1
|
Cai H, Niu Y, Guan T, Zhang Y, Ma Z. Removal of metronidazole using a novel ZnO-CoFe 2O 4@Biochar heterostructure composite in an intimately coupled photocatalysis and biodegradation system under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121431. [PMID: 38875984 DOI: 10.1016/j.jenvman.2024.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
The intimate coupling of photocatalysis and biodegradation (ICPB) technology has received much attraction because of the advantages of both photocatalytic reaction and biological treatment. In this study, ZnO-CoFe2O4@BC (ZCFC) with p-n heterojunction was prepared and used in an ICPB system to degrade metronidazole (MNZ) wastewater. The microstructure, morphology, and optical behavior of heterojunctions in ZCFC were investigated using SEM, XRD, UV-vis, FTIR, and XPS techniques. The results showed that ZCFC inherited the advantages of bamboo biochar's large pore size, and its large pore structure could provide a habitat for bacterial colonization in ICPB, thus shortening the internal mass transfer distance. The degradation of MNZ and chemical oxygen demand (COD) by the ICPB system was 86.8% and 58.5%, respectively, which was superior to single photocatalysis (72.5% for MNZ and 43.8% for COD) and single biodegradation (23.5% for MNZ and 20.1% for COD). In ICPB, photocatalysis and biodegradation showed a synergistic effect in the removal of MNZ, and the order of the major reactive oxygen species (ROS) leading to reduced toxicity of MNZ to the biofilm was •OH > h+ > O2•-. High-throughput sequencing analysis showed continuous evolution of biofilm structures in ICPB enriched a variety of functional species, among which the electroactive bacteria Alcaligenes and Brevundimonas played an important role in the degradation of MNZ. In this study, we investigated the possible mechanism of photocatalytic and microbial synergistic degradation of MNZ in the ICPB system and proposed a new technology for degrading antibiotic wastewater that combines the advantages of photocatalysis and biodegradation.
Collapse
Affiliation(s)
- Hao Cai
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China.
| | - Yifei Niu
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Yin Zhang
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
2
|
Chiani E, Ghasemi S, Azizi SN. Highly Efficient Photocatalytic Degradation of Imidacloprid Based on Iron Metal-Organic Frameworks of Mesoporous NH 2-MIL-88b/Graphite Carbon Nitride Nanocomposites by Visible Light Driven in Aqueous Media. ACS OMEGA 2024; 9:26983-27001. [PMID: 38947846 PMCID: PMC11209690 DOI: 10.1021/acsomega.3c10281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Pesticides that protect crops from insects and other pests are some of the main causes of water pollution. Imidacloprid (IMC) is the most widely used insecticide in the world and should be removed from the environment. This work aims to prepare mesoporous nanocomposites to increase the photodegradation efficiency of IMC. To improve the surface properties and enhance the photocatalytic activity, mesoporous nanocomposites with different weight ratios of graphite carbon nitride (CN = 125, 250, and 500 mg) were prepared by the solvothermal method. Mesoporous NH2-MIL-88b(Fe)/graphite carbon nitride (CN = 250 mg, NH2-MCN-2) nanocomposites showed the best photocatalytic performance. To save the time and cost of the experiments, central composite design (CCD) and response surface methodology (RSM) were used and the results were obtained as the initial concentration of IMC (20 mg L-1), amount of photocatalyst (0.76 g L-1), pH = 5, and degradation time ∼46 min. The maximum photocatalytic degradation efficiency estimated by the model was obtained at 96.31%, which is very close to the actual value of 95.47%. The mesoporous NH2-MCN-2 nanocomposite showed excellent stability and suitable reusability with a maximum degradation of 84.5% after five cycles. Results obtained from kinetic studies indicated a rate constant value of 0.08 min-1, and isotherm models showed that equilibrium data are more consistent with the Langmuir model in photocatalytic degradation. Electrochemical experiments showed significant improvement in the electron transfer rate and photocatalytic activity of the mesoporous NH2-MCN-2 nanocomposite. Different trapping agents were used to investigate the effective active species in IMC photodegradation, and it was determined that the hole (h+) and OH radical (•OH) play the main role. The possible mechanism for IMC photocatalytic degradation was suggested by Mott-Schottky (M-S) electrochemical impedance.
Collapse
Affiliation(s)
- Elham Chiani
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| | - Shahram Ghasemi
- Faculty
of Chemistry, University of Mazandaran, Babolsar 4741695447, Iran
| | - Seyed Naser Azizi
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| |
Collapse
|
3
|
Rani M, Yadav J, Shanker U, Wang C. Recent updates on remediation approaches of environmentally occurring pollutants using visible light-active nano-photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22258-22283. [PMID: 38418782 DOI: 10.1007/s11356-024-32455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Photocatalysis emerges as a potential remedy for the issue of an unreliable light source. Recognized as the most dependable and potent energy source sustaining life on Earth, sunlight offers a promising solution. Sunlight is abundant and free, operational costs associated with running photocatalytic system using nanoparticles are often lower compared to system relying on artificial light source. The escalating problem of water pollution, particularly in highly industrialized nations, necessitates effective wastewater treatment methods. These methods aim to combat elevated pollution levels, encompassing pharmaceuticals, dyes, flame retardants, and pesticide components. Advanced oxidation processes within photocatalytic wastewater treatment exhibit substantial promise for removing complex organic pollutants. Doped nanomaterials, with their enhanced properties, enable efficient utilization of light. Coupled nanomaterials present significant potential in addressing both water and energy challenges by proficiently eliminating persistent pollutants from environment. Photocatalysis when exposed to sunlight can absorb photons and generate e- h + pairs. This discussion briefly outlines the wastewater treatment facilitated by interconnected nanomaterials, emphasizing their role in water-energy nexus. In exploring the capabilities of components within a functional photocatalyst, a comprehensive analysis of both simple photocatalysts and integrated photocatalytic systems is undertaken. Review aims to provide detailed explanation of the impact of light source on photon generation and significance of solar light on reaction kinetics, considering various parameters such as catalyst dosage, pH, temperature, and types of oxidants. By shedding light on these aspects, this review seeks to enhance our understanding of intricate processes involved in photocatalysis and its potential applications in addressing contemporary environmental challenges.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Jyoti Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India, 144027.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
5
|
Targhan H, Rezaei A, Aliabadi A, Ramazani A, Zhao Z, Shen X, Zheng H. Photocatalytic removal of imidacloprid pesticide from wastewater using CdS QDs passivated by CQDs containing thiol groups. Sci Rep 2024; 14:530. [PMID: 38177240 PMCID: PMC10766997 DOI: 10.1038/s41598-023-49972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Over the past decade, CdS QDs have become versatile semiconductors. Surface modification of CdS QDs has become an interesting case study, as it can eliminate surface defects and improve their photochemical properties. In this study, we report a new strategy of using carbon quantum dots containing a large number of thiol groups (CQDs-SH) as a passivating agent for the stabilization of CdS quantum dots (QDs). Various characterization techniques have clearly revealed that the CdS QDs have been successfully passivated by CQDs-SH. The photocatalytic performance of CQDs-SH/CdS QDs was investigated for the degradation of the insecticide imidacloprid from an aqueous solution. Parameters affecting the photodegradation process, including the light source, photocatalyst amount, initial concentration of the pollutant, radiation time, pH, oxidizing agent, and temperature, were investigated. Furthermore, the HPLC technique was applied to quantitatively analyze imidacloprid and its degradation products. The results of the HPLC analysis revealed that under simulated visible light at pH 9, imidacloprid scarcely existed after 90 min of irradiation (90.13% degradation). The LC-MS method was also used to detect the degradation products and investigate the mechanism of photodegradation of the pesticide. The results showed that the CQDs-SH/CdS QDs composite was a promising photocatalyst for the degradation of imidacloprid in wastewater.
Collapse
Affiliation(s)
- Homa Targhan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xinyi Shen
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
6
|
Wu H, Li L, Wang S, Zhu N, Li Z, Zhao L, Wang Y. Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. Phys Chem Chem Phys 2023; 25:25899-25924. [PMID: 37746773 DOI: 10.1039/d3cp03391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Semiconductor photocatalysis has become an increasing area of interest for use in water treatment methods. This review systematically presents the recent developments of emerging semiconductor photocatalysis system and their application in the removal of water pollutants. A brief overview of the semiconductor photocatalysis mechanism involved with the generation of reactive oxygen species (ROS) is provided first. Then a detailed explanation of the development of TiO2-based, g-C3N4-based, and bismuth-based semiconductor materials and their applications in the degradation of water pollutants are highlighted with recent illustrative examples. Furthermore, the future prospects of semiconductor photocatalysis for water treatment are critically analyzed.
Collapse
Affiliation(s)
- Huasheng Wu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sen Wang
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang, 050021, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, PO Box 2871, Beijing 100085, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
7
|
Luo Q, Sun C, Zhao J, Cai Q, Yao S. Highly Efficient SnIn 4S 8@ZnO Z-Scheme Heterojunction Photocatalyst for Methylene Blue Photodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6380. [PMID: 37834516 PMCID: PMC10574009 DOI: 10.3390/ma16196380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Building heterojunctions is a promising strategy for the achievement of highly efficient photocatalysis. Herein, a novel SnIn4S8@ZnO Z-scheme heterostructure with a tight contact interface was successfully constructed using a convenient two-step hydrothermal approach. The phase composition, morphology, specific surface area, as well as photophysical characteristics of SnIn4S8@ZnO were investigated through a series of characterization methods, respectively. Methylene blue (MB) was chosen as the target contaminant for photocatalytic degradation. In addition, the degradation process was fitted with pseudo-first-order kinetics. The as-prepared SnIn4S8@ZnO heterojunctions displayed excellent photocatalytic activities toward MB degradation. The optimized sample (ZS800), in which the molar ratio of ZnO to SnIn4S8 was 800, displayed the highest photodegradation efficiency toward MB (91%) after 20 min. Furthermore, the apparent rate constant of MB photodegradation using ZS800 (0.121 min-1) was 2.2 times that using ZnO (0.054 min-1). The improvement in photocatalytic activity could be ascribed to the efficient spatial separation of photoinduced charge carriers through a Z-scheme heterojunction with an intimate contact interface. The results in this paper bring a novel insight into constructing excellent ZnO-based photocatalytic systems for wastewater purification.
Collapse
Affiliation(s)
- Qiang Luo
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Q.L.); (C.S.)
| | - Changlin Sun
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Q.L.); (C.S.)
| | - Juan Zhao
- School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430048, China
| | - Qizhou Cai
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Shanshan Yao
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
8
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
9
|
Ghasemi V, Salehinejad A, Ghadamyari M, Jack CJ, Sharifi M. Toxic evaluation of Proclaim Fit ® on adult and larval worker honey bees. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1441-1449. [PMID: 36301371 DOI: 10.1007/s10646-022-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Impacts to honey bees due to exposure to agricultural pesticides is one of the most serious threats to the beekeeping industry. Our research evaluated toxicity of the formulated insecticides Lufenuron+Emamectin benzoate (Proclaim Fit®) on the European honey bee Apis mellifera L. at field-realistic concentration (worst-case scenario). Newly emerged (≤24-h old) and forager (unknown age) worker bees were treated with the field recommended concentration of Proclaim Fit® using three routes of exposure including residual contact, oral, and spray within the laboratory. We also assessed the effects of Proclaim Fit® on the specific activity of some well-known detoxifying enzymes including α-esterase, β-esterase, and Glutathione S-transferase (GST) in the honey bees. In addition, toxicity of the formulation was tested on 4th instar larvae within the hive. Based on estimated median survival times (MSTs), Proclaim Fit® was highly toxic to the bees, especially when applied as spray. According to our estimated relative median potency (RMP) values, newly emerged bees were 1.72× more susceptible than foragers to Proclaim Fit® applied orally. Enzyme assays revealed the considerable involvement of the enzymes, especially GST and α-esterase, in detoxification of the Proclaim Fit®, but their activities were significantly influenced by route of exposure and age of bee. Notably, Proclaim Fit® was highly toxic to 4th instar honey bee larvae. Our results generally indicate a potent toxicity of Proclaim Fit® toward honey bees. Therefore, its application requires serious consideration and adherence to strict guidelines, especially during the flowering time of crops.
Collapse
Affiliation(s)
- Vahid Ghasemi
- Division of Honey Bee, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ali Salehinejad
- Department of Plant Protection, Baharan Institute of Higher Education, Gorgan, Iran
| | - Mohammad Ghadamyari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Mahboobeh Sharifi
- Plant Protection Research Department, Golestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| |
Collapse
|
10
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bruckmann FS, Schnorr C, Oviedo LR, Knani S, Silva LFO, Silva WL, Dotto GL, Bohn Rhoden CR. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022; 27:6261. [PMID: 36234798 PMCID: PMC9572628 DOI: 10.3390/molecules27196261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.
Collapse
Affiliation(s)
- Franciele S. Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Leandro R. Oviedo
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Salah Knani
- College of Science, Northern Border University, Arar 91431, Saudi Arabia
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5079, Tunisia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - William L. Silva
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Department of Chemical Enginnering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cristiano R. Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| |
Collapse
|
12
|
Zhu Y, Yan J, Zhou L, Feng L. ZnO Nanorods Grown on Rhombic ZnO Microrods for Enhanced Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3085. [PMID: 36080122 PMCID: PMC9460283 DOI: 10.3390/nano12173085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the formation of rhombic ZnO microrods surrounded by ZnO nanorods was realized on the surfaces of zinc foils using a hydrothermal method. The photocatalytic degradation of Rhodamine B solution was used to test the photocatalytic performance of the prepared samples. Compared with the rhombic Zn(OH)F and ZnO microrods grown on zinc foils, the hierarchical micro/nanostructures formed by ZnO nanorods surrounding the surfaces of rhombic ZnO microrods have better photocatalytic performance. The experimental results are mainly due to the fact that the hierarchical ZnO micro/nanostructures formed by ZnO nanorods surrounding the surface of the rhombic ZnO microrods have a larger surface area compared with the rhombic Zn(OH)F and ZnO microrods. More importantly, the photocatalytic circulation experiments indicate that ZnO nanorods grown on rhombic ZnO microrods can be recycled and have a relatively stable photocatalytic performance.
Collapse
Affiliation(s)
- Yufu Zhu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiaying Yan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lei Zhou
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China
| | - Liangdong Feng
- Department of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
13
|
Kajitvichyanukul P, Nguyen VH, Boonupara T, Phan Thi LA, Watcharenwong A, Sumitsawan S, Udomkun P. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review. ENVIRONMENTAL RESEARCH 2022; 212:113336. [PMID: 35580668 DOI: 10.1016/j.envres.2022.113336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pesticides have been frequently used in agricultural fields. Due to the expeditious utilization of pesticides, their excessive usage has negative impacts on the natural environment and human health. This review discusses the successful implications of nanotechnology-based photocatalysis for the removal of environmental pesticide contaminants. Notably, various nanomaterials, including TiO2, ZnO, Fe2O3, nanoscale zero-valent iron, nanocomposite-based materials, have been proposed and have played a progressively essential role in wastewater treatment. In addition, a detailed review of the crucial reaction condition factors, including water matrix, pH, light source, temperature, flow rate (retention time), initial concentration of pesticides, a dosage of photocatalyst, and radical scavengers, is also highlighted. Additionally, the degradation pathway of pesticide mineralization is also elucidated. Finally, the challenges of technologies and the future of nanotechnology-based photocatalysis toward the photo-degradation of pesticides are thoroughly discussed. It is expected that those innovative extraordinary photocatalysts will significantly enhance the performance of pesticides degradation in the coming years.
Collapse
Affiliation(s)
- Puangrat Kajitvichyanukul
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu, India
| | - Thirasant Boonupara
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Apichon Watcharenwong
- School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand; Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sulak Sumitsawan
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Patchimaporn Udomkun
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Zhao J, Song R, Li H, Zheng Q, Li S, Liu L, Li X, Bai L, Liu K. New Formulation to Accelerate the Degradation of Pesticide Residues: Composite Nanoparticles of Imidacloprid and 24-Epibrassinolide. ACS OMEGA 2022; 7:29027-29037. [PMID: 36033692 PMCID: PMC9404473 DOI: 10.1021/acsomega.2c02820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Pest control effectiveness and residues of pesticides are contradictory concerns in agriculture and environmental conservation. On the premise of not affecting the insecticidal effect, the pesticide residues in the later stage should be degraded as fast as possible. In the present study, composite nanoparticles in a double-layer structure, consisting of imidacloprid (IMI) in the outer layer and plant hormone 24-epibrassinolide (24-EBL) in the inner layer, were prepared by the W/O/W solvent evaporation method using Eudragit RL/RS and polyhydroxyalkanoate as wall materials. The release of IMI in the outer layer was faster and reached the maximum within 24 h, while the release of 24-EBL in the inner layer was slower and reached the maximum within 96 h. The contact angle of the composite nanoparticles was half that of the 5% IMI emulsifiable concentrate (EC), and the deposition of composite nanoparticles on rice was twice that of 5% IMI EC, which increased the pesticide utilization efficiency. Compared with the common pesticide, 5% IMI EC, the insecticidal effect of the composite nanoparticles was stronger than that of planthoppers, with a much lower final residue amount on rice after 21 days. The composite nanoparticles prepared in this study to achieve sustained release of pesticides and, meanwhile, accelerate the degradation of pesticide residues have a strong application potential in agriculture for controlling pests and promoting crop growth.
Collapse
Affiliation(s)
- Jingyu Zhao
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Rong Song
- Institute
of Agricultural Environment and Ecology, Hunan academy of Agricultural Sciences, Changsha 410125, China
| | - Hui Li
- Department
of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Qianqi Zheng
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Shaomei Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lejun Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Xiaogang Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lianyang Bai
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| | - Kailin Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| |
Collapse
|
15
|
Piao M, Sun Y, Wang Y, Teng H. Preparation of BiVO
4
/RGO‐TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yixuan Wang
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| |
Collapse
|
16
|
Shawky A, Alshaikh H. Cobalt ferrite-modified sol-gel synthesized ZnO nanoplatelets for fast and bearable visible light remediation of ciprofloxacin in water. ENVIRONMENTAL RESEARCH 2022; 205:112462. [PMID: 34863987 DOI: 10.1016/j.envres.2021.112462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Currently, metal oxide photocatalysts is a green and facile tool for the elimination of emerging pollutants utilizing light illumination. Though, the wide bandgap energy (Eg), rapid recombination of photogenerated carriers, and photostability of these oxides represent critical issues before the actual application. Herein, we familiarise a sol-gel based synthesis of ZnO hexagonal nanoplatelets modified with CoFe2O4 (CFO) nanoparticles at minor loading (1.0-4.0 wt %) to yield CFO/ZnO nanoheterojunctions. The CFO/ZnO unveiled mesostructured surfaces at surface areas of 102-120 m2 g-1 and photoactive in the visible region with high. The CFO addition to ZnO reduced its Eg from 3.14 to 2.66 eV. The formed nanoheterojunctions were applied to remediate ciprofloxacin (CPF), as an antibiotic pollutant in wastewater. The 2.4 g L-1 3.0 wt % CFO-added ZnO exhibited a 100% removal of 10-ppm CPF within 45 min of visible-light irradiation and sustainable recycling ability for five consecutive runs at 97%. The sustainable performance of CFO/ZnO is ascribed to the suppression of photogenerated carriers and reduction of E by p-n nanoheterojunction formation. This study broadens the way for nanoheterojunction oxides for the destruction of pharmaceutical wastes under visible-light illumination.
Collapse
Affiliation(s)
- Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt.
| | - Hind Alshaikh
- Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
17
|
Suresh R, Rajendran S, Kumar PS, Vo DVN, Cornejo-Ponce L. Recent advancements of spinel ferrite based binary nanocomposite photocatalysts in wastewater treatment. CHEMOSPHERE 2021; 274:129734. [PMID: 33548641 DOI: 10.1016/j.chemosphere.2021.129734] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A lot of studies on spinel ferrites (MFe2O4, M = divalent metal ion) and their binary nanocomposites as photocatalysts in the decontamination of wastewater have been performed, because MFe2O4 nanoparticles are relatively stable, biocompatible and low-cost efficient photocatalyst. The separation of MFe2O4 photocatalyst is easy owing to its excellent magnetic behavior. With this background, the recent developments on photocatalytic performances of MFe2O4 based binary nanocomposites were comprehensively reviewed. Especially, a focus on MFe2O4/metal oxides, MFe2O4/carbon based materials, MFe2O4/polymers, MFe2O4/metal nanoparticles and MFe2O4/other compounds for the photocatalytic degradation of dyes, emerging contaminants and inorganic pollutants has been thoroughly given. The advantages of MFe2O4 based nanocomposites as photocatalysts were also discussed. In addition, the possible pathway of active free radical generation by these photocatalysts under visible and ultraviolet irradiation has been explained. A comparison of photocatalytic activities of MFe2O4 based binary nanocomposites with recent reports has been carried out. This review concludes that MFe2O4 based binary nanocomposites have potential capacity in water purification technology. Nevertheless, their practical utilization in water treatment plants still needs to be further studied.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
18
|
Theoretical Investigation of the Prospect to Tailor ZnO Electronic Properties with VP Thin Films. NANOMATERIALS 2021; 11:nano11061412. [PMID: 34071773 PMCID: PMC8227150 DOI: 10.3390/nano11061412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
The atomic and electronic structure of vanadium phosphide one- to four-atomic-layer thin films and their composites with zinc oxide substrate are modelled by means of quantum chemistry. Favorable vanadium phosphide to ZnO orientation is defined and found to remain the same for all the structures under consideration. The electronic structure of the composites is analyzed in detail. The features of the charge and spin density distribution are discussed.
Collapse
|
19
|
Kateshiya MR, Malek NI, Kailasa SK. Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Cui X, Liu X, Lin C, He M, Ouyang W. Activation of peroxymonosulfate using drinking water treatment residuals modified by hydrothermal treatment for imidacloprid degradation. CHEMOSPHERE 2020; 254:126820. [PMID: 32320832 DOI: 10.1016/j.chemosphere.2020.126820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, water treatment residuals (WTRs), a safe and valuable by-product containing iron, was used as a precursor for preparing effective activator (HWTRs) of peroxymonosulfate (PMS) for imidacloprid (IMD) degradation by hydrothermal treatment. Several affecting parameters on IMD degradation including PMS concentration, HWTRs dosage, initial pH and water matrix were discussed. The results of degradation experiments demonstrated that within the reaction time of 4 h, 97.64% of IMD could be removed with 0.5 g L-1 HWTRs and 1.5 mM PMS, and the acidic conditions were favorable for IMD degradation. Both sulfate radicals (SO4•-) and hydroxyl radicals (·OH) were generated to attack the target pollutant IMD, and ·OH was the dominating radical in the HWTRs/PMS system, which was confirmed by the results of radicals scavenging experiments, electron spin-resonance spectroscopy (ESR) tests and quantitative analysis. What's more, X-ray photoelectron (XPS) spectroscopy was used to further verify the activation mechanism. Consequently, the activation by Fe(II) on the surface of HWTRs might dominate the reaction was confirmed. In addition, the possible degradation pathways of IMD were proposed on the basis of the degradation intermediates identified by LC-MS. This study offers an innovative idea for modifying raw WTRs to prepare efficient catalysts to activate PMS under relatively mild conditions.
Collapse
Affiliation(s)
- Xiaoling Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. TOXICS 2020; 8:toxics8030065. [PMID: 32882955 PMCID: PMC7560415 DOI: 10.3390/toxics8030065] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229
| |
Collapse
|