1
|
Kohanfekr T, Gholamrezazadeh C, Hosseini HA. Vanadium 8-hydroxyquinoline derivatives in medicine: current state and future outlook. Biometals 2025; 38:711-736. [PMID: 40329148 DOI: 10.1007/s10534-025-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
Vanadium complexes featuring 8-hydroxyquinoline ligands and their derivatives have emerged as a promising class of compounds with potential therapeutic applications, particularly as antimicrobial and anticancer agents. This comprehensive review offers a timely and insightful analysis of the current landscape of vanadium complexes with HQ ligand or its derivatives, whether alone or in combination with organic coligands. This review covers synthetic strategies, and mechanisms that underlie their antibacterial and anticancer activities. A significant focus of this review is the thorough evaluation of the antibacterial and anticancer properties of these complexes, providing an invaluable resource for researchers in the interdisciplinary fields of inorganic chemistry, medicinal chemistry, and drug discovery. By compiling and synthesizing the existing knowledge on vanadium-8-hydroxyquinoline (VO-8HQ) complexes, this review addresses a critical gap in the literature. Ongoing research, including rigorous preclinical and clinical evaluations, is essential for fully exploring the therapeutic potential of this promising class of metallodrugs.
Collapse
|
2
|
Peddapaka J, Nasreen A, Sanam T, Shaik MG, Swain B, Sanwer S, Alvala R, Arifuddin M, Nerella SG. Facile synthesis, antimicrobial activity, and molecular docking analysis of 8-hydroxyquinoline-4-thiazolidinone hybrids. Future Med Chem 2025; 17:435-447. [PMID: 39949271 PMCID: PMC11834530 DOI: 10.1080/17568919.2025.2463876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND 8-Hydroxyquinoline and 4-thiazolidinone derivatives are promising antimicrobial agents, recognized for their activity against resistant pathogens. AIM The aim of this study is to develop 8-hydroxyquinoline-4-thiazolidinone derivatives as potential antimicrobial agents. METHODS Using a one-pot reaction with sodium tetrafluoroborate as an efficient and eco-friendly catalyst, compounds 6a - l were synthesized and subsequently screened for antibacterial and antifungal activity. Additionally, molecular docking and molecular dynamic simulations were performed to evaluate the active compounds and gain deeper insights into their potential as antimicrobial agents. RESULTS Compounds 6f and 6 g showed superior antibacterial activity to ciprofloxacin, particularly against Gram-negative bacteria, while 6b, 6 g, and 6 h demonstrated strong antifungal effects. Molecular docking, molecular dynamics simulations, and MM-GBSA calculations highlighted strong binding interactions and stable conformations of the active compounds within binding pocket of the FabZ enzyme. The ADMET analyses further indicated that these compounds possess favorable drug-like properties. CONCLUSION The synthesized 8-hydroxyquinoline-4-thiazolidinone hybrids exhibit strong potential as broad-spectrum antimicrobial agents and merit further investigation as drug candidates.
Collapse
Affiliation(s)
- Jagruti Peddapaka
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aayesha Nasreen
- Department of Chemistry, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Tulja Sanam
- Department of Agricultural Microbiology, University of Agricultural Sciences, Bangalore, India
| | - Mahammad Ghouse Shaik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Sanwer
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ravi Alvala
- G. Pulla Reddy College of Pharmacy, Hyderabad, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, India
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, USA (present address)
| |
Collapse
|
3
|
Riaz F, Hossain MS, Roney M, Ali Y, Qureshi S, Muhammad R, Moshawih S, Abd Hamid S, Seidel V, Ur Rashid H, Ming LC. Evaluation of potential bacterial protease inhibitor properties of selected hydroxyquinoline derivatives: an in silico docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2023; 41:9756-9769. [PMID: 36399018 DOI: 10.1080/07391102.2022.2146200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial drug resistance (AMR) is a severe global threat to public health. The increasing emergence of drug-resistant bacteria requires the discovery of novel antibacterial agents. Quinoline derivatives have previously been reported to exhibit antimalarial, antiviral, antitumor, antiulcer, antioxidant and, most interestingly, antibacterial properties. In this study, we evaluated the binding affinity of three newly designed hydroxyquinolines derived from sulfanilamide (1), 4-amino benzoic acid (2) and sulfanilic acid (3) towards five bacterial protein targets (PDB ID: 1JIJ, 3VOB, 1ZI0, 6F86, 4CJN). The three derivatives were designed considering the amino acid residues identified at the active site of each protein involved in the binding of each co-crystallized ligand and drug-likeness properties. The ligands displayed binding energy values with the target proteins ranging from -2.17 to -8.45 kcal/mol. Compounds (1) and (3) showed the best binding scores towards 1ZI0/3VOB and 1JIJ/4CJN, respectively, which may serve as new antibiotic scaffolds. Our in silico results suggest that sulfanilamide (1) or sulfanilic acid (3) hydroxyquinoline derivatives have the potential to be developed as bacterial inhibitors, particularly MRSA inhibitors. But before that, it must go through the proper preclinical and clinical trials for further scientific validation. Further experimental studies are warranted to explore the antibacterial potential of these compounds through preclinical and clinical studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiza Riaz
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Md Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang,Kuantan, Pahang Darul Makmur, Malaysia
| | - Yousaf Ali
- Faculty of Allied Health Sciences, Iqra National University Swat Campus, Khyber Pakhtunkhwa, Pakistan
| | - Saira Qureshi
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Said Moshawih
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Shafida Abd Hamid
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
4
|
Bogoyavlenskiy A, Alexyuk M, Alexyuk P, Berezin V, Almalki FA, Ben Hadda T, Alqahtani AM, Ahmed SA, Dall'Acqua S, Jamalis J. Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site. Molecules 2023; 28:molecules28093766. [PMID: 37175179 PMCID: PMC10179817 DOI: 10.3390/molecules28093766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.
Collapse
Affiliation(s)
- Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Madina Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Pavel Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Vladimir Berezin
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Alaa M Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
5
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
6
|
Rajni, Versha, Singh L, Rana R, Bendi A. Chemistry of Quinoline Based Heterocycle Scaffolds: A Comprehensive Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajni
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| | - Versha
- Department of Chemistry Baba Masthnath University Rohtak 124001 Haryana India
| | - Lakhwinder Singh
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| | - Ravi Rana
- Department of Chemistry Baba Masthnath University Rohtak 124001 Haryana India
| | - Anjaneyulu Bendi
- Department of Chemistry Faculty of Science SGT University Gurugram 122505 Haryana India
| |
Collapse
|
7
|
Chalkha M, Nakkabi A, Hadda TB, Berredjem M, Moussaoui AE, Bakhouch M, Saadi M, Ammari LE, Almalki FA, Laaroussi H, Jevtovic V, Yazidi ME. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. J Mol Struct 2022; 1267:133605. [PMID: 35782312 PMCID: PMC9237569 DOI: 10.1016/j.molstruc.2022.133605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/14/2023]
Abstract
The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever to protect living beings against pathogenic microorganisms and free radicals. In this regard, new functionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among the tested compounds, pyrazoles 3a, 3f, 4e, 4f, and 4g have exhibited remarkable antimicrobial activity against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f, and 4g have shown a significant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 3a, 4f, and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole derivatives bearing sulfonamide moiety (4a-g) have displayed an important antimicrobial activity compared to pyrazoles 3a-h, this finding could be attributed to the synergistic effect of the pyrazole and sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the synthesized compounds with the target proteins and provided important information about their interaction modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, Molinspiration) show that the studied heterocycles present a very good non toxicity profile, an excellent bioavailability, and pharmacokinetics. Finally, an antiviral pharmacophore (O δ-, O δ-) was evaluated in the POM investigations and deserves all our attention to be tested against Covid-19 and its Omicron and Delta mutants.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
- Laboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, Faculté des Sciences, Université Moulay Ismail, BP 11201, Meknes 50000, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Malika Berredjem
- Laboratoire de chimie organique appliquée (LCOA), Groupe de Synthèse de biomolécules et modélisation moléculaire, Université Badji-Mokhtar Annaba, BP 12, Annaba 23000, Algérie
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez 30050, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Hail 81451, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| |
Collapse
|
8
|
Majid SA, Mir JM, Bhat MA, Shalla AH, Pandey A, Hadda TB, Abdellattif MH. A pair of carbazate derivatives as novel Schiff base ligands: DFT and POM theory supported spectroscopic and biological evaluation. J Biomol Struct Dyn 2022:1-17. [PMID: 35751130 DOI: 10.1080/07391102.2022.2090437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Schiff bases are mentioned as strongly important molecular scaffolds of industrial and medicinal purposes. Due to wide range applications of carbazate derivatives herein synthesis and characterization of a new Schiff base ligand, (E)-ethyl 2-(4-methoxybenzylidene)hydrazinecarboxylate and 4-(nitrobenzaldehyde)ethylcarbazate are reported. The compound was characterized on the basis of experimental and density functional theory calculations (using the B3LYP and 6-31 G(d,p)formalism combination). Among characterization techniques elemental analysis, FT-IR, UV-Vis and NMR spectroscopic evaluations were mainly employed to carry out the formulation of the compound. In addition to computational validation of characterization other significant molecular parameters were also evaluated including geometry optimization, frontier molecular orbital analysis (FMO) and Columbic interaction of different constituent atoms of the title compound. A good agreement has been found between DFT and experimental outcomes confined to prove the structure of the compound. Moreover, molecular docking and antimicrobial studies have proven the Schiff base as an effective bioactive compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sheikh Abdul Majid
- Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir, India
| | - Jan Mohammad Mir
- Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir, India.,Department of Chemistry and Pharmacy, RD University, Jabalpur, Madhya Pradesh, India
| | - Muzzaffar A Bhat
- Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir, India
| | - Aabid Hussain Shalla
- Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir, India
| | - Abhishek Pandey
- Department of Chemistry and Pharmacy, RD University, Jabalpur, Madhya Pradesh, India
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, Taif, Saudi Arabia
| |
Collapse
|
9
|
Facile Synthesis of Functionalized Phenoxy Quinolines: Antibacterial Activities against ESBL Producing Escherichia coli and MRSA, Docking Studies, and Structural Features Determination through Computational Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123732. [PMID: 35744858 PMCID: PMC9230019 DOI: 10.3390/molecules27123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
The synthesis of new 6-Bromoquinolin-4-ol derivatives (3a–3h) by Chan–Lam coupling utilizing different types of solvents (protic, aprotic, and mixed solvents) and bases was studied in the present manuscript. Furthermore, their potential against ESBL producing Escherichia coli (ESBL E. coli) and methicillin-resistant Staphylococcusaureus (MRSA) were investigated. Commercially available 6-bromoquinolin-4-ol (3a) was reacted with different types of aryl boronic acids along with Cu(OAc)2 via Chan–Lam coupling methodology utilizing the protic and aprotic and mixed solvents. The molecules (3a–3h) exhibited very good yields with methanol, moderate yields with DMF, and low yields with ethanol solvents, while the mixed solvent CH3OH/H2O (8:1) gave more excellent results as compared to the other solvents. The in vitro antiseptic values against ESBL E. coli and MRSA were calculated at five different deliberations (10, 20, 30, 40, 50 mg/well) by agar well diffusion method. The molecule 3e depicted highest antibacterial activity while compounds 3b and 3d showed low antibacterial activity. Additionally, MIC and MBC standards were calculated against the established bacteria by broth dilution method. Furthermore, a molecular docking investigation of the derivatives (3a–3h) were performed. Compound (3e) was highly active and depicted the least binding energy of −5.4. Moreover, to investigate the essential structural and physical properties, the density functional theory (DFT) findings of the synthesized molecules were accomplished by using the basic set PBE0-D3BJ/def2-TZVP/SMD water level of the theory. The synthesized compounds showed an energy gap from 4.93 to 5.07 eV.
Collapse
|
10
|
Synthesis, characterization and bioactivity of novel 8-hydroxyquinoline derivatives: Experimental, molecular docking, DFT and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhong DX, She MT, Guo XC, Zheng BX, Huang XH, Zhang YH, Ser HL, Wong WL, Sun N, Lu YJ. Design and synthesis of quinolinium-based derivatives targeting FtsZ for antibacterial evaluation and mechanistic study. Eur J Med Chem 2022; 236:114360. [PMID: 35421657 DOI: 10.1016/j.ejmech.2022.114360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
The discovery of small molecular inhibitors targeting essential and conserved bacterial drug targets such as FtsZ protein is a promising approach to fight against multi-drug resistant bacteria. In the present study, two new series of FtsZ inhibitors based on a 1-methylquinolinium scaffold were synthesized. The inhibitors possess a variety of substituent groups including the cyclic or linear amine skeleton at the 2- and 4-position of the quinolinium ring for structure-activity relationship study. In general, the inhibitors bearing a cyclic amine substituent at the 4-position of the quinolinium ring showed better antibacterial activity (MIC down to 0.25 μg/mL) than that at the 2-position, especially against Gram-positive bacteria. Among the twenty FtsZ inhibitors examined in various assays, A3 was identified to exhibit excellent antibacterial activity against S. aureus (MIC = 0.5-1 μg/mL), S. epidermidis (MIC = 0.25 μg/mL) and E. faecium (MIC = 1-8 μg/mL). More importantly, A3 showed low hemolytic toxicity (IC5 = 64 μg/mL) and was found not readily to induce drug resistance. A3 at 2-8 μg/mL promoted the polymerization of FtsZ and interrupted the bacterial division. Furthermore, the ligand-FtsZ interaction study conducted with circular dichroism and molecular docking revealed that A3 induced secondary structure changes of FtsZ protein upon binding to the interdomain cleft of the protein. A3 is thus a potent inhibitor of FtsZ and shows potential to be used as a new antibacterial agent against drug-resistant bacteria.
Collapse
Affiliation(s)
- Dong-Xiao Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi-Han Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hooi-Leng Ser
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China.
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, 514021, PR China; Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan, 28225, PR China.
| |
Collapse
|
12
|
Muddagoni N, Dasari M, Bathula R, Potlapally SR. Tin (
IV
) Chloride catalyzed one‐pot synthesis, characterization and docking studies of 4‐aminoquinoline derivatives as Myt1 inhibitors. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Narasimha Muddagoni
- Nizam College, Department of Chemistry Osmania University, Basheerbagh Hyderabad‐500001 Telangana India
| | - Mahendar Dasari
- Nizam College, Department of Chemistry Osmania University, Basheerbagh Hyderabad‐500001 Telangana India
| | - Revanth Bathula
- Nizam College, Department of Chemistry Osmania University, Basheerbagh Hyderabad‐500001 Telangana India
| | | |
Collapse
|
13
|
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120:105587. [PMID: 35026560 PMCID: PMC8719923 DOI: 10.1016/j.bioorg.2021.105587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.
Collapse
Affiliation(s)
- Eman R Esharkawy
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| |
Collapse
|
14
|
Joaquim AR, Gionbelli MP, Gosmann G, Fuentefria AM, Lopes MS, Fernandes de Andrade S. Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure-Activity Relationships, and Perspectives. J Med Chem 2021; 64:16349-16379. [PMID: 34779640 DOI: 10.1021/acs.jmedchem.1c01318] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The search for new antimicrobials is imperative due to the emergent resistance of new microorganism strains. In this context, revisiting known classes like 8-hydroxyquinolines could be an interesting strategy to discover new agents. The 8-hydroxyquinoline derivatives nitroxoline and clioquinol are used to treat microbial infections; however, these drugs are underused, being available in few countries or limited to topical use. After years of few advances, in the last two decades, the potent activity of clioquinol and nitroxoline against several targets and the privileged structure of 8-hydroxyquinoline nucleus have prompted an increased interest in the design of novel antimicrobial, anticancer, and anti-Alzheimer agents based on this class. Herein, we discuss the current development and antimicrobial structure-activity relationships of this class in the perspective of using the 8-hydroxyquinoline nucleus for the search for novel antimicrobial agents. Furthermore, the most investigated molecular targets concerning 8-hydroxyquinoline derivatives are explored in the final section.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Mariana Pies Gionbelli
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Grace Gosmann
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Farroupilha, Porto Alegre, RS 90050-170, Brazil
| | - Marcela Silva Lopes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Farroupilha, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
15
|
Effect of hydrocarbon chain length for acid corrosion inhibition of mild steel by three 8-(n-bromo-R-alkoxy)quinoline derivatives: Experimental and theoretical investigations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Moussaoui O, Byadi S, Eddine Hachim M, Sghyar R, Bahsis L, Moslova K, Aboulmouhajir A, Rodi YK, Podlipnik Č, Hadrami EMEL, Chakroune S. Selective synthesis of novel quinolones-amino esters as potential antibacterial and antifungal agents: Experimental, mechanistic study, docking and molecular dynamic simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Ibrahim TS, Almalki AJ, Moustafa AH, Allam RM, Abuo-Rahma GEDA, El Subbagh HI, Mohamed MFA. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study. Bioorg Chem 2021; 111:104885. [PMID: 33838559 DOI: 10.1016/j.bioorg.2021.104885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/19/2023]
Abstract
New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 μM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 μM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Rasha M Allam
- Pharmacology Department, National Research Centre, Cairo 12622 (ID: 60014618), Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|
18
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|
19
|
Synthesis, Characterization, Biocomputational Modeling and Antibacterial Study of Novel Pyran Based on 8-Hydroxyquinoline. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05089-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Simple preparation and characterization of novel 8-Hydroxyquinoline derivatives as effective acid corrosion inhibitor for mild steel: Experimental and theoretical studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125094] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Saadeh HA, Sweidan KA, Mubarak MS. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Molecules 2020; 25:molecules25184321. [PMID: 32967141 PMCID: PMC7571046 DOI: 10.3390/molecules25184321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Compounds containing the 8-hydroxyquinoline (8-HQ) 1 nucleus exhibit a wide range of biological activities, including antimicrobial, anticancer, and antifungal effects. The chemistry and biology of this group have attracted the attention of chemists, medicinal chemists, and professionals in health sciences. A number of prescribed drugs incorporate this group, and numerous 8-HQ- based molecules can be used to develop potent lead compounds with good efficacy and low toxicity. This review focusses on the recent advances in the synthesis of 8-HQ derivatives with different pharmacological properties, including anticancer, antiviral, and antibacterial activities. For this purpose, recent relevant references were searched in different known databases and search engines, such as MEDLINE (PubMed), Google Scholar, Science Direct, Scopus, Cochrane, Scientific Information Database (SID), SciFinder, and Institute for Scientific Information (ISI) Web of Knowledge. This review article provides a literature overview of the various synthetic strategies and biological activities of 8-HQ derivatives and covers the recent related literature. Taken together, compounds containing the 8-HQ moiety have huge therapeutic value and can act as potential building blocks for various pharmacologically active scaffolds. In addition, several described compounds in this review could act leads for the development of drugs against numerous diseases including cancer.
Collapse
Affiliation(s)
- Haythem A. Saadeh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Kamal A. Sweidan
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Mohammad S. Mubarak
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
- Correspondence: ; Tel.: +962-791-016-126
| |
Collapse
|
22
|
Rbaa M, Abousalem AS, Rouifi Z, Lakhrissi L, Galai M, Zarrouk A, Lakhrissi B, Lakhrissi Y. Selective synthesis of new sugars based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in HCl solution-effect of the saturated hydrocarbon chain: Theoretical and experimental studies. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0 M HCl. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128155] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Tighadouini S, Radi S, Benabbes R, Youssoufi MH, Shityakov S, El Massaoudi M, Garcia Y. Synthesis, Biochemical Characterization, and Theoretical Studies of Novel β-Keto-enol Pyridine and Furan Derivatives as Potent Antifungal Agents. ACS OMEGA 2020; 5:17743-17752. [PMID: 32715261 PMCID: PMC7377641 DOI: 10.1021/acsomega.0c02365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
In the present study, we report the design and synthesis of new derivatives of the β-keto-enol grafted on pyridine and furan moieties (L 1 -L 11 ). Structures of compounds were fully confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H NMR, 13C NMR, electrospray ionization/liquid chromatography-mass spectrometry (ESI/LC-MS), and elemental analysis. The compounds were screened for antifungal and antibacterial activities (Escherichia coli, Bacillus subtilis, and Micrococcus luteus). In vitro evaluation showed significant fungicidal activity for L 1 , L 4 , and L 5 against fungal strains (Fusarium oxysporum f.sp albedinis) compared to the reference standard. Especially, the exceptional activity has been demonstrated for L 1 with IC50 = 12.83 μg/mL. This compound and the reference benomyl molecule also showed a correlation between experimental antifungal activity and theoretical predictions by Petra/Osiris/Molinspiration (POM) calculations and molecular coupling against the Fgb1 protein. The highest inhibition of bacterial growth for L 1 is due to its strongest binding to the target protein. This report may stimulate the further synthesis of examples of this substance class for the development of new drugs.
Collapse
Affiliation(s)
- Said Tighadouini
- Laboratory
of Organic Synthesis, Extraction and Valorization, Faculty of Sciences
Ain Chock, Hassan II University, Route d’El Jadida Km 2, BP 5366 Casablanca, Morocco
| | - Smaail Radi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
- ,
| | - Redouane Benabbes
- Department
of Biology, Faculty of Sciences, Mohammed
First University, 60000 Oujda, Morocco
| | - Moulay Hfid Youssoufi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
| | - Sergey Shityakov
- Department
of Bioinformatics, Würzburg University, Am Hubland, 97074 Würzburg, Germany
| | - Mohamed El Massaoudi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
| | - Yann Garcia
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis (IMCN/MOST), Universite′
catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
26
|
Rbaa M, Oubihi A, Anouar EH, Ouhssine M, Almalki F, Hadda TB, Zarrouk A, Lakhrissi B. Synthesis of new heterocyclic systems oxazino derivatives of 8-Hydroxyquinoline: Drug design and POM analyses of substituent effects on their potential antibacterial properties. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|