total methoxyflavone contents. Optimum conditions for extraction yield were ethanol concentration (54.24% v/v), extraction time (25.25 min), and solvent-to-solid ratio (49.63 mL/g), while optimum conditions for total methoxyflavone content were ethanol concentration (95.00% v/v), extraction time (15.99 min), and solvent-to-solid ratio (50.00 mL/g). The relationship between the experimental and theoretical values was perfect, which proved that the regression models used were correct and that PBD and BBD were used to optimize the conditions in the UAE to obtain the highest yield and total methoxyflavone content in the KP rhizomes.
Collapse
|
10
|
Hashiguchi A, San Thawtar M, Duangsodsri T, Kusano M, Watanabe KN. Biofunctional properties and plant physiology of Kaempferia spp.: Status and trends. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Improvement of Damage in Human Dermal Fibroblasts by 3,5,7-Trimethoxyflavone from Black Ginger ( Kaempferia parviflora). Antioxidants (Basel) 2022; 11:antiox11020425. [PMID: 35204307 PMCID: PMC8869600 DOI: 10.3390/antiox11020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species (ROS) are generated during intrinsic (chronological aging) and extrinsic (photoaging) skin aging. Therefore, antioxidants that inhibit ROS production may be involved in delaying skin aging. In this study, we investigated the potential effects of compounds isolated from black ginger, Kaempferia parviflora, a traditional medicinal plant, on normal human dermal fibroblasts in the context of inflammation and oxidative stress. The isolated compounds were structurally characterized as 5-hydroxy-7-methoxyflavone (1), 3,7-dimethoxy-5-hydroxyflavone (2), 5-hydroxy-3,7,3,4-tetramethoxyflavone (3), 7,4-dimethylapigenin (4), 3,7,4-trimethylkaempferol (5), and 3,5,7-trimethoxyflavone (6), using nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC/MS) analyses. These flavonoids were first evaluated for their ability to suppress extracellular matrix degradation in normal human dermal fibroblasts. Of these, 3,5,7-trimethoxyflavone (6) significantly inhibited the tumor necrosis factor (TNF)-α-induced high expression and secretion of matrix metalloproteinase (MMP)-1 by cells. We further found that 3,5,7-trimethoxyflavone suppressed the excessive increase in ROS, mitogen-activated protein kinases (MAPKs), Akt, and cyclooxygenase-2 (COX-2)and increased heme oxygenase (HO)-1 expression. The expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and IL-8, was also suppressed by 3,5,7-trimethoxyflavone (6). Taken together, our results indicate that 3,5,7-trimethoxyflavone (6) isolated from K. parviflora is a potential candidate for ameliorating skin damage.
Collapse
|
12
|
Aoki K, Konno M, Tokinoya K, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H. Long-Term Habitual Exercise and Combination of β-Hydroxy-β-Methylbutyrate plus Black Ginger Alter the Autophagy and Mitochondria Related Genes in SAMP8 Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:39-46. [PMID: 35228494 DOI: 10.3177/jnsv.68.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Muscle mass and strength decrease with aging; however, habitual exercise can maintain muscle health. β-Hydroxy-β-methyl butyrate calcium (HMB) and black ginger (BG) improve muscle protein metabolism and energy production. Combining these two molecules, which have similar effects, may have a synergistic effect. Senescence-accelerated mouse-prone 8 (SAMP8) is a useful model of muscle aging. Therefore, we explored how the combination of habitual exercise, HMB, and BG affected muscle aging. We used 28-wk-old (28w) SAMP8 mice divided into six groups: 28 wk (28w), 44 wk (44w, Con), exercise (Ex), Ex+BG, Ex+HMB, and Ex+BG+HMB (Ex+Comb). Mice were required to run on a treadmill for 16 wk for 5 d per week. In 28w and 44w mice, grip strength tests and dissection were conducted. Muscle weight was measured, and qPCR and immunoblotting were conducted. Muscle mass and strength were declined in the 44w group. Exercise with HMB or BG alone had no effect, whereas muscle mass and strength were augmented in the Ex+Comb group. Similarly, levels of mitochondrial function- and biogenesis-related genes were increased. Autophagy-related protein (Atg3, 7, 16L1 and Beclin1) were altered in the Ex+Comb group. These results suggest that Ex+Comb affects autophagy. Overall, the combination of habitual exercise and HMB+BG may enhance muscle mass and strength by affecting the mitochondrial and autophagy systems in SAMP8.
Collapse
Affiliation(s)
- Kai Aoki
- Faculty of Medicine, University of Tsukuba
| | - Masaki Konno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Katsuyuki Tokinoya
- Japan Society for the Promotion of Science
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| | - Katsunari Honda
- School of Physical Education, Health and Sport Sciences, University of Tsukuba
| | - Takuya Abe
- Market and Product Development Department, Zenyaku Hanbai Co., Ltd
| | - Takeshi Nagata
- Pharmacology, Department of Drug Discovery, R&D Center. Zenyaku Kogyo Co., Ltd
| | | | | | | | - Hajime Ohmori
- Faculty of Health and Sport Sciences, University of Tsukuba
| |
Collapse
|
13
|
Inhibition of CYP3A-mediated Midazolam Metabolism by <i>Kaempferia Parviflora</i>. Food Saf (Tokyo) 2022; 10:32-41. [PMID: 35510070 PMCID: PMC9008879 DOI: 10.14252/foodsafetyfscj.d-21-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Kaempferia parviflora (KP) extract has recently attracted attention in Japan as a dietary supplement; however, there is little information regarding food-drug interactions (FDIs). The current study was conducted to clarify the FDI of KP extract via inhibition of cytochrome P450 3A (CYP3A), a typical drug-metabolizing enzyme. The inhibitory effects of KP extract and its main ingredients, 5,7-dimethoxyflavone (5,7-DMF) and 3,5,7,3’,4’-pentamethoxyflavone (3,5,7,3’,4’-PMF), on CYP3A-mediated midazolam 1’-hydroxylation (MDZ 1’-OH) activity were investigated in human liver microsomes. In addition, the effect of a single oral treatment with KP extract (135 mg/kg) on oral MDZ (15 mg/kg) metabolism was investigated in rats. Serum MDZ concentration was analyzed and pharmacokinetic parameters were compared with the control group. KP extract competitively inhibited MDZ 1’-OH activity with an inhibition constant value of 78.14 µg/ml, which was lower than the estimated concentration in the small intestine after ingestion. Furthermore, KP extract, 5,7-DMF, and 3,5,7,3’,4’-PMF inhibited the activity in a time-, NADPH-, and concentration-dependent manner. In vivo study showed that administration of KP extract to rats 2 h before MDZ significantly increased the area under the serum concentration-time curve and the maximum concentration of MDZ significantly by 2.3- and 1.9- fold, respectively (p < 0.05). Conversely, administration of MDZ 18 h after KP extract treatment displayed a weaker effect. These results suggest that KP extract competitively inhibits CYP3A-mediated MDZ metabolism, and that this inhibition may be time-dependent but not irreversible. This work suggests an FDI through CYP3A inhibition by KP extract.
Collapse
|
14
|
Al-Rawaf HA, Gabr SA, Alghadir AH. The Potential Role of Circulating MicroRNAs in Male Rat Infertility Treated with Kaempferia parviflora. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9622494. [PMID: 34956389 PMCID: PMC8709766 DOI: 10.1155/2021/9622494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Therapeutic strategies based on herbal plants and diets containing sufficient amounts of antioxidants and essential vitamins are very important factors in treating reproduction and male infertility worldwide. Thus, the aim of this study was to investigate the potential effects of Kaempferia parviflora (KP) on the role of some microRNAs in treated and nontreated infertile rats. In addition, the correlation of expressed microRNAs with sperm count, sperm motility, and sperm viability was identified. The probable use of these microRNAs as a diagnostic marker for predicting the clinical response of infertility to the treatment with KP was also achieved. METHODS In the present study, the potential effects of Kaempferia parviflora (KP) at different doses (140, 280, and 420 mg/kg) for six weeks on male rats with subinfertility were explored. In addition, the effect of KP on the expression of circulating microRNAs and its correlation with the parameters of sexual infertility was identified by performing both in vitro and in vivo assays. In vitro antioxidant activity, sperm functional analysis, serum testosterone, and expression of circulating microRNAs were conducted using colorimetric, ELISA, and real-time RT-PCR analysis, respectively. RESULTS Kaempferia parviflora (KP) at nontoxic doses of 140-420 mg/kg/day for six weeks significantly improved serum testosterone and epididymal sperm parameters (sperm count, motility, and sperm viability), increased testicular weight, and provided a reduction in the percentage of abnormal spermatozoon in infertile male rats. The expression of miR-328 and miR-19b significantly decreased, and miR-34 significantly increased in infertile rats treated with KP compared to infertile nontreated rats. After six weeks of KP therapy, the change in the expression levels of miRNAs was correlated positively with higher levels of serum testosterone and the measures of epididymal sperm parameters. The respective area under the receiver operating characteristic curve (AUC-ROC) was applied to predict the potential use of miR-328, miR-19b, and miR-34 in the diagnosis of male infertility in treated and nontreated infertile male rats. The data showed that AUC cutoff values of 0.91 for miR-328, 0.89 for miR-19b, and 0.86 for miR34 were the best estimated values for the clinical diagnosis of male rats with infertility. In rats treated with KP for six weeks, AUC cutoff values of 0.76 for miR-328, 0.79 for miR-19b, and 0.81 for miR-34 were the best cutoff values reported for the clinical response of infertility to KP therapy after six weeks. CONCLUSIONS In this study, the improvement of male infertility might proceed via antioxidant and antiapoptotic pathways, which significantly improve spermatogenesis and aphrodisiac properties of males. In addition, the expression of miRNAs, miR-328, miR-34, and miR-19b, in KP-treated and nontreated infertile rats significantly correlated with increased serum testosterone levels and epididymal sperm parameters as well. MicroRNAs, miR-328, miR-34, and miR-19b, might be related to oxidative and apoptotic pathways that proceeded in spermatogenesis. Thus, the use of miRNAs could have a role as diagnostic, therapeutic, and predictive markers for assessing the clinical response of Kaempferia parviflora treatment for six weeks. This may have potential applications in the therapeutic strategies based on herbal plants for male infertility. However, in subsequent studies, the genetic regulatory mechanisms of the expressed miRNAs should be fully characterized.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Takuathung MN, Potikanond S, Sookkhee S, Mungkornasawakul P, Jearanaikulvanich T, Chinda K, Wikan N, Nimlamool W. Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed Pharmacother 2021; 143:112229. [PMID: 34649355 DOI: 10.1016/j.biopha.2021.112229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022] Open
Abstract
Kaempferia parviflora (KP) has been used as folk medicine for curing various conditions, including anti-inflammatory diseases. However, anti-psoriatic effects in an aspect of suppression of NF-κB activation have not been explored. Therefore, our current study aimed to elucidate the anti-inflammation of KP in lipopolysaccharide (LPS)-induced RAW264.7 cells and anti-psoriatic effects of KP in cytokine-induced human keratinocytes, HaCaT cells. We discovered that KP extract significantly suppressed LPS-induced inflammation at both gene expression and protein production. Specifically, dramatic reduction of nitric oxide (NO) was explored by using Griess method. Consistently, data from RT-qPCR, ELISA, and western blot analysis confirmed that crucial inflammatory and psoriatic markers including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-17, IL-22, and IL-23 were significantly decreased by the action of KP. These events were associated with the results from immunofluorescence study and western blot analysis where the activation of NF-κB upon LPS stimulation was clearly inhibited by KP through its ability to suppress IκB-α degradation resulting in inhibition of NF-κB nuclear translocation. Furthermore, KP extract significantly inhibited LPS-stimulated phosphorylation of ERK1/2, JNK, and p38 in a dose-dependent manner, along with inhibition of ERK1/2 activation in both TNF-α- and EGF-induced HaCaT cells. Interestingly, HaCaT cells exposed to 15 μg/mL of KP also exhibited significant decrease of cell migration and proliferation. Our results revealed that KP extract has a potential to be developed as a promising agent for treating inflammation and psoriasis, in part through targeting the proliferation and the NF-κB pathways.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Environmental Science Program, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kittinan Chinda
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
16
|
Phung HM, Lee S, Hong S, Lee S, Jung K, Kang KS. Protective Effect of Polymethoxyflavones Isolated from Kaempferia parviflora against TNF-α-Induced Human Dermal Fibroblast Damage. Antioxidants (Basel) 2021; 10:1609. [PMID: 34679744 PMCID: PMC8533329 DOI: 10.3390/antiox10101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Similar to other organs, the skin undergoes a natural aging process. Moreover, constant direct exposure to environmental stresses, including ultraviolet irradiation, causes the signs of skin aging to appear rather early. Reactive oxygen species (ROS) and inflammatory responses accelerate skin damage in extrinsic aging. In this study, we aimed to investigate the skin protective effects of polymethoxyflavones found in Kaempferia parviflora against oxidative stress and inflammation-induced damage in human dermal fibroblasts (HDFs) stimulated by tumor necrosis factor-α (TNF-α). The experimental data identified 5,7,4' trimethoxyflavone (TMF) as the most potent constituent in preventing TNF-α-induced HDF damage among the tested compounds and it was not only effective in inhibiting matrix metalloproteinase-1 (MMP-1) production but also in stimulating collagen, type I, and alpha 1 (COLIA1) expression. TMF suppressed TNF-α-stimulated generation of ROS and pro-inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin (IL)-1β, and IL-6 in HDFs. TMF also inhibited the pathways regulating fibroblast damage, including mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor-kappa B (NF-κB). In conclusion, TMF may be a potential agent for preventing skin aging and other dermatological disorders associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hung Manh Phung
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Sukyung Hong
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Sojung Lee
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Kiwon Jung
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
17
|
Therapeutic Promises of Medicinal Plants in Bangladesh and Their Bioactive Compounds against Ulcers and Inflammatory Diseases. PLANTS 2021; 10:plants10071348. [PMID: 34371551 PMCID: PMC8309353 DOI: 10.3390/plants10071348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
When functioning properly, the stomach is the center of both physical and mental satisfaction. Gastrointestinal disorders, or malfunctioning of the stomach, due to infections caused by various biological entities and physiochemical abnormalities, are now widespread, with most of the diseases being inflammatory, which, depending on the position and degree of inflammation, have different names such as peptic or gastric ulcers, irritable bowel diseases, ulcerative colitis, and so on. While many synthetic drugs, such as non-steroidal anti-inflammatory drugs, are now extensively used to treat these diseases, their harmful and long-term side effects cannot be ignored. To treat these diseases safely and successfully, different potent medicinal plants and their active components are considered game-changers. In consideration of this, the present review aimed to reveal a general and comprehensive updated overview of the anti-ulcer and anti-inflammatory activities of medicinal plants. To emphasize the efficacy of the medicinal plants, various bioactive compounds from the plant extract, their experimental animal models, and clinical trials are depicted.
Collapse
|
18
|
Lee DY, Chun YS, Kim JK, Lee JO, Ku SK, Shim SM. Curcumin Attenuates Sarcopenia in Chronic Forced Exercise Executed Aged Mice by Regulating Muscle Degradation and Protein Synthesis with Antioxidant and Anti-inflammatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6214-6228. [PMID: 33950680 DOI: 10.1021/acs.jafc.1c00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of the current study is to investigate the effects of spray dry powders of Curcuma longa containing 40% curcumin (CM-SD), as a new aqueous curcumin formula, on sarcopenia in chronic forced exercise executed 10 month old ICR mice. CM-SD (80 and 40 mg/kg) increased calf thicknesses and strengths, total body and calf protein amounts, and muscle weights in both gastrocnemius and soleus muscles. mRNA expressions regarding muscle growth and protein synthesis were induced, while those of muscle degradation significantly declined in CM-SD treatment. CM-SD decreased serum biochemical markers, lipid peroxidation, and reactive oxygen species and increased endogenous antioxidants and enzyme activities. It also reduced immunoreactive myofibers for apoptosis and oxidative stress markers but increased ATPase in myofibers. These results suggest that CM-SD can be an adjunct therapy to exercise-based remedy that prevents muscle disorders including sarcopenia by anti-apoptosis, anti-inflammation, and antioxidation-mediated modulation of gene expressions related to muscle degradation and protein synthesis.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yoon-Seok Chun
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Jong-Kyu Kim
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Jeong-Ok Lee
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
19
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
20
|
Kim C, Hwang JK. The 5,7-Dimethoxyflavone Suppresses Sarcopenia by Regulating Protein Turnover and Mitochondria Biogenesis-Related Pathways. Nutrients 2020; 12:nu12041079. [PMID: 32295051 PMCID: PMC7230989 DOI: 10.3390/nu12041079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is a muscle disease featured by the loss of muscle mass and dysfunction with advancing age. The 5,7-dimethoxyflavone (DMF), a major flavone found in Kaempferia parviflora, has biological activities, including anti-diabetes, anti-obesity, and anti-inflammation. However, its anti-sarcopenic effect remains to be elucidated. This current study investigated the inhibitory activity of DMF on sarcopenia. Eighteen-month-old mice were orally administered DMF at the dose of 25 mg·kg−1·day−1 or 50 mg·kg−1·day−1 for 8 weeks. DMF not only stimulated grip strength and exercise endurance but also increased muscle mass and volume. Besides, DMF stimulated the phosphatidylinositol 3-kinase-Akt pathway, consequently activating the mammalian target of rapamycin-eukaryotic initiation factor 4E-binding protein 1-70-kDa ribosomal protein S6 kinase pathway for protein synthesis. DMF reduced the mRNA expression of E3 ubiquitin ligase- and autophagy-lysosomal-related genes involved in proteolysis via the phosphorylation of Forkhead box O3. DMF upregulated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, nuclear respiratory factor 1, and mitochondrial transcription factor A along with the increase of relative mitochondrial DNA content. DMF alleviated inflammatory responses by reducing the tumor necrosis factor-alpha and interleukin-6 serum and mRNA levels. Collectively, DMF can be used as a natural agent to inhibit sarcopenia via improving protein turnover and mitochondria function.
Collapse
|
21
|
Kariyil B, Devi A, Raj NM, Akhil GH, Balakrishnan-Nair D. Immunomodulatory effect of Kaempferia parviflora against cyclophosphamide-induced immunosuppression in swiss albino mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_233_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
23
|
Hayashi E, Sowa-Osako J, Fukai K, Natsumi A, Yagami A, Sato N, Shimojo N, Nakamura M, Matsunaga K, Tsuruta D. Case of anaphylaxis caused by black ginger in a dietary supplement. J Dermatol 2019; 46:e56-e57. [PMID: 30152038 DOI: 10.1111/1346-8138.14592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eriko Hayashi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Junko Sowa-Osako
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuyoshi Fukai
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Osaka City General Hospital, Osaka, Japan
| | - Aki Natsumi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akiko Yagami
- Department of Allergology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nayu Sato
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Toyoake, Japan
- Department of General Research and Development Institute, Hoyu Co., Ltd, Nagakute, Japan
| | - Naoshi Shimojo
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Toyoake, Japan
- Department of General Research and Development Institute, Hoyu Co., Ltd, Nagakute, Japan
| | - Masashi Nakamura
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Toyoake, Japan
- Department of General Research and Development Institute, Hoyu Co., Ltd, Nagakute, Japan
| | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Toyoake, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
24
|
Kaempferia parviflora and Its Methoxyflavones: Chemistry and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4057456. [PMID: 30643531 PMCID: PMC6311295 DOI: 10.1155/2018/4057456] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Kaempferia parviflora (KP), a health-promoting herb, has been traditionally used for treating a variety of diseases. Pharmacological studies have claimed the various benefits from KP and its main effective methoxyflavones, including cellular metabolism-regulating activity, anticancer activity, vascular relaxation and cardioprotective activity, sexual enhancing activity, neuroprotective activity, antiallergic, anti-inflammatory, and antioxidative activity, antiosteoarthritis activity, antimicroorganism activity, and transdermal permeable activity. These might be associated with increased mitochondrial functions and activated cGMP-NO signaling pathway. However, the underlying molecular mechanisms of KP and its methoxyflavones are still under investigation. The clinical applications of KP and its methoxyflavones may be limited due to their low bioavailability. But promising strategies are on the way. This review will comprehensively discuss the biological activities of KP and its methoxyflavones.
Collapse
|
25
|
Jin S, Lee MY. Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, Sebostatic and Anti- Propionibacterium acnes Activity. Int J Mol Sci 2018; 19:ijms19113457. [PMID: 30400322 PMCID: PMC6274695 DOI: 10.3390/ijms19113457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Kaempferia parviflora, referred to as black ginger, has traditionally been used as a health-promoting alternative medicine. In this study, we examined the anti-inflammatory, sebostatic, and anti-Propionibacterium acnes activities of K. parviflora extract. The extract significantly down-regulated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) level. Moreover, the phosphorylation of IĸBα and nuclear factor-kappa B (NF-κB), and the enhanced nuclear translocation of NF-κB p65 in lipopolysaccharide-stimulated murine macrophage-like cell line (RAW 264.7) cells were markedly decreased by the extract. Notably, the main component of K. parviflora, 5,7-dimethoxyflavone, also modulated the expression of iNOS and NF-κB signal molecules in P. acnes-stimulated human keratinocyte (HaCaT) cells. Additionally, K. parviflora extract inhibited the lipogenesis of sebocytes, as evidenced by a reduced level of triglyceride and lipid accumulation in the sebocytes. The sebostatic effect was also confirmed by a reduced expression of peroxisome proliferation-activating receptors (PPAR-γ) and oil-red O staining in sebocytes. Taken together, this study suggests for the first time that K. parviflora extract could be developed as a potential natural anti-acne agent with anti-inflammatory, sebostatic, and anti-P. acnes activity.
Collapse
Affiliation(s)
- Solee Jin
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
- Department of Medical Biotechnology, College of Medical Science, SoonChunHyang University, 22 SoonChunHyang-ro, Asan, Chungnam 31538, Korea.
| |
Collapse
|
26
|
Standardized Kaempferia parviflora Wall. ex Baker (Zingiberaceae) Extract Inhibits Fat Accumulation and Muscle Atrophy in ob/ob Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8161042. [PMID: 29997677 PMCID: PMC5994587 DOI: 10.1155/2018/8161042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Obesity, a metabolic disorder caused by an imbalance between energy intake and energy expenditure, is accompanied with fat accumulation and skeletal muscle atrophy. Kaempferia parviflora Wall. ex Baker, also called black ginger, is known to increase physical fitness performance and improve energy metabolism. In this study, we investigated whether Kaempferia parviflora extract (KPE) alleviates both obesity and muscle atrophy using ob/ob mice. Wild-type C57BL/6J and ob/ob mice were provided with a normal diet ad libitum, and ob/ob mice were orally given KPE at a dose of 100 mg/kg/day or 200 mg/kg/day for eight weeks. KPE significantly decreased body weight, fat volume, and fat weight without affecting appetite. It inhibited the expression of adipogenic transcription factors and lipogenic enzymes by upregulating AMP-activated protein kinase (AMPK) in epididymal fat. In contrast, it markedly increased the muscle fiber size, muscle volume, and muscle mass, resulting in the enhancement of muscle function, such as exercise endurance and grip strength. On the molecular level, it activated the phosphatidylinositol 3 kinase (PI3K)/Akt pathway, a key regulator in protein synthesis in skeletal muscle. KPE could be a promising material to alleviate obesity by inhibiting adipogenesis, lipogenesis, and muscle atrophy.
Collapse
|
27
|
Stein RA, Schmid K, Bolivar J, Swick AG, Joyal SV, Hirsh SP. Kaempferia parviflora ethanol extract improves self-assessed sexual health in men: a pilot study. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:249-254. [PMID: 29880257 DOI: 10.1016/j.joim.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sexual health positively correlates with overall wellbeing. Existing therapeutics to enhance male sexual health are limited by factors that include responsiveness, adherence and adverse effects. As the population ages, safe and effective interventions that preserve male sexual function are needed. Published research suggests that various preparations of Kaempferia parviflora, a plant in the Zingiberaceae (ginger) family, support cardiovascular health and may ameliorate erectile function. OBJECTIVE The aim of this study was to examine the effects of KaempMax™, an ethanol extract of the K. parviflora rhizome, on erectile function in healthy middle-aged and older men. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS We conducted an open-label, one-arm study on 14 generally healthy males aged 50-68 years with self-reported mild erectile dysfunction, who were not using prescription treatments. Participants took 100 mg KaempMax™ daily for 30 days. MAIN OUTCOME MEASURES Evaluations were conducted at baseline and on the final study assessment. Primary efficacy analyses included the International Index of Erectile Function (IIEF); secondary efficacy analyses included the Global Assessment Question about erectile function. RESULTS Thirteen participants completed the 30-day study. Supplementation with KaempMax™ resulted in statistically significant improvements in erectile function, intercourse satisfaction and total scores on the IIEF questionnaire. KaempMax™ was well tolerated and exhibited an excellent safety profile. CONCLUSION Our results suggest that KaempMax™ may improve erectile function in healthy middle-aged and older men. While the effects were not as pronounced as what might be seen with prescription medication, most participants found them satisfactory. Additional, longer and placebo-controlled clinical trials will be needed. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT03389867.
Collapse
Affiliation(s)
- Richard A Stein
- Life Extension, 3600 West Commercial Blvd, Fort Lauderdale, FL 33309, USA.
| | - Kira Schmid
- Life Extension, 3600 West Commercial Blvd, Fort Lauderdale, FL 33309, USA
| | - Jowell Bolivar
- Life Extension, 3600 West Commercial Blvd, Fort Lauderdale, FL 33309, USA
| | - Andrew G Swick
- Life Extension, 3600 West Commercial Blvd, Fort Lauderdale, FL 33309, USA
| | - Steven V Joyal
- Life Extension, 3600 West Commercial Blvd, Fort Lauderdale, FL 33309, USA
| | - Steven P Hirsh
- Life Extension Clinical Research, Inc., 5990 North Federal Highway, Fort Lauderdale, FL 33308, USA
| |
Collapse
|
28
|
Elhennawy MG, Lin HS. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether. Eur J Pharm Sci 2018; 118:96-102. [PMID: 29574080 DOI: 10.1016/j.ejps.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT0→last), higher dose-normalized maximal plasma concentration (Cmax/Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger.
Collapse
Affiliation(s)
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Ochiai W, Kobayashi H, Kitaoka S, Kashiwada M, Koyama Y, Nakaishi S, Nagai T, Aburada M, Sugiyama K. Effect of the active ingredient of Kaempferia parviflora, 5,7-dimethoxyflavone, on the pharmacokinetics of midazolam. J Nat Med 2018; 72:607-614. [PMID: 29550915 DOI: 10.1007/s11418-018-1184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
Abstract
5,7-Dimethoxyflavone (5,7-DMF), one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. On the other hand, in vitro studies have reported that it directly inhibits the drug metabolizing enzyme family cytochrome P450 (CYP) 3As. In this study, its safety was evaluated from a pharmacokinetic point of view, based on daily ingestion of 5,7-DMF. Midazolam, a substrate of CYP3As, was orally administered to mice treated with 5,7-DMF for 10 days, and its pharmacokinetic properties were investigated. In the group administered 5,7-DMF, the area under the curve (AUC) of midazolam increased by 130% and its biological half-life was extended by approximately 100 min compared to the control group. Compared to the control group, 5,7-DMF markedly decreased the expression of CYP3A11 and CYP3A25 in the liver. These results suggest that continued ingestion of 5,7-DMF decreases the expression of CYP3As in the liver, consequently increasing the blood concentrations of drugs metabolized by CYP3As.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Hiroko Kobayashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mayumi Kashiwada
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saho Nakaishi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomomi Nagai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masaki Aburada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kiyoshi Sugiyama
- Department of Functional Molecule, Kinetics Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
30
|
Kim MB, Kim T, Kim C, Hwang JK. Standardized Kaempferia parviflora Extract Enhances Exercise Performance Through Activation of Mitochondrial Biogenesis. J Med Food 2017; 21:30-38. [PMID: 29125913 DOI: 10.1089/jmf.2017.3989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exercise enhances mitochondrial biogenesis in skeletal muscle. Increased mitochondrial function and content can contribute to the improvement in skeletal muscle function and the benefits of exercise by increasing the response to energy demands. The effect of standardized Kaempferia parviflora extract (KPE) on exercise performance was accessed in L6 myotubes and C57BL/6J mice. KPE significantly activated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and increased mitochondrial density in L6 myotubes. KPE also upregulated the expression of transcription factors for mitochondrial biogenesis (estrogen-related receptor-α [ERRα], nuclear respiratory factor-1 [NRF-1], and mitochondrial transcription factor A [Tfam]) through activation of PGC-1α in L6 myotubes. In vivo models including normal diet mice and high-fat diet obese mice showed that KPE effectively enhanced running endurance and increased the skeletal muscle weight/body weight ratio. Furthermore, these observations were associated with a significant upregulation of mitochondrial biogenesis regulatory genes in skeletal muscle tissue. KPE enhanced the protein expression of the sirtuin 1 (SIRT1)/adenosine monophosphate (AMP)-activated protein kinase (AMPK)/PGC-1α/peroxisome proliferator-activated receptor-δ (PPARδ) signaling pathway components in vitro and in vivo, acting as an exercise metabolism regulator. These results suggest that KPE has the potential to enhance exercise performance through mitochondrial biogenesis and the SIRT1/AMPK/PGC-1α/PPARδ signaling pathways.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, Korea
| | - Taeyoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, Korea
| |
Collapse
|
31
|
Kobayashi H, Suzuki R, Sato K, Ogami T, Tomozawa H, Tsubata M, Ichinose K, Aburada M, Ochiai W, Sugiyama K, Shimada T. Effect of Kaempferia parviflora extract on knee osteoarthritis. J Nat Med 2017; 72:136-144. [PMID: 28823024 DOI: 10.1007/s11418-017-1121-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023]
Abstract
Knee osteoarthritis (OA) is becoming more prevalent worldwide due to increases in the numbers of elderly and obese patients. Currently, pharmaceutical medicines used for the treatment of OA are for symptomatic therapy and therefore new therapeutic agents are needed. Kaempferia parviflora (KP) is a plant growing naturally in Southeast Asia and has various pharmacological effects including an anti-inflammatory effect, but no effect on OA has yet been reported. We therefore conducted a search for the effects KP and the active components of KP extract (KPE) exert on OA as well as its mechanism of action. Results from a study of KPE using the monoiodoacetic acid rat OA model revealed that KPE reduced the pain threshold and severity of osteoarthritic cartilage lesions. The mechanism of action and active components were then investigated using IL-1β-treated human knee-derived chondrocytes. KPE, as well as 5,7-dimethoxyflavone and 5,7,4'-trimethoxyflavone, which are key constituents of KPE and highly absorbable into the body, reduced the expression of matrix metalloproteinases (MMPs), which are the main extracellular matrix enzymes that degrade collagen within cartilage. As mentioned above, KPE acted to suppress OA and 5,7-dimethoxyflavone and 5,7,4'-trimethoxyflavone were shown to be involved as part of KPE's mechanism that inhibits MMPs.
Collapse
Affiliation(s)
- Hiroko Kobayashi
- Graduate School of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Ryo Suzuki
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kei Sato
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7-28 Yayoigaoka, Tosu-shi, Saga, 841-0005, Japan
| | - Takatoshi Ogami
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7-28 Yayoigaoka, Tosu-shi, Saga, 841-0005, Japan
| | - Hiroshi Tomozawa
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7-28 Yayoigaoka, Tosu-shi, Saga, 841-0005, Japan
| | - Masahito Tsubata
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7-28 Yayoigaoka, Tosu-shi, Saga, 841-0005, Japan
| | - Koji Ichinose
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Masaki Aburada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Wataru Ochiai
- Graduate School of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Kiyoshi Sugiyama
- Graduate School of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
32
|
Jacob J, Gopi S, Divya C. A Randomized Single Dose Parallel Study on Enhancement of Nitric Oxide in Serum and Saliva with the Use of Natural Sports Supplement in Healthy Adults. J Diet Suppl 2017. [PMID: 28641022 DOI: 10.1080/19390211.2017.1331944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sports supplements that stimulate the production of nitric oxide (NO) are widely promoted agents in the sports nutrition domain, and nitric oxide plays an important role to enhance the cardiovascular and physical fitness of the sports participants. The purpose of the study is to investigate whether oral intake of a sports nutritional supplement (Fitnox) is able to increase nitrate (NO3-) and nitrite (NO2-) levels in blood serum and saliva of healthy adults. Fitnox is a unique blend of Kaempferia parviflora methoxy flavones, pomegranate peel polyphenols, and Moringa oleifera leaf saponins. Twenty-four healthy male adults were equally divided and underwent the double-blind, placebo-controlled clinical trial with a single oral dose of sports nutrition formulation (250 mg capsules); blood and saliva samples were analyzed at different time intervals by high-performance liquid chromatography (HPLC). After administration of Fitnox (250 mg capsule as single dose), NO3- and NO2- levels in serum and saliva were found to be significantly higher (p <.05) than in the placebo group in 24 hours. Pharmacokinetic parameters such as the area under the plasma concentration-time curve extrapolated to infinity (AUC0-inf), AUC calculated to the last measured concentration (AUC0-t), maximum drug serum concentrations (Cmax), time of maximum concentration in serum observed (Tmax), and time required for the concentration of the drug to reach half of its original value (Thalf) were also statistically significant (p <.05) compared with the placebo. The results indicate that a single oral dose of Fitnox is able to increase the NO3- and NO2- levels considerably in the body relative to placebo for at least 12 hours. Therefore, Fitnox can improve the overall performance of sport participants and enhance physical endurance.
Collapse
Affiliation(s)
- Joby Jacob
- a R&D Centre, Aurea Biolabs (P) Ltd , Kolenchery , Kerala , India
| | - Sreeraj Gopi
- a R&D Centre, Aurea Biolabs (P) Ltd , Kolenchery , Kerala , India
| | | |
Collapse
|
33
|
Toda K, Hitoe S, Takeda S, Shimizu N, Shimoda H. Passionflower Extract Induces High-amplitude Rhythms without Phase Shifts in the Expression of Several Circadian Clock Genes in Vitro and in Vivo. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2017; 13:84-92. [PMID: 28824345 PMCID: PMC5542920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Circadian rhythms play key roles in the regulation of physiological and behavioral systems including wake-sleep cycles. We evaluated the effects of passionflower (aerial parts of Passiflora incarnata Linnaeus) extract (PFE) on circadian rhythms using NIH3T3 cells and mice. PFE (100 μg/mL) induced high-amplitude rhythms in the expression of period circadian protein (Per) 2, cryptochrome (Cry) 1, superoxide dismutase (SOD) 1, and glutathione peroxidase (GPx) in vitro from 12 h after a treatment with serum-rich medium. Isovitexin 2"-O-glucoside, isoschaftoside, and homoorientin, which were purified from PFE, also significantly enhanced Per2 mRNA expression at 20 h. An oral treatment with PFE (100 mg/kg/day) at zeitgeber time (ZT) 0 h for 15 days improved sleep latencies and sleeping times in the pentobarbital-induced sleep test in mice, similar to muscimol (0.2 mg/kg, i.p.). PFE induced high-amplitude rhythms without obvious phase shifts in serum corticosterone levels and the expression of Per1, Per2, and Cry1 in the liver as well as NIH3T3 cells. However, in the cerebrum, PFE enhanced the circadian expression of brain-muscle ARNT-like protein (Bmal) 1, circadian locomotor output cycles kaput (Clock), and Per1. Regarding this difference, we suggest the involvement of several neurotransmitters that influence the circadian rhythm. Indeed, PFE significantly increased dopamine levels at ZT 18 h, and then affected the mRNA expression of the synthetic and metabolic enzymes such as monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and glutamic acid decarboxylase (GAD). The results obtained show that PFE positively modulates circadian rhythms by inducing high-amplitude rhythms in the expression of several circadian clock genes.
Collapse
|
34
|
Elhennawy MG, Lin HS. Quantification of apigenin trimethyl ether in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a pre-clinical pharmacokinetic study. J Pharm Biomed Anal 2017; 142:35-41. [PMID: 28494337 DOI: 10.1016/j.jpba.2017.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE) is a naturally occurring polymethoxyflavone with a wide range of health-promoting activities. In this study, a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ATE in rat plasma. Protein precipitation was applied as plasma clean-up procedure; the electrospray ionization was operated in its positive ion mode while ATE and formononetin (internal standard) were measured by multiple reactions monitoring (ATE: m/z 313.1→298.1; formononetin: 269.2→213.3). This LC-MS/MS method displayed good selectivity, sensitivity (lower limit of quantification=2.5ng/ml), accuracy (both intra- and inter-day analytical recovery within 100±10%) and precision (both intra- and inter-day RSD <10%). The matrix effect was found to be insignificant. The pharmacokinetic profiles of ATE were subsequently examined in Sprague-Dawley rats after single oral administration (10mg/kg). When given in an aqueous suspension, ATE was slowly absorbed with quite low plasma exposure (AUC). Fasting further attenuated its oral absorption and led to ∼70% drops in average maximal plasma concentration (Cmax) and AUC. When dosed in a solution formulated with 2-hydroxypropyl-β-cyclodextrin, the oral absorption of ATE was substantially improved with ∼500% increases in average Cmax and AUC. Clearly, aqueous solubility has been identified as a barrier to the oral absorption of ATE. The information obtained from this study will facilitate further medicinal exploration on ATE.
Collapse
Affiliation(s)
- Mai Gamal Elhennawy
- Department of Pharmacy, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
35
|
Gopi S, Jacob J, Varma K, Amalraj A, Sreeraj TR, Kunnumakkara AB, Divya C. Natural sports supplement formulation for physical endurance: a randomized, double-blind, placebo-controlled study. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0352-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|