1
|
Chen L, Yan Y, Hong C, Wei X, Xiong J, Huang C, Shen X. Successive electromembrane extraction: A new insight in simultaneous extraction of polar and non-polar metabolic molecules from biological samples. Anal Chim Acta 2025; 1344:343727. [PMID: 39984214 DOI: 10.1016/j.aca.2025.343727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Simultaneous determination of different natures of analytes is of great significance for saving sample volumes and simplifying analytical procedures. However, sample preparation for the simultaneous extraction of polar and non-polar analytes represents a challenge in sample preparation. Inspired by the successive liquid-phase microextraction (sLPME) method for acidic and basic analytes that we previously developed, we first proposed an efficient successive electromembrane extraction (sEME) system by adjusting the acidity of the donor solution and using binary organic solvents for extraction of polar and non-polar targets from biological samples in this work. RESULTS We performed a detailed optimization of the sEME system. Here, carnitine (C0) and acylcarnitines were selected as model analytes since the demand increased especially in metabolomics studies. The combination of 2-nonanone and 2-nitrophenylpentyl ether (NPPE) was selected as supported liquid membranes (SLMs), and trichloroacetic acid (TCA) 100 % (v/v) was added to donor solution to adjust the acidity of the donor solution after the first sEME process (sEME-1). The recoveries of the targets in blood and urine were 47%-119% and 54%-118%, respectively. Moreover, the sEME systems were evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS) from biological samples. The limit of detection (LOD) and limit of quantitation (LOQ) of analytes were 0.03-1.33 ng mL-1 and 0.09-4.42 ng mL-1, respectively. SIGNIFICANCE sEME enabled the extraction of polar and non-polar analytes from the same sample under optimal extraction conditions for all target analytes, which provided ideas for efficient sEME of exogenous and endogenous analytes from biological samples for forensic, clinical, and epidemiological studies.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Changbao Hong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China.
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Kok EA, den Besten-Bertholee D, van Berkel S, Larmené-Beld KHM. Detection and Identification of an Unknown Impurity in Ephedrine HCl 5 mg/mL Cyclic Olefin Syringes: Formulation Development. AAPS PharmSciTech 2023; 24:140. [PMID: 37349566 DOI: 10.1208/s12249-023-02602-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/04/2023] [Indexed: 06/24/2023] Open
Abstract
An unknown impurity was detected in in-house prepared ephedrine hydrochloride (HCl) 5 mg/mL prefilled sterilized syringes when applying a stability-indicating British Pharmacopoeia 2018 impurity method for ephedrine injection. Ultraviolet, chromatographic, mass spectral, and physicochemical methods were combined to identify the unknown impurity. The unknown impurity was identified as methcathinone, which is generated from ephedrine drug substance through an oxidation reaction. A formulation study, in which different process adjustments were tested, was carried out to reduce the amount of unknown impurity. Nitrogen gassing in combination with 0.05 M citrate buffer addition proved to be the most potent process adjustment in reducing methcathinone formation in ephedrine HCl 5 mg/mL prefilled sterilized syringes after 4 months of storage in the dark at room temperature (20 °C ± 5 °C). More detailed research on the long-term stability of the reformulated ephedrine HCl drug product is currently underway, with promising results for up to 9 months gathered already.
Collapse
Affiliation(s)
- Ellen A Kok
- Unit of Pharmacotherapy, -Epidemiology, and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, Groningen, the Netherlands
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands
| | | | - Stefan van Berkel
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands
| | - Karin H M Larmené-Beld
- Department of Clinical Pharmacy, Isala Hospital, 8025 AB, Zwolle, Overijssel, the Netherlands.
| |
Collapse
|
3
|
Wilcox JM, Pfalzer AC, Tienda AA, Debbiche IF, Cox EC, Totten MS, Erikson KM, Harrison FE, Bowman AB. YAC128 mouse model of Huntington disease is protected against subtle chronic manganese (Mn)-induced behavioral and neuropathological changes. Neurotoxicology 2021; 87:94-105. [PMID: 34543681 PMCID: PMC8761387 DOI: 10.1016/j.neuro.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is an essential micronutrient but excessive levels induce neurotoxic effects. Increasing evidence suggests a deficit of bioavailable Mn in Huntington disease (HD), an inherited neurodegenerative disease characterized by motor and cognitive disturbances. Previous studies have shown rescue of some molecular HD phenotypes by acute Mn exposure. This study simultaneously examined the potential for chronic Mn exposure to attenuate HD behavioral phenotypes, and for the HD genotype to offer protection against detrimental effects of chronic Mn exposure. In two independent studies a chronic Mn exposure paradigm was implemented in the YAC128 mouse model of HD and behavior was assessed at several timepoints. Study 1 exposed WT and YAC128 mice to twice weekly subcutaneous injections of 0, 5, 15, or 50 mg/kg MnCl[2] tetrahydrate from 12 to 32 weeks of age. A promising protective effect against motor coordination decline in 5 mg/kg MnCl[2] tetrahydrate-treated YAC128 mice was detected. Study 2 thus exposed WT and YAC128 mice to either 0 or 5 mg/kg MnCl[2] tetrahydrate from 12 to 52 weeks of age (with a partial randomized treatment crossover at 31 weeks). The same protective effect was not observed under these conditions at higher statistical power. We report subtle toxicological changes in exploratory behavior and total activity induced by chronic Mn exposure in WT mice only, despite similar total increases in brain Mn in WT and YAC128 mice. Further, chronic Mn treatment resulted in a 10-12 % decrease in striatal NeuN positive cell density in WT mice but not YAC128 mice, despite vehicle cell counts already being reduced compared to WT mice as expected for the HD genotype. The subtle changes observed in specific outcome measures, but not others, following long-term low-level Mn exposure in WT mice delineate the neurobehavioral and neuropathological effects at the threshold of chronic Mn toxicity. We conclude that these chronic low-dose Mn exposures do not significantly rescue behavioral HD phenotypes, but YAC2128 mice are protected against the subtle Mn-induced behavioral changes and decreased striatal neuron density observed in Mn-exposed WT mice.
Collapse
Affiliation(s)
- Jordyn M Wilcox
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Adriana A Tienda
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ines F Debbiche
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ellen C Cox
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Melissa S Totten
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, United States
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, United States
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Rodrigues GZP, Finkler M, Garcia ALH, Gehlen G. Evaluation of transgenerational effects caused by metals as environmental pollutants in Daphnia magna. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:755. [PMID: 33170361 DOI: 10.1007/s10661-020-08713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to evaluate the acute and chronic toxicity of environmentally relevant concentrations of metals (Mn, Al, Fe, and Pb) in Daphnia magna and the generational transposition of reproductive and morphological damages. The effective concentration for 10% of the organisms from each metal was obtained by the acute toxicity test (96 hours); then, another five concentrations lower than this one were defined for the chronic experimentation (21 days), in which the number of neonates generated by each individual was checked daily. At the end of the exposition, the lengths and number of morphological damages were recorded in each adult daphnid. During this, the molt generated on the 14th and 21st days were collected and cultivated for posterior evaluation of the same parameters. Alterations in the reproductive performance were observed in the organisms exposed to manganese and aluminum (4.0 and 0.5 mg L-1, respectively). Organisms exposed to aluminum (0.05 mg L-1) and iron (0.27 mg L-1) showed a reduction in body length. It is also noteworthy that the molt of these adults and their respective offspring also presented reproductive alterations, especially the molt from the 14th day of lead exposure (0.02 mg L-1) and the 21st day of manganese exposure (4.0 mg L-1). Such effects allow us to conclude that environments polluted by metals can reduce the ability of the species to maintain themselves in the ecosystem. In addition, there is a need to increase the control and monitoring of metals, such as aluminum, which present risks even in low concentrations.
Collapse
Affiliation(s)
| | | | - Ana Letícia Hilario Garcia
- Post Graduation Program in Cellular and Molecular Biology Applied to Health, ULBRA - Lutheran University of Brazil, Farroupilha Avenue, 8001, Canoas, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, ERS-239, 2755, Novo Hamburgo, 93525-075, Brazil
| |
Collapse
|