1
|
Nayak S, Goveas LC. Adsorption of residual methyl green by extracellular polymeric substance of Lysinibacillus sp. SS1: A sustainable approach to wastewater treatment. Biodegradation 2025; 36:36. [PMID: 40317366 DOI: 10.1007/s10532-025-10136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Water pollution due to overuse of dyes or improper remediation in industrial settings is posing a threat to aquatic life, environment and health. Due to world-wide scarcity of clean water, treatment and re-utilization of wastewater is the top-most priority, aiding in achievement of sustainable development goals. Even after suitable wastewater treatment, residual pollutants persist, leading to their over-accumulation on recurrent release at the same site. Hence, in this context, the present study reports the adsorption of methyl green dye at trace concentrations (< 10 mg/L) by EPS secreted by Lysinibacillus SS1 (EPS-SS1). One-variable-at-a-time strategy was employed to obtain maximum adsorption % and capacity of 99.14 and 1057.11 mg/g at 8 mg/L methyl green, 7.5 mg/L EPS, at pH 8, 35 ºC, with no agitation in 40 min contact time. The data for adsorption process fit Freundlich isotherm and PSO kinetics at highest R2 of 0.9982 and 0.9859 for non-linear and linear forms respectively. This implied that the adsorbent surface is heterogenous, with varied surface energies, resulting in multi-layer adsorption. Therefore, it was confirmed that energy-efficient adsorption by EPS-SS1 is an effective, eco-friendly method of residual pollutants in contaminated wastewater with easy scale-up.
Collapse
Affiliation(s)
- Sneha Nayak
- Department of Biotechnology Engineering, Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Nitte, India
| | - Louella Concepta Goveas
- Department of Biotechnology Engineering, Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Nitte, India.
| |
Collapse
|
2
|
Manrique-Castillo EV, Marcos-Carrillo MDP, Checca-Huaman NR, Santos BLD, Macedo WAA, Barrero Meneses CA, Passamani EC, Greneche JM, Ramos-Guivar JA. Fast Kinetic Response and Efficient Removal of Methyl Blue and Methyl Green Dyes by Functionalized Multiwall Carbon Nanotubes Powered with Iron Oxide Nanoparticles and Citrus reticulata Peel Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:603. [PMID: 40278468 PMCID: PMC12029408 DOI: 10.3390/nano15080603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Maghemite nanoparticles (NPs) were successfully developed using phenolic-rich extracts (cyanidin) from Citrus reticulata peel residues. The 11 nm maghemite NPs, obtained at 3% w/v and at 353 K, presented the optimal synthesis conditions. To improve dye adsorption performance, the synergetic adsorption behavior between these 11 nm NPs and multiwall carbon nanotubes was demonstrated. Prior to the adsorption tests, the aging effect on NPs was carefully assessed using various analytical techniques, which clearly showed the magnetite-maghemite phase transition. However, this had no impact on the cyanidin coating or adsorption properties. A remarkable percentage removal of (93 ± 3)% for methylene blue and (84 ± 3)% for methylene green was achieved in short equilibrium times of 10 and 25 min, respectively, with an optimum pH value of 5.5. Reuse experiments revealed that 90% removal for both dyes was achieved between the second to seventh regeneration cycles. Organic loading during these cycles was effectively confirmed by X-ray photoelectron spectroscopy and magnetic measurements. Dye adsorption involves a two-step mechanism: (i) electrostatic adsorption by the negative surface groups of the adsorbent (isoelectric point of 5.2) and the dye cationic groups and (ii) π-π stacking interactions between the aromatic benzene rings of the dyes, the hexagonal skeleton of the multiwall carbon nanotubes, and the phenolic ring groups of the biosynthesized sample. These results suggest that the low-cost modified phenolic adsorbent can be successfully applied to dye removal from water with promising recycling properties.
Collapse
Affiliation(s)
- Erich V. Manrique-Castillo
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Mercedes del Pilar Marcos-Carrillo
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | | | - Bruno L. D. Santos
- Centro de Desenvolvimento da Tecnologia Nuclear–CDTN, Belo Horizonte 31270-901, Brazil
| | - Waldemar A. A. Macedo
- Centro de Desenvolvimento da Tecnologia Nuclear–CDTN, Belo Horizonte 31270-901, Brazil
| | - César A. Barrero Meneses
- Solid State Research Group, Faculty of Exact and Natural Sciences, University of Antioquia-UdeA, Medellín 050010, Colombia
| | - Edson C. Passamani
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans (IMMM UMR CNRS 6283), Le Mans Université, 72085 Le Mans Cedex 9, France
| | - Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|
3
|
Dey S, Kumari P, Samal PP, Rao VS, Dey B. Engineered mesoporous silica: a robust solution for inorganic and organic pollutant removal from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:462. [PMID: 40131560 DOI: 10.1007/s10661-025-13854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
This review explores the multifaceted role of functionalized mesoporous silica in removing both inorganic and organic pollutants from various environmental matrices. The growing interest in mesoporous silica for pollution remediation was examined. The synthesis and analysis of organosilica materials with mesoporous structures were discussed, highlighting their unique properties and potential applications. The review explains the mechanisms behind the adsorption of inorganic contaminants like heavy metals. It highlights the interaction of mercury (Hg(II)) with thiol-functionalized mesoporous silica and the effectiveness of amino, poly-amino groups, advanced ligands, and bi-functionalized adsorbents. It also discusses the selectivity and functionality of these materials, focusing on their ability to target specific pollutants and reduce environmental harm. Furthermore, the review addresses the crucial aspect of regeneration and reuse of absorbent materials, enhancing the sustainability of pollution remediation processes. In addition to inorganic pollutants, the review examines the adsorption of hazardous organic species by pristine and uncalcined mesoporous silica, as well as aluminum-containing mesoporous silica. The incorporation of cyclodextrins into mesoporous silica matrices is explored as a strategy to enhance the adsorption capacity of organic compounds. Oxyanions and radionuclides are also considered, underscoring the versatility of mesoporous silica-based adsorbents in addressing a wide range of environmental contaminants. This review provides insights into the potential of enhanced mesoporous silica as a versatile and efficient solution for the removal of both inorganic and organic pollutants, paving the way for sustainable environmental remediation strategies.
Collapse
Affiliation(s)
- Soumen Dey
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India.
| | - Pooja Kumari
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Priyanka Priyadarsini Samal
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Vullakula Srinivas Rao
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Sakchi, Jamshedpur, 831001, India
| |
Collapse
|
4
|
Fahim F, Imran M, Ramzan M, Nazeer Z, Ali A, Iqbal HMN. Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped Bi 2O 3-based NPs catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123968. [PMID: 39765059 DOI: 10.1016/j.jenvman.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
The chemical co-precipitation method was used to synthesize a variety of pure Bi2O3 and substituted Bi2-2xCoxCdxO3 NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics. Powder X-ray diffraction (PXRD), scanning electron microscope (SEM), Energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), and UV-visible techniques were used to explore the characteristics of the synthesized Bi2O3-based NPs. XRD measurements confirmed the monoclinic structure and a P21/c space group, whereas the particle size was between 22 and 41 nm. The SEM analysis gives the morphology of the synthesized NPs that were diverse and agglomerated platelets, whereas the EDX measurements provide the presence of Co and Cd in Bi2-2xCoxCdxO3 NPs. Additionally, FTIR investigations confirmed the existence of functional groups in Bi2-2xCoxCdxO3 NPs. The ultraviolet-visible absorbance region displaying a considerable red shift allowed for tuning of the band gap from 2.64 to 2.37eV. By analyzing the degradation of Reactive Black 5 (RB-5) dye in the presence of sunlight, pure Bi2O3 NPs showed 65.04% whereas the substituted Bi2-2xCoxCdxO3 NPs demonstrated enhanced photodegradation (86.40%) in 105 min. For the degradation of RB-5 dye, the effects of catalyst dosage, dye concentration, and pH variations were studied as well. The phytotoxicity experiment was also performed by comparing the germination of Triticum aestivum seeds in treated and untreated RB-5 dye. In the untreated dye solution, seed germination was 50% inhibited, and in the treated dye solution, germination was observed to be 80%. Additionally, recycling investigations were used to confirm the stability of these fabricated nanoparticles, and the results showed that nanomaterials exhibited significant stability and reusability. Co and Cd-doped Bi2O3 NPs are promising solar-active photocatalysts for dye removal from wastewater applications because of their improved photocatalytic activity and narrow bandgap.
Collapse
Affiliation(s)
- Farah Fahim
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Ramzan
- Institute of Physics, Baghdad Ul Jadeed Campus, The Islamia University of Bahawlpur, 63100, Pakistan
| | - Zarish Nazeer
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Awais Ali
- Department of Physics, COMSATS University, Park Road, Islamabad, 45550, Pakistan
| | - Hafiz M N Iqbal
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico.
| |
Collapse
|
5
|
Momina M, Ahmad K. Synthesis of biodegradable sodium alginate-based carbon dot-nanomagnetic composite (SA-FOCD) for enhanced water remediation using ANN modelling, RSM optimization, and economic analysis. Int J Biol Macromol 2024; 263:130253. [PMID: 38368976 DOI: 10.1016/j.ijbiomac.2024.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
This study involves the synthesis of a magnetic‑sodium alginate bio-composite embedded with carbon dots, designed to eliminate pollutants like dyes and metal ions and tackle environmental issues. The modified particles are effectively incorporated into the biopolymers for improved adsorption and regeneration performance using an economically viable and environmentally sustainable process. The composite's surface morphology and chemical structure have been extensively characterized through various analytical techniques. It has been found that CD-modified nanoparticles demonstrate good dispersion, abundance in functional groups, and excellent adsorption performance. The adsorption process variables have been optimized using Response Surface Methodology (RSM), resulting in a maximum adsorption capacity of 232.44 mg/g achieved under optimal conditions. An Artificial Neural Network (ANN) model with a topology of 3-5-5-1 is constructed to predict the adsorption capacity of composite, exhibiting superior predictive performance. The statistical physical model was also performed to understand the adsorption mechanism and orientation of dye molecules attached to the surface of the composite. The adsorption capacity using statistical physical method was found to be 467.57 mg/g. The composite exhibits good adsorption and regeneration performance in the column adsorption study. Furthermore, a detailed cost analysis of the synthesized composite was performed, ensuring its economic viability in real-world applications.
Collapse
Affiliation(s)
- Momina Momina
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi-110025, India.
| | - Kafeel Ahmad
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
6
|
Suteu D, Blaga AC, Rusu L, Tanasa AM. Saccharomyces pastorianus Residual Biomass Immobilized in a Polymer Matrix as a Biosorbent for Reactive Dye Removal: Investigations in a Dynamic System. Polymers (Basel) 2024; 16:491. [PMID: 38399869 PMCID: PMC10892803 DOI: 10.3390/polym16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The use of residual microbial biomass from various industries in emerging pollutant removal strategies represents a new area of research in the field. In this case, we examined how to remove reactive dyes from an aqueous solution utilizing a biosorbent made of residual biomass from immobilized Saccharomyces pastorianus (S. pastorianus) in a polymer matrix using a dynamic system. Fluidized bed column biosorption investigations were carried out on a laboratory scale. Brilliant Red HE-3B was chosen as the target molecule. The main parameters considered for this purpose were the flow rate (4.0 mL/min; 6.1 mL/min), initial pollutant concentration (51.2 mg/L; 77.84 mg/L), and biosorbent mass (16 g; 20 g). The experimental data of the fluidized bed study were evaluated by mathematical modeling. The Yoon-Nelson, Bohart-Adams, Clark, and Yan models were investigated for an appropriate correlation with the experimental data. An acceptable fit was obtained for a flow rate of 4 mL/min, an initial pollutant concentration of 51.2 mg/L, and a biosorbent amount of 20 g. The obtained results indicate that the biosorbent can be used efficiently in a dynamic system both for the removal of the studied dye and in extended operations with a continuous flow of wastewater. As a conclusion, the investigated biocomposite material can be considered a viable biosorbent for testing in the removal of reactive dyes from aqueous environments and creates the necessary conditions for the extension of studies toward the application of these types of biosorbents in the treatment of industrial effluents loaded with organic dyes.
Collapse
Affiliation(s)
- Daniela Suteu
- ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania; (D.S.); (A.C.B.); (A.M.T.)
| | - Alexandra Cristina Blaga
- ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania; (D.S.); (A.C.B.); (A.M.T.)
| | - Lacramioara Rusu
- Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Alexandra Maria Tanasa
- ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania; (D.S.); (A.C.B.); (A.M.T.)
| |
Collapse
|
7
|
Cheng W, Ma X, Chen H, Chen R, Wang D. Yttrium-modified drinking water treatment residue for efficient phosphorus removal: efficacy, mechanism, and reproducibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111611-111626. [PMID: 37819473 DOI: 10.1007/s11356-023-30159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The excessive presence of phosphate can cause eutrophication in water bodies. Yttrium has an extremely high affinity for phosphorus and is capable of forming stable complexes at low concentrations. Moreover, limitations in the resourcefulness of drinking water treatment residues were observed. In this study, a highly efficient phosphorus removal adsorbent (RJDWTR@Y) was prepared by calcination-alkali leaching-yttrium-loaded composite modification employing domestic drinking water treatment residue as raw material. And the effects of multiple factors on phosphate adsorption by RJDWTR@Y were examined. The results illustrated that the maximum adsorption capacity of the RJDWTR@Y for phosphate was 319.76 mg/g, with the chemical reaction of the multilayer as the predominant adsorption process. The adsorption mechanism is electrostatic gravitational force and the inner sphere complexation effect. RJDWTR@Y was effective against interference even at high concentrations of the coexisting anion. After five cycles, the desorption efficiency of phosphate was 75.11%. Filling the fixed bed with the material can efficiently remove phosphorus from the flowing liquid. The synthesis of RJDWTR@Y and the results of the study indicated that it has good application prospects. In addition to efficiently removing phosphorus, it can also recycle waste and achieve sustainability.
Collapse
Affiliation(s)
- Wenyu Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoying Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Haoyu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Rongsheng Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongtian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
8
|
Zayed AM, Metwally BS, Masoud MA, Mubarak MF, Shendy H, Abdelsatar MM, Petrounias P, Ragab AH, Hassan AA, Abdel Wahed MSM. Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems. RSC Adv 2023; 13:24887-24898. [PMID: 37614786 PMCID: PMC10442598 DOI: 10.1039/d3ra03105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Sugar beet crown (SBC) waste was employed to produce sustainable activated carbon (AC) by a thermo-chemical activation procedure using a fixed ratio of H3PO4/SBC (1 : 1 w/w ratio) at 550 °C/2 h. An activated carbon/polyamide nano-composite (AC/PA) was also prepared through the polymerization of the fabricated AC (90%) with polyamide (PA, 10%) synthetic textile waste using a proper dissolving agent at a specified w/w ratio with the employed polymer (formic acid/PA = 82/18%). Both AC and its derivative AC/PA were employed in the remediation of dyes from industrial wastewater in column systems, and their efficiencies were compared at various applied experimental conditions. The adsorption of the industrial dye waste (IDW) was a pH-, flow rate-, and bed thickness-controlled process by the regarded adsorbents. Kinetic studies confirmed the suitability of the Thomas equation over the Yoon and Nelson model in predicting the dynamic adsorption process of IDW by AC and AC/PA as was assured by the close agreement among the calculated and experimental uptake capacities of both adsorbents at the same applied flow rates, suggesting the chemisorption nature of IDW adsorption. Additionally, electrostatic attraction was the leading mechanism of IDW adsorption by AC and AC/PA composite with some advantages of the former over the latter.
Collapse
Affiliation(s)
- Ahmed M Zayed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Bahaa S Metwally
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
- Textile Technology Department, Faculty of Technology and Education, Beni-Suef University Beni-Suef 62521 Egypt
| | - Mostafa A Masoud
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute 1 Ahmed El-Zomor Street, El-Zohour Region, Nasr City Cairo 11765 Egypt
| | - Hussain Shendy
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Mahmoud M Abdelsatar
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| | - Petros Petrounias
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH) 15125 Athens Greece
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Abeer A Hassan
- Chemistry Department, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Mahmoud S M Abdel Wahed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University Beni Suef 62521 Egypt
| |
Collapse
|
9
|
Rezaeinia S, Ebrahimi AA, Dalvand A, Ehrampoush MH, Fallahzadeh H, Mokhtari M. Application of artificial neural network and dynamic adsorption models to predict humic substances extraction from municipal solid waste leachate. Sci Rep 2023; 13:12421. [PMID: 37528123 PMCID: PMC10393967 DOI: 10.1038/s41598-023-39373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Sustainable municipal solid waste leachate (MSWL) management requires a paradigm shift from removing contaminants to effectively recovering resources and decreasing contaminants simultaneously. In this study, two types of humic substances, fulvic acid (FA) and humic acid (HA) were extracted from MSWL. HA was extracted using HCl and NaOH solution, followed by FA using a column bed under diversified operations such as flow rate, input concentration, and bed height. Also, this work aims to evaluate efficiency of Artificial Neural Network (ANN) and Dynamic adsorption models in predicting FA. With the flow rate of 0.3 mL/min, bed height of 15.5 cm, and input concentration of 4.27 g/mL, the maximum capacity of FA was obtained at 23.03 mg/g. FTIR analysis in HA and FA revealed several oxygen-containing functional groups including carboxylic, phenolic, aliphatic, and ketone. The high correlation coefficient value (R2) and a lower mean squared error value (MSE) were obtained using the ANN, indicating the superior ability of ANN to predict adsorption capacity compared to traditional modeling.
Collapse
Affiliation(s)
- Salimeh Rezaeinia
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossien Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non‑Communicable Disease, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Flores D, Almeida CMR, Gomes CR, Balula SS, Granadeiro CM. Tailoring of Mesoporous Silica-Based Materials for Enhanced Water Pollutants Removal. Molecules 2023; 28:molecules28104038. [PMID: 37241778 DOI: 10.3390/molecules28104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The adsorptive performance of mesoporous silica-based materials towards inorganic (metal ions) and organic (dyes) water pollutants was investigated. Mesoporous silica materials with different particle size, surface area and pore volume were prepared and tailored with different functional groups. These materials were then characterised by solid-state techniques, namely vibrational spectroscopy, elemental analysis, scanning electron microscopy and nitrogen adsorption-desorption isotherms, allowing the successful preparation and structural modifications of the materials to be confirmed. The influence of the physicochemical properties of the adsorbents towards the removal of metal ions (Ni2+, Cu2+ and Fe3+) and organic dyes (methylene blue and methyl green) from aqueous solutions was also investigated. The results reveal that the exceptionally high surface area and suitable ζ-potential of the nanosized mesoporous silica nanoparticles (MSNPs) seem to favour the adsorptive capacity of the material for both types of water pollutants. Kinetic studies were performed for the adsorption of organic dyes by MSNPs and large-pore mesoporous silica (LPMS), suggesting that the process follows a pseudo-second-order model. The recyclability along consecutive adsorption cycles and the stability of the adsorbents after use were also investigated, showing that the material can be reused. Current results show the potentialities of novel silica-based material as a suitable adsorbent to remove pollutants from aquatic matrices with an applicability to reduce water pollution.
Collapse
Affiliation(s)
- Daniela Flores
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Carlos R Gomes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Salete S Balula
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos M Granadeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Mavinkattimath RG, Shetty Kodialbail V, Srinikethan G. Continuous fixed-bed adsorption of reactive azo dye on activated red mud for wastewater treatment-Evaluation of column dynamics and design parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57058-57075. [PMID: 36930314 DOI: 10.1007/s11356-023-26210-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Continuous adsorption of Remazol Brilliant Blue (RBB) dye in water onto sulfuric acid activated red mud (CATRM) in a fixed bed column was investigated. Breakthrough curves were obtained experimentally by varying the bed height (Z), influent flow rate (Q), and dye concentration(C0). The adsorption efficiency in the removal of RBB was favored at lower C0, higher Z, and lower Q. The maximum adsorption capacity of the activated red mud bed in the column was obtained at C0 = 70 mg/L, Z = 8 cm, and Q = 5 mL/min and found to be 106 mg/g. Important parameters of column dynamics and design such as mass transfer zone (MTZ) and length of unused bed (LUB) were evaluated from the breakthrough curves. The MTZ and LUB have varied with varying Z, which indicated the existence of nonideal conditions. Thomas model was found to be valid to predict the column dynamics and the model parameters were evaluated. Bed depth service time (BDST) model parameters were evaluated to facilitate the determination of packed bed height for the design of packed bed adsorption column. The bed could be regenerated with NaOH solution with desorption efficiency decreasing from 83.8 to 55.72% from the first to third cycle. A fixed bed of CATRM can be effectively used for continuous dye removal from industrial wastewater.
Collapse
Affiliation(s)
| | - Vidya Shetty Kodialbail
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar Post, Mangalore, 575025, India.
| | - Govindan Srinikethan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar Post, Mangalore, 575025, India
| |
Collapse
|
12
|
Berraaouan D, Essifi K, Addi M, Hano C, Fauconnier ML, Tahani A. Hybrid Microcapsules for Encapsulation and Controlled Release of Rosemary Essential Oil. Polymers (Basel) 2023; 15:polym15040823. [PMID: 36850108 PMCID: PMC9968220 DOI: 10.3390/polym15040823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The foremost objective of this work is to assess the microcapsules composition (polymer-based and polymer/clay-based) effect, on the release of rosemary essential oil into w/o medium and evaluate their antioxidant activity. Calcium alginate (CA) and calcium alginate/montmorillonite hybrid (CA-MTN) microcapsules were developed following an ionotropic crosslinking gelation and were used as host materials for the encapsulation of rosemary essential oil. The unloaded/loaded CA and hybrid CA-MTN microcapsules were characterized by Fourier transform infra-red (FT-ATR) spectroscopy, thermal analysis (TGA), scanning electron microscopy (SEM) and DPPH assay. The evaluation of the microcapsule's physicochemical properties has shown that the clay filling with montmorillonite improved the microcapsule's properties. The encapsulation efficiency improved significantly in hybrid CA-MTN microcapsules and exhibited higher values ranging from 81 for CA to 83% for hybrid CA-MTN and a loading capacity of 71 for CA and 73% for hybrid CA-MTN, owing to the large adsorption capacity of the sodic clay. Moreover, the hybrid CA-MTN microcapsules showed a time-extended release of rosemary essential oil compared to CA microcapsules. Finally, the DPPH assay displayed a higher reduction of free radicals in hybrid CA-MNT-REO (12.8%) than CA-REO (10%) loaded microcapsules. These results proved that the clay-alginate combination provides microcapsules with enhanced properties compared to the polymer-based microcapsules.
Collapse
Affiliation(s)
- Doha Berraaouan
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Kamal Essifi
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| |
Collapse
|
13
|
Arjomandi-Behzad L, Rofouei MK, Badiei A, Ghasemi JB. Simultaneous removal of crystal violet and methyl green in water samples by functionalised SBA-15. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 102:5919-5935. [DOI: 10.1080/03067319.2020.1804895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/25/2020] [Indexed: 06/19/2023]
Affiliation(s)
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Jahan B. Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Dovi E, Aryee AA, Liu M, Zhang X, Kani AN, Li J, Han R, Qu L. Biocomposite based on zirconium and amine-grafted walnut shell with antibacterial properties for the removal of Alizarin red in water: batch and column studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90530-90548. [PMID: 35870067 DOI: 10.1007/s11356-022-22081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Recent progress has been made in the application of novel zirconium-loaded amine-grafted walnut shells as multifunctional adsorbents for the remediation of Alizarin red (AR) and bacteria in aqueous solutions. The morphology and functional groups of ACWNS@Zr were studied using Brunauer-Emmett-Teller (BET) techniques, X-ray diffraction (XRD), pH point of zero charges (pHpzc), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Adsorption and regeneration tests were carried out in batch and column mode. The ACWNS@Zr had a Langmuir maximum capacity of 415.5 ± 6.1 mg g-1 at 303 K. The spread plate technique was used to evaluate the adsorbent's antimicrobial properties against Staphylococcus aureus and Escherichia coli. ACWNS@Zr exhibited inhibitory potential towards S. aureus and E. coli in the suspensions by 53.3% and 15.0%, respectively. Electrostatic interaction and complexation interaction could be the key mechanisms governing AR dye removal. Equilibrium isotherms fit Langmuir models better for both batch and column studies, while adsorption kinetics to pseudo-second-order and Thomas models for batch and column studies, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. Furthermore, columns' mass transfer capacity (B) increased as the concentration increased due to the enhanced driving force for AR adsorption onto ACWNS@Zr. Regeneration with NaOH solution of AR-loaded ACWNS@Zr was remarkable.
Collapse
Affiliation(s)
- Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Mingyu Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
15
|
Facile Synthesis of ZIF-67 for the Adsorption of Methyl Green from Wastewater: Integrating Molecular Models and Experimental Evidence to Comprehend the Removal Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238385. [PMID: 36500484 PMCID: PMC9735897 DOI: 10.3390/molecules27238385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Organic dyes with enduring colors which are malodorous are a significant source of environmental deterioration due to their virulent effects on aquatic life and lethal carcinogenic effects on living organisms. In this study, the adsorption of methyl green (MG), a cationic dye, was achieved by using ZIF-67, which has been deemed an effective adsorbent for the removal of contaminants from wastewater. The characterization of ZIF-67 was done by FTIR, XRD, and SEM analysis. The adsorption mechanism and characteristics were investigated with the help of control batch experiments and theoretical studies. The systematical kinetic studies and isotherms were sanctioned with a pseudo-second-order model and a Langmuir model (R2 = 0.9951), confirming the chemisorption and monolayer interaction process, respectively. The maximum removal capacities of ZIF-67 for MG was 96% at pH = 11 and T = 25 °C. DFT calculations were done to predict the active sites in MG by molecular electrostatic potential (MEP). Furthermore, both Molecular dynamics and Monte Carlo simulations were also used to study the adsorption mechanism.
Collapse
|
16
|
Liaqat S, Ibrahim TH, Khamis MI, Nancarrow P, Abouleish MY. Clay-Alginate Beads Loaded with Ionic Liquids: Potential Adsorbents for the Efficient Extraction of Oil from Produced Water. Polymers (Basel) 2022; 14:polym14204440. [PMID: 36298018 PMCID: PMC9609603 DOI: 10.3390/polym14204440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Produced water (PW) generated from the petroleum industry, during the extraction of oil and gas, has harmful impacts on human health and aquatic life, due to its complex nature. Therefore, it is necessary to treat it before discharging it into the environment in order to avoid serious environmental concerns. In this research, oil adsorption from PW was investigated using clay-alginate beads loaded with ionic liquids (ILs), as the adsorbent material. The effects of several process parameters, such as the initial concentration of oil, contact time, pH, and temperature on the removal efficiency of the beads, were analyzed and optimized. Different characterization methods, such as the Fourier transform infrared spectrophotometer (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and thermal gravimetric analysis (TGA), were used to investigate the surface morphology, the chemical bond structure and functional group, and the thermal stability of the ILs-based beads. The results revealed that the clay-alginate-ILs beads indicated a removal efficiency of 71.8% at the optimum conditions (600 ppm initial oil concentration, 70 min contact time, 10 pH, and at room temperature) with an adsorption capacity of 431 mg/g. The FTIR analysis confirmed the successful chemical bond interaction of the oil with the beads. The SEM analysis verified that the beads have a porous and rough surface, which is appropriate for the adsorption of oil onto the bead’s surface. The TGA analysis provides the thermal degradation profile for the clay-alginate-ILs. The beads used in the adsorption process were regenerated and used for up to four cycles.
Collapse
Affiliation(s)
- Shehzad Liaqat
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Taleb H. Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence: (T.H.I.); (P.N.)
| | - Mustafa I. Khamis
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Paul Nancarrow
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence: (T.H.I.); (P.N.)
| | - Mohamed Yehia Abouleish
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
17
|
Garlic Peel Surface Modification and Fixed-Bed Column Investigations towards Crystal Violet Dye. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/6904842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Garlic peel, a low-cost agro-waste, was explored as an adsorbent for the remediation of wastewater containing the crystal violet (CV) cationic dye. The garlic peel was treated with NaOH at 1 : 1.5 ratios in order to modify the surface and increase its porosity. The surface-modified garlic peel was ground to a smaller size in order to increase its surface area and used as an adsorbent in the continuous column investigations. Column parameters such as bed height, flow rate, and initial concentration were optimised and found that optimal removal efficiency was achieved at 3 ml rate of flow, 3 cm column depth, and 100 mg l-1 initial concentration. The surface-modified garlic peel exhibited a higher loading capacity of 99.9 mg g-1 towards CV at optimised conditions. SEM investigations confirmed the surface modification and increase in porosity of the garlic peel. The column data was tending to fit well with Thomas and Yoon-Nelson’s models suggesting the scalability to an industrial level. Regeneration of MGP was successful with 0.01 M HCl solution. These results conclude that garlic peel is a potential agro-waste material that can be used to mitigate water pollution.
Collapse
|
18
|
Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 2022; 8:e09930. [PMID: 35965978 PMCID: PMC9363969 DOI: 10.1016/j.heliyon.2022.e09930] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 01/12/2023] Open
Abstract
The study of adsorbent behaviour in laboratory conditions helps to predict the adsorption process in a large industrial scale. In this study, orange and lemon peels-derived activated carbon (OLPAC) was successfully synthesized and activated using phosphoric acid. Characterization was performed on the OLPAC and the material was used for the removal of methyl orange (MO) and methylene (MB) dyes from wastewater. The results of the scanning electron microscope and N2 adsorption/desorption examination affirmed that the prepared nanocomposite is permeable, which is an advantage for the efficient removal of contaminants. Optimal conditions for the batch removal process were investigated using a one-factor time approach in different conditions of adsorption (Dye concentration 50–200 mg L−1, pH 2–10, adsorbent mass 0.010–0.8, and contact time 5–180 min. The adsorption isotherm equilibrium data were examined by Langmuir, Freundlich, and Temkin, isotherm model. As shown by the correlation coefficient (R2), the data were best described by Langmuir isotherms with maximum adsorption capacities of 33 and 38 mg g─1 for methyl orange and methylene blue, respectively. Adsorption kinetic data were described using the pseudo-second-order model which suggests that adsorption of MO and MB was by chemisorption mechanism. The method was applicable to real wastewater samples, with satisfactory removal percentages of OM and MB (96 and 98 %). The results of this study show that OLPAC is an inexpensive biosorbent that is successfully utilized in removing methyl orange and methylene blue dyes from wastewater.
Collapse
|
19
|
Rusu L, Grigoraș CG, Simion AI, Suceveanu EM, Dediu Botezatu AV, Harja M. Biosorptive Removal of Ethacridine Lactate from Aqueous Solutions by Saccharomyces pastorianus Residual Biomass/Calcium Alginate Composite Beads: Fixed-Bed Column Study. MATERIALS 2022; 15:ma15134657. [PMID: 35806780 PMCID: PMC9267667 DOI: 10.3390/ma15134657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
In this study, ethacridine lactate removal from aqueous solution using a biosorbent material based on residual microbial biomass and natural polymers in fixed-bed continuous column was investigated. Composite beads of Saccharomyces pastorianus residual biomass and calcium alginate were obtained by immobilization technique. The prepared biosorbent was characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy, and analysis of point of zero charge value. Then, laboratory-scale experiments by fixed-bed column biosorption were conducted in continuous system. To this purpose, the column bed high (5 cm; 7.5 cm), initial pollutant concentration (20 mg/L; 40 mg/L), and solution flow through the column (0.6 mL/min; 1.5 mL/min) were considered the main parameters. Recorded breakthrough curves suggest that lower flow rates, greater bed heights, and a lower concentration of ethacridine lactate led to an increased biosorption of the target compound. The biosorption dynamic was investigated by nonlinear regression analysis using the Adams–Bohart, Yoon–Nelson, Clark, and Yan mathematical models. Conclusively, our research highlights, firstly, that the obtained biosorbent material has the required properties for retaining the ethacridine lactate from aqueous solution in continuous system. Secondly, it emphasizes that the modeling approach reveals an acceptable fitting with the experimental data for the Yoon–Nelson, Clark, and Yan models.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Faculty of Engineering, Vasile Alecsandri University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania; (A.-I.S.); (E.-M.S.)
- Correspondence: (L.R.); (C.-G.G.); (M.H.)
| | - Cristina-Gabriela Grigoraș
- Faculty of Engineering, Vasile Alecsandri University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania; (A.-I.S.); (E.-M.S.)
- Correspondence: (L.R.); (C.-G.G.); (M.H.)
| | - Andrei-Ionuț Simion
- Faculty of Engineering, Vasile Alecsandri University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania; (A.-I.S.); (E.-M.S.)
| | - Elena-Mirela Suceveanu
- Faculty of Engineering, Vasile Alecsandri University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania; (A.-I.S.); (E.-M.S.)
| | - Andreea V. Dediu Botezatu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania;
| | - Maria Harja
- Faculty of Chemical Engineering an Environmental Protection Cristofor Simionescu, Gheorghe Asachi Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
- Correspondence: (L.R.); (C.-G.G.); (M.H.)
| |
Collapse
|
20
|
Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar. SUSTAINABILITY 2022. [DOI: 10.3390/su14116484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Batik industrial effluent wastewater (BIE) contains toxic dyes that, if directly channeled into receiving water bodies without proper treatment, could pollute the aquatic ecosystem and, detrimentally, affect the health of people. This study is aimed at assessing the adsorptive efficacy of a novel low-cost sewage-sludge-based biochar (SSB), in removing color from batik industrial effluent (BIE). Sewage-sludge-based biochar (SSB) was synthesized through two stages, the first is raw-material gathering and preparation. The second stage is carbonization, in a muffle furnace, at 700 °C for 60 min. To investigate the changes introduced by the preparation process, the raw sewage sludge (RS) and SSB were characterized by the Brunauer–Emmett–Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy. The surface area of biochar was found to be 117.7 m2/g. The results of FTIR showed that some functional groups, such as CO and OH, were hosted on the surface of the biochar. Continuous fixed-bed column studies were conducted, by using SSB as an adsorbent. A glass column with a diameter of 20 mm was packed with SSB, to depths of 5 cm, 8 cm, and 12 cm. The volumes of BIE passing through the column were 384 mL/d, 864 mL/d, and 1680 mL/d, at a flow rate of 16 mL/h, 36 mL/h, and 70 mL/h, respectively. The initial color concentration in the batik sample was 234 Pt-Co, and the pH was kept in the range of 3–5. The effect of varying bed depth and flow rate over time on the removal efficiency of color was analyzed. It was observed that the breakthrough time differed according to the depth of the bed and changes in the flow rates. The longest time, where breakthrough and exhausting points occurred, was recorded at the highest bed and slowest flowrate. However, the increase in flow rate and decrease in bed depth made the breakthrough curves steeper. The maximum bed capacity of 42.30 mg/g was achieved at a 16 mL/h flowrate and 12 cm bed height. Thomas and Bohart–Adams mathematical models were applied, to analyze the adsorption data and the interaction between the adsorption variables. For both models, the correlation coefficient (R2) was more than 0.9, which signifies that the experimental data are well fitted. Furthermore, the adsorption behavior is best explained by the Thomas model, as it covers the whole range of breakthrough curves.
Collapse
|
21
|
Akram R, Almohaimeed ZM, Bashir A, Ikram M, Qadir KW, Zafar Q. Synthesis and characterization of pristine and strontium-doped zinc oxide nanoparticles for methyl green photo-degradation application. NANOTECHNOLOGY 2022; 33:295702. [PMID: 35504008 DOI: 10.1088/1361-6528/ac6760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Herein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV-vis absorption spectroscopy in the wavelength range of 250-800 nm. Through Tauc's plot, the slight decrease from 3.3 to 3.2 eV in band gap energy has been elucidated (in the case of Sr-doped ZnO), which has been further confirmed by the quenching in the intensity of Photoluminescence (PL) emission spectrum. This may be due to sub-band level formation between valence and conduction band, caused by the impregnation of Sr2+ions into ZnO host. The morphological study has also been performed using Field Emission Scanning Electron Microscope, which indicates nanoparticles (NPs) based surface texture for both photocatalysts. During the photocatalytic activity study, after 30 min irradiation of visible light, ∼65.7% and ∼84.8% photocatalytic degradation of MG dye has been achieved for pristine and Sr-doped (2 wt%) ZnO photocatalysts, respectively. The rate of photocatalytic reaction (K) has been observed to be ∼0.06399 min-1for Sr-doped (2 wt%), whereas nearly half magnitude ∼0.03403 min-1has been observed for pristine ZnO, respectively. The significantly improved photodegradation activity may be ascribed to the relatively broader optical absorption capability, surface defects and the enhanced charge separation efficiency of the Sr-doped ZnO photocatalyst.
Collapse
Affiliation(s)
- Rizwan Akram
- Department of Electrical Engineering, College of Engineering, Qassim University, PO Box 6677-Buraydah, 51452, Saudi Arabia
| | - Ziyad M Almohaimeed
- Department of Electrical Engineering, College of Engineering, Qassim University, PO Box 6677-Buraydah, 51452, Saudi Arabia
| | - Adeela Bashir
- Department of Physics, University of Management and Technology, 54000-Lahore, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, 54000-Lahore, Pakistan
| | - Karwan Wasman Qadir
- Computation Nanotechnology Research Lab (CNRL), Department of Physics, College of Education, Salahaddin University-Erbil, 44002-Erbil, Kurdistan Region, Iraq
| | - Qayyum Zafar
- Department of Physics, University of Management and Technology, 54000-Lahore, Pakistan
| |
Collapse
|
22
|
Abstract
Oil and gas production wells generate large volumes of water mixed with hydrocarbons (dispersed and dissolved), salts (ions), and solids. This ‘produced water’ (PW) is a waste stream that must be disposed of appropriately. The presence of toxic hydrocarbons and ions in PW makes it unsuitable for surface discharge or disposal in groundwater resources. Thus, PW is often injected into deep geological formations as a disposal method. However, the supply of global water sources is diminishing, and the demand for water in industrial, domestic, and agricultural use in water-stressed regions makes PW a potentially attractive resource. PW also contains valuable elements like lithium and rare earth elements, which are increasing in global demand. This review article provides an overview of constituents present in PW, current technologies available to remove and recover valuable elements, and a case study highlighting the costs and economic benefits of recovering these valuable elements. PW contains a promising source of valuable elements. Developing technologies, such as ceramic membranes with selective sorption chemistry could make elemental recovery economically feasible and turn PW from a waste stream into a multi-faceted resource.
Collapse
|
23
|
Ansari MJ, Jasim SA, Bokov DO, Thangavelu L, Yasin G, Khalaji AD. Preparation of new bio-based chitosan/Fe 2O 3/NiFe 2O 4 as an efficient removal of methyl green from aqueous solution. Int J Biol Macromol 2022; 198:128-134. [PMID: 34968538 DOI: 10.1016/j.ijbiomac.2021.12.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Modified chitosan with various functional groups has high potential as an efficient adsorbent in removing water pollution. In this study, new magnetic adsorbent, bio-based chitosan/Fe2O3/NiFe2O4, was successfully prepared by green chemistry route involving mixing of chitosan as core moiety and Fe2O3/NiFe2O4 nanocomposite, and slow evaporation of solvent. Synthesized chitosan/Fe2O3/NiFe2O4 was characterized by FT-IR, TGA, XRD, VSM and FE-SEM. The FT-IR and XRD results confirmed that the successful preparation of chitosan/Fe2O3/NiFe2O4. Uniform dispersion of Fe2O3/NiFe2O4 nanoparticles with low aggregation was confirmed by FE-SEM. The as-prepared magnetic chitosan/Fe2O3/NiFe2O4 was developed as solid phase adsorbent to remove methyl green (MG) dye from aqueous solutions. Several important parameters such as contact time, pH, temperature and adsorbent dosage were investigated systematically. The high and fast MG dye removal (≈ 80%) occurs after 30 min. The optimal conditions for MG removal was recorded at pH = 8, contact time of 60 min, adsorbent dosage of 0.2 g and 25 °C and displayed a high MG dye removal percentage of 96.51% and adsorption capacity of 77.22 mg/g.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz, University, Al-kharj, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Ghulam Yasin
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | | |
Collapse
|
24
|
Optimization of a fixed bed column adsorption of Fast Green dye on used black tea leaves from aqueous solution. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Highly Effective Cow Bone Based Biocomposite for the Sequestration of Organic Pollutant Parameter from Palm Oil Mill Effluent in a Fixed Bed Column Adsorption System. Polymers (Basel) 2021; 14:polym14010086. [PMID: 35012109 PMCID: PMC8747749 DOI: 10.3390/polym14010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
The reduction of chemical oxygen demand (COD) from palm oil mill effluent (POME) is very significant to ensure aquatic protection and the environment. Continuous adsorption of COD in a fixed bed column can be an effective treatment process for its reduction prior to discharge. Adsorption capacity of bone derived biocomposite synthesized from fresh cow bones, zeolite, and coconut shells for the reduction in the organic pollutant parameter was investigated in this study in a fixed bed column. The effect of influent flow rate (1.4, 2.0, and 2.6 mL/min) was determined at an influent pH 7. The optimum bed capacity on the fabricated composite of surface area of 251.9669 m2/g was obtained at 1.4 mL/min at breakthrough time of 5.15 h influent POME concentration. The experimental data were fitted to Thomas, Adams–Bohart, and Yoon–Nelson models fixed bed adsorption models. It was revealed that the results fitted well to the Adams Bohart model with a correlation coefficient of R2 > 0.96 at different influent concentration. Adsorption rate constant was observed to increase at lower flow rate influent concentration, resulting in longer empty bed contact time (EBCT) for the mass transfer zone of the column to reach the outlet of the effluent concentration. In general, the overall kinetics of adsorption indicated that the reduction in COD from POME using a bone-biocomposite was effective at the initial stage of adsorption. The pore diffusion model better described the breakthrough characteristics for COD reduction with high correlation coefficient. Shorter breakthrough time compared to EBCT before regeneration indicated that the bone composite was suitable and effective for the reduction in COD from POME using fixed bed column adsorption.
Collapse
|
26
|
Parimelazhagan V, Jeppu G, Rampal N. Continuous Fixed-Bed Column Studies on Congo Red Dye Adsorption-Desorption Using Free and Immobilized Nelumbo nucifera Leaf Adsorbent. Polymers (Basel) 2021; 14:polym14010054. [PMID: 35012077 PMCID: PMC8747315 DOI: 10.3390/polym14010054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 01/24/2023] Open
Abstract
The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.
Collapse
Affiliation(s)
- Vairavel Parimelazhagan
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Udupi District, India;
- Correspondence: ; Tel.: +91-903-627-0978
| | - Gautham Jeppu
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Udupi District, India;
| | - Nakul Rampal
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
27
|
Saadoon SJ, Jarosova M, Machek P, Kadhim MM, Ali MH, Khalaji AD. Methylene blue photodegradation using as‐synthesized
CeO
2
nanoparticles. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Marketa Jarosova
- Institute of Physic of the Czech Academy of Sciences Na Slovance Prague Czech Republic
| | - Pavel Machek
- Institute of Physic of the Czech Academy of Sciences Na Slovance Prague Czech Republic
| | - Mustafa M. Kadhim
- Department of Dentistry Kut University College Kut Iraq
- College of technical engineering The Islamic University Najaf Iraq
- Department of Pharmacy Osol Aldeen University College Baghdad Iraq
| | | | | |
Collapse
|
28
|
A comparative study on dark adsorption of dyes using mesoporous MCM-41 catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Srivastava N, Roy Choudhury A. Green Synthesis of pH-Responsive, Self-Assembled, Novel Polysaccharide Composite Hydrogel and Its Application in Selective Capture of Cationic/Anionic Dyes. Front Chem 2021; 9:761682. [PMID: 34778212 PMCID: PMC8579077 DOI: 10.3389/fchem.2021.761682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Dyes are one of the most hazardous chemicals causing significant environmental pollution and affecting water quality. Majority of the existing methods for dye removal and degradation involve synthetic membranes and use of hazardous chemicals, further resulting in secondary pollution. The present study reports polysaccharide based novel composite hydrogel as biodegradable matrix for pH-responsive selective adsorption of cationic/anionic dyes. This membrane showed pH-responsive adsorption of methyl green (MG) and methyl orange (MO) with similar adsorption equilibrium, i.e., 315 and 276 mg g-1, respectively. Interestingly, selective adsorption at different pH has allowed separation of dye mixtures that holds incredible industrial importance for dyes recovery. The hydrogel matrix was able to completely separate MG, a model cationic dye at neutral pH from the dye mixture whereas, it was possible to remove 60% MO, a model anionic dye at acidic pH. Furthermore, comprehensive isothermal and kinetic studies of adsorption revealed that Freundlich isotherm describing the multilayer coverage and pseudo-second-order kinetics were followed. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. In fact, the membrane was reusable for at least ten cycles and exhibited desorption efficiency of 80 and 60% for MO and MG, respectively, which may be further recycled to make the process environmentally sustainable. Overall, this study proposes an inexpensive, simple, biologically safe, and efficient adsorbent material for dye effluent treatment.
Collapse
Affiliation(s)
- Nandita Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
30
|
Patel H. Review on solvent desorption study from exhausted adsorbent. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101302] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Jóźwiak T, Filipkowska U. The use of air-lift adsorber with a floating filling from a cross-linked chitosan hydrogels for Reactive Black 5 removal. Sci Rep 2021; 11:13382. [PMID: 34183743 PMCID: PMC8238981 DOI: 10.1038/s41598-021-92856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
This work substantially extends knowledge on the possibilities of treating colored industrial wastewater via sorption under flow conditions. The presented study aimed to determine the effectiveness of Reactive Black 5 (RB5) dye sorption from aqueous solutions under dynamic (flow) conditions in an unconventional air-lift type loop reactor with a filling made of hydrogel chitosan sorbents. The dye was removed from mono-component solutions (deionized water + RB5) and synthetic dyeing wastewater containing RB5 dye, NaCl (3 g/L), and an anti-creasing agent—UNICREASE JET (2 g/L). The sorbents tested in the study included: unmodified chitosan (CHs), chitosan ionically cross-linked with sodium citrate (CHs-CIT), and chitosan covalently cross-linked with epichlorohydrin (CHs-ECH). Each experimental series aimed to determine: the bed break-through time (CE = 0.1 C0), time of depletion of the sorbent’s sorption properties (CE = C0), and maximal sorption capacity of the sorbents (Qmax). The data obtained under dynamic conditions were described using Thomas, Yoon–Nelson, and Bohart–Adams models. The volume of the solution effectively treated in the air-lift reactor was significantly affected by chitosan sorbent type. At C0 = 50 mg RB5/L, the adsorber with the filling made of 1 g d.m. CHs allowed for the effective treatment of 4.6 L of synthetic wastewater (Qmax = 1504.7 mg/g), whereas CHs-ECH ensured 34.6 L of the treated solution (Qmax = 3212.9 mg/g).
Collapse
Affiliation(s)
- Tomasz Jóźwiak
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957, Olsztyn, Poland.
| | - Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957, Olsztyn, Poland
| |
Collapse
|
33
|
Nasief OA, Abd AN. Synthesis of Nanocomposite and Study Degradation of Phenol Red Dye. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2021; 779:012057. [DOI: 10.1088/1755-1315/779/1/012057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This study aims to investigate the capability of semiconductors such as titanium dioxide, copper oxide and zinc oxide used to remove a hazardous Phenol Red organic dye texture from an aqueous solution. In this sheet, (ZnO), (CuO) and (TiO2) nanoparticles were synthesised utilise a simple chemical process. Nanocomposite has been synthesised by physical process. The purpose of the research was to investigate semiconductors’ capability, such as titanium dioxide, copper oxide, and zinc oxide, to take off a hazardous Phenol Red, a texture dye from an aqueous solution. These nanoparticles and composites’ structural properties described using (XRD) and Field Emission Scanning Electron Microscope (FE-SEM). This paper describes photocatalytic degradation of Phenol Red dye solution using composite CuO/ZnO /TiO2 nanocomposite photocatalysts, in the form of CuO/ ZnO/TiO2 composite as a paint on the Stainless Steel cell, under ultraviolet (UV) irradiations. The effect of factors affecting the reaction, such as the dye’s primary concentration, the effect of temperature, and the value of the acidic function, were studied. The experiential results show that the CuO/ ZnO/TiO2 composite can remove the Phenol Red from wastewater by X-ray diffraction (XRD) and an average volume of copper oxide molecules. The formula of Debar Shearer found that it is equal to 21.33 nm. For zinc oxide, the particle size constructed to be 18.13 nm and titanium oxide was found to be 42.63, and the particle size of the Nano chemical mixture was 20.48 nm. And CuO/ZnO /TiO2 Nanocomposite 20.48, respectively.
Collapse
|
34
|
Alazzawi HF, Salih IK, Albayati TM. Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Deliv 2021; 28:856-864. [PMID: 33928831 PMCID: PMC8812583 DOI: 10.1080/10717544.2021.1914778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a novel coronavirus that was isolated and identified for the first time in Wuhan, China in 2019. Nowadays, it is a worldwide danger and the WHO named it a pandemic. In this investigation, a functionalization post-synthesis method was used to assess the ability of an adapted SBA-15 surface as a sorbent to load the drug from an aqueous medium. Different characterization approaches were used to determine the characterization of the substance before and after functionalization such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller) BET surface area analysis, and thermal gravimetric analysis (TGA). Batch adsorption testing was carried out in a single adsorption device to find the impact of multiple variables on the drug amoxicillin charge output. The following parameters were studied: 0–72 hr. contact time, 20–120 mg/l initial concentration, and 20–250 mg of NH2-SBA-15 dose. The outcomes from such experiments revealed the strong influence and behavior of the amino-functional group to increase the drug's load. Drug delivery outcomes studies found that amoxicillin loading was directly related to NH2-SBA-15 contact time and dose, but indirectly related to primary concentration. It was observed that 80% of amoxicillin was loaded while the best release test results were 1 hour and 51%.
Collapse
Affiliation(s)
- Haneen F Alazzawi
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical and Petroleum Industries Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
35
|
Ahmad AA, Ahmad MA, Yahaya NKE, Karim J. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Bayramoglu G, Arica MY. Grafting of regenerated cellulose films with fibrous polymer and modified into phosphate and sulfate groups: Application for removal of a model azo-dye. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Bisht D, Sinha S, Nigam S, Bisaria K, Mehrotra T, Singh R. Adsorptive decontamination of paper mill effluent by nano fly ash: response surface methodology, adsorption isotherm and reusability studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1662-1676. [PMID: 33843750 DOI: 10.2166/wst.2021.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, adsorption of colour and other pollutants from agro-based paper mill effluent onto fabricated coal fly ash nanoparticles (CFA-N) have been investigated. Response surface methodology was applied to evaluate the operational conditions for maximum ouster of colour from effluent by nano structured CFA-N. Maximum reduction in colour (92.45%) and other pollutants were obtained at optimum conditions: 60 min interaction time, 60 g/L adsorbent dosage and 80 rpm agitation rate. The regression coefficient values (adjusted R2 = 0.7169; predicted R2 = 0.7539) established harmony between predicted and the experimental data. The adsorption equilibrium results matched perfectly with both Langmuir and Freundlich isotherms with maximum adsorption capacity of 250 platinum-cobalt/g. Additionally, the efficacy of CFA-N was also assessed in a continuous column mode. Furthermore, the feasibility of treated effluent for irrigation purpose was checked by growing the plant Solanum lycopersicum. Overall, the findings demonstrated the outstanding role of inexpensive and abundantly available CFA-N in treatment of paper mill effluent to the required compliance levels.
Collapse
Affiliation(s)
- Divya Bisht
- Centre for Fly Ash Research and Management, New Delhi, India; † These authors contributed equally to this work
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125 Noida 201313, Uttar Pradesh, India E-mail: ; † These authors contributed equally to this work
| | - Sonal Nigam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125 Noida 201313, Uttar Pradesh, India E-mail:
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125 Noida 201313, Uttar Pradesh, India E-mail:
| | - Tithi Mehrotra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125 Noida 201313, Uttar Pradesh, India E-mail:
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125 Noida 201313, Uttar Pradesh, India E-mail:
| |
Collapse
|
38
|
Gutiérrez-Mosquera H, Marrugo-Negrete J, Díez S, Morales-Mira G, Montoya-Jaramillo LJ, Jonathan MP. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124080. [PMID: 33142140 DOI: 10.1016/j.jhazmat.2020.124080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Total mercury (THg), methylmercury (MeHg) in water, sediments, macrophytes, fish and human health risks were analyzed and assessed from abandoned gold mining ponds (AGMPs)/ mining areas in Western Colombia to know its present environmental condition. Concentrations of THg in water (avg. 13.0 ± 13.73 ng L-1) was above the EPA threshold level (12 ng L-1), suggesting possible chronic effects. Sediment sample revealed that the ponds are methylated (%MeHg: 3.3-11). Macrophyte Eleocharis elegans presented higher THg content in the underground biomass (0.16 ± 0.13 µg g-1 dw) than in the aerial biomass (0.05 ± 0.04 µg g-1 dw) indicating accumulation of THg. MeHg was the most abundant chemical species in fish (MeHg/THg: 83.2-95.0%), signifying higher bioavailability and its risk towards human health. Fish samples (15%) indicate that THg were above WHO limit (0.5 µg g), particularly in Ctenolucius beani, Hoplias malabaricus and lowest in Sternopygus aequilabiatus and Geophagus pellegrini. Bioaccumulation and biomagnification of MeHg were higher in the carnivores representing a source of exposure and potential threat to human health. Fulton's condition factor (K) for bioaccumulation indicate a decrease with increasing trophic level of fishes. Overall results suggest, mercury species found in different AGMPs compartments should be monitored in this region.
Collapse
Affiliation(s)
- Harry Gutiérrez-Mosquera
- Facultad de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó, Colombia; Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
| | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Gladis Morales-Mira
- Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
| | | | - M P Jonathan
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México, México.
| |
Collapse
|
39
|
Hasan I, BinSharfan II, Khan RA, Alsalme A. L-Ascorbic Acid-g-Polyaniline Mesoporous Silica Nanocomposite for Efficient Removal of Crystal Violet: A Batch and Fixed Bed Breakthrough Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2402. [PMID: 33266260 PMCID: PMC7760523 DOI: 10.3390/nano10122402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
In the present study, mesoporous silica nanoparticles (MSNs) synthesized through sol-gel process and calcined at 600 °C were further surface functionalized by a copolymer chain of L-ascorbic acid (AS) and polyaniline (PAni) by in situ free radical oxidative polymerization reaction. The surface modification of MSNs by AS-g-PAni was confirmed by using various analytical techniques, namely FTIR, XRD, SEM-EDX, TEM and AFM. The composition of AS-g-PAni@MS was found to be composed of C (52.53%), N (20.30%), O (25.69%) and Si (1.49%), with 26.42 nm as the particle size. Further, it was applied for the adsorption of crystal violet (CV) dye under batch, as well as fixed bed method. RSM-BBD was taken into consideration, to optimize the various operational parameters effecting the adsorption through batch method. To explore maximum efficiency of the material, it was further subjected to adsorption of CV under fixed bed method, using the variable bed heights of 3.7, 5.4 and 8.1 cm. Based on high value of regression coefficient (R2) and low value of RMSE given as (0.99, 0.02) for 3.7 cm, (0.99, 0.03), the breakthrough data were very well defined by the Thomas model, with optimum concurrence of stoichiometric adsorption capacity values. The external mass transfer equilibrium data were well fitted by the Langmuir model, with maximum monolayer adsorption capacity of 88.42 mg g-1 at 303K, 92.51 mg g-1 at 313 K, 107.41 mg g-1 at 313 K and 113.25 mg g-1 at 333 K. The uptake of CV by AS-g-PAni@MS was well defined by pseudo second order model with rate constant K2 = 0.003 L mg-1 min-1 for 50 and 0.003 L mg-1 min-1 for 60 mg L-1 CV. The adsorption reaction was endothermic with enthalpy (ΔH) value of 3.62 KJ mol-1 and highly efficient for treatment of CV-contaminated water for more the five consecutive cycles.
Collapse
Affiliation(s)
- Imran Hasan
- Environmental Research Laboratory, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab 140301, India;
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (I.I.B.); (R.A.K.)
| |
Collapse
|
40
|
Dynamic Adsorption of Sulfamethoxazole from Aqueous Solution by Lignite Activated Coke. MATERIALS 2020; 13:ma13071785. [PMID: 32290268 PMCID: PMC7179028 DOI: 10.3390/ma13071785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
In this paper, lignite activated coke was used as adsorbent for dynamic column adsorption experiments to remove sulfamethoxazole from aqueous solution. The effects of column height, flow rate, initial concentration, pH and humic acids concentration on the dynamic adsorption penetration curve and mass transfer zone length were investigated. Results showed penetration time would be prolonged significantly by increasing column height, while inhibited by the increasement of initial concentration and flow rate. Thomas and Yoon-Nelson model and the Adams-Bohart model were used to elucidate the adsorption mechanism, high coefficients of R2 > 0.95 were obtained in Thomas model for most of the adsorption entries, which revealed that the adsorption rate could probably be dominated by mass transfer at the interface. The average change rates of mass transfer zone length to the changes of each parameters, such as initial concentration, the column height, the flow rate and pH, were 0.0003, 0.6474, 0.0076, 0.0073 and 0.0191 respectively, revealed that column height may play a vital role in dynamic column adsorption efficiency. These findings suggested that lignite activated coke can effectively remove sulfamethoxazole contaminants from wastewater in practice.
Collapse
|