1
|
Agha HM, Jawad AH, Wilson LD, Al-Essa K, ALOthman ZA. A chitosan-Staphylococcus epidermidis bacterial biocomposite adsorbent for removal of reactive orange 16 dye: Box-Behnken design optimization. Int J Biol Macromol 2025; 309:142752. [PMID: 40180078 DOI: 10.1016/j.ijbiomac.2025.142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
A biocomposite material of chitosan/Staphylococcus epidermidis bacterial biomass (CS/STEPI) was developed for removal of reactive orange 16 (RO16) dye. The properties of the CS/STEPI biocomposite were characterized using XRD, FESEM-EDX, FTIR spectroscopy and pHpzc. The adsorptive capacity of the CS/STEPI biocomposite for removal of RO16 dye was optimized through a Box-Behnken design employing a desirability function to achieve a 92.7 % dye removal. Three types of operational biosorption parameters were considered: CS/STEPI dose (0.02 to 0.1 g/100 mL), contact time (20 to 120 min), and solution pH (4 to 10). Kinetic and equilibrium biosorption isotherms revealed that the biosorption of RO16 dye onto the CS/STEPI biocomposite was described by the pseudo-second-order kinetic and the Langmuir adsorption models, respectively. The maximum dye adsorption capacity was estimated to be 119 mg/g at pH 4.3. The thermodynamic analysis of the biosorption process reveals that the process is exothermic and spontaneous overall. Biosorption of the RO16 dye onto the surface of the CS/STEPI biocomposite is attributed to multiple types of interactions: n-π, electrostatic, and hydrogen bonding. A reusability test shows that CS/STEPI biocomposite was reusable for five cycles of applications. Therefore, the CS/STEPI biocomposite has favourable potential for the removal of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Khansaa Al-Essa
- Department of Chemistry, Jerash University, 26150 Jerash, Jordan
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Alves SJDM, Santos MA, Neto JEDS, da Silva HN, Barbosa MCS, Fook MVL, Navarro RF, Silva SMDL. Combined Effect of pH and Neutralizing Solution Molarity on the Rheological Properties of Chitosan Hydrogels for Biomedical Applications. Gels 2025; 11:212. [PMID: 40136917 PMCID: PMC11942296 DOI: 10.3390/gels11030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are promising materials for biomedical applications due to their tunable properties. Despite significant research on optimizing the mechanical and rheological properties of chitosan hydrogels, a comprehensive analysis incorporating pH and molarity of the neutralizing solution is still lacking. This study addresses this gap by evaluating how these factors influence the rheological characteristics of chitosan hydrogels. The hydrogels were prepared using an acidic blend and were neutralized with sodium hydroxide solutions. Rheological characterization demonstrated that all samples exhibited pseudoplastic behavior, with viscosity decreasing under shear stress. Hydrogels with higher pH values exhibited lower viscosity, which is attributed to the reduced protonation and weaker electrostatic repulsion between chitosan chains. In contrast, more acidic conditions resulted in increased viscosity and greater chain entanglements. NaOH concentration impacted gel stability; lower concentrations resulted in more stable gels, whereas higher concentrations increased crosslinking but compromised integrity at elevated pH. These findings provide essential insights for optimizing chitosan hydrogels with customized properties, making them highly suitable for specific biomedical applications, such as advanced 3D-printed wound dressings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rômulo Feitosa Navarro
- Northeast Biomaterials Evaluation and Development Laboratory (CERTBIO), Graduate Program in Materials Science and Engineering (PPG-CEMat), Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (S.J.d.M.A.); (M.A.S.); (J.E.d.S.N.); (H.N.d.S.); (M.C.S.B.); (M.V.L.F.)
| | - Suédina Maria de Lima Silva
- Northeast Biomaterials Evaluation and Development Laboratory (CERTBIO), Graduate Program in Materials Science and Engineering (PPG-CEMat), Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (S.J.d.M.A.); (M.A.S.); (J.E.d.S.N.); (H.N.d.S.); (M.C.S.B.); (M.V.L.F.)
| |
Collapse
|
3
|
Al-Sadeq N, Perez-Puyana VM, Hashem MH, Harb MS, Romero A. Evaluation of biobased materials in the development of polymeric membranes for water capture and purification. Int J Biol Macromol 2025; 297:139791. [PMID: 39818383 DOI: 10.1016/j.ijbiomac.2025.139791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance. Scanning Electron Microscopy was used to analyze the fiber morphologies of the different membrane compositions. All tested membranes demonstrated robust mechanical properties. Notably, the PVC-Chitosan-Silica (8:2:4) membrane also showed good mechanical properties, combined with superior thermal stability. It excelled in functional tests, achieving water capture efficiencies up to 1.2 ml/g and lead removal rates as high as 92 %. Furthermore, this membrane displayed a lower mass loss at elevated temperatures, suggesting enhanced durability under thermal stress. These results underline the effective combination of chitosan and silica in improving the mechanical strength and thermal stability of polymeric membranes, making the PVC-Chitosan-Silica (8:2:4) particularly effective for advanced water management applications. The study illustrates the unique capabilities of chitosan and silica, advocating for their further exploration and optimization in future sustainable water treatment technologies, which could potentially lead to groundbreaking advancements in the field.
Collapse
Affiliation(s)
- Noor Al-Sadeq
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Víctor M Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Mohammad H Hashem
- Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad S Harb
- Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Gomha SM, El-Ghany NAA, Ebaid MS, Abolibda TZ, E. A. Zaki M, Alhilal M, Alhilal S, Mohamed NA. Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents. Catalysts 2024; 14:840. [DOI: 10.3390/catal14120840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
In the current study, pyromellitimide benzoyl thiourea cross-linked chitosan (PIBTU-CS) hydrogel, was evaluated as a green biocatalyst for the efficient synthesis of novel thiazole derivatives. The PIBTU-CS hydrogel showcased key advantages, such as an expanded surface area and superior thermal stability, establishing it as a potent eco-friendly catalyst. By employing PIBTU-CS alongside ultrasonic irradiation, we successfully synthesized a series of novel thiazoles through the reaction of 2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)-N-(4-chlorophenyl)acetamide with a variety of hydrazonoyl halides (6a–f) and α-haloketones (8a–c or 10a,b). A comparative analysis with TEA revealed that PIBTU-CS hydrogel consistently delivered significantly higher yields. This synthetic strategy provided several benefits, including mild reaction conditions, reduced reaction times, and consistently high yields. The robustness of PIBTU-CS was further underscored by its ability to be reused multiple times without a substantial reduction in catalytic efficiency. The structures of the synthesized thiazole derivatives were meticulously characterized using a range of analytical techniques, including IR, 1H-NMR, 13C-NMR, and mass spectrometry (MS), confirming their successful formation. These results underscore the potential of PIBTU-CS hydrogel as a sustainable and recyclable catalyst for the synthesis of heterocyclic compounds. Additionally, all synthesized products were tested for their anticancer activity against HepG2-1 cells, with several new compounds exhibiting good anticancer effects.
Collapse
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | | | - Manal S. Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Alhilal
- Department of Nursing, Faculty of Health Sciences, Mardin Artuklu University, Mardin 47200, Turkey
| | - Suzan Alhilal
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin 47200, Turkey
| | - Nadia A. Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
5
|
Keerthika K, Jayakumar M. Extraction, characterization and evaluation of antimicrobial activity of chitosan from adult Zophobas morio (Fabricius, 1776) (Coleoptera: Tenebrionidae). Int J Biol Macromol 2024; 279:135188. [PMID: 39216586 DOI: 10.1016/j.ijbiomac.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing demand for chitosan has led to the exploration of alternative sources, including insects. In this study, chitosan was extracted from Zophobas morio beetles with 19.17 % yield. FTIR and Raman Spectroscopy showed similar peaks in Z. morio chitosan (ZC) and commercial chitosan (CC). ZC showed low crystallinity (40.96 %) and high thermal residual mass (42.7 %) than CC. SEM imaging of ZC displayed pores ranging from 10 μm to 0.3 μm. EDX mapping revealed the homogenous presence of C, N and O elements. ZC exhibited low molecular weight (435.95 kDa) and low intrinsic viscosity (317.95 cm3/g) than CC (680.20 kDa and 480.87 cm3/g, respectively). Degree of deacetylation of ZC and CC was 96.24 % and 78.26 %, respectively. ZC showed antimicrobial activity against Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13883), Proteus mirabilis (ATCC 29906), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212) and Candida albicans (ATCC 90028) with zones of inhibition ranging from 5 mm to 11 mm. The minimum bactericidal concentration of ZC against K. pneumoniae and P. mirabilis was lower than CC. This study suggests the applicability of insect chitosan as an antimicrobial agent in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kannan Keerthika
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
| | - Manickkam Jayakumar
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Pinheiro CP, Tokura BK, Germano NS, de Moraes MA, Bresolin ITL. Adsorption of amoxicillin by chitosan and alginate biopolymers composite beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62930-62949. [PMID: 39466532 DOI: 10.1007/s11356-024-35293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Due to its widespread use and incomplete breakdown in the human body, amoxicillin has been detected in receiving water bodies. This raises significant concerns, like the promotion of antibiotic resistance, toxicity towards aquatic life, disruption of the natural balance of microbial communities within these water bodies, and the struggle of effectively removal by the traditional wastewater treatment plants. Consequently, exploring new processes to complement the existing methods is crucial. Adsorption, a promising highly efficient, selective, and versatile technique, can effectively remove contaminants, making it useful in various industries such as water treatment, pharmaceuticals, and environmental remediation. Several adsorbents are documented in the literature for drug adsorption; however, their fabrication often involves more complex steps and substances compared to chitosan and alginate, which are natural polymers that are biocompatible, non-toxic, and biodegradable. Their tunable properties and ease of modification enhance their efficacy in environmental remediation. Therefore, the novelty of this article is to understand the interaction of amoxicillin with chitosan and alginate adsorbents easily synthetized using the dripping technique. This approach allows us to explore basic principles that can be applied to more complex systems in future studies. The optimal pH for both beads was found to be 4, with adsorption capacities of 74.2 ± 0.3 mg g-1 for alginate and 80.4 ± 0.2 mg g-1 for chitosan, using 1 g of adsorbent. Kinetics studies indicated that external diffusion governs adsorption for alginate, while internal diffusion governs adsorption for chitosan. This approach underscores the potential of chitosan and alginate beads as effective adsorbents for mitigating antibiotic contamination in water systems, offering a sustainable complement to traditional treatment methods.
Collapse
Affiliation(s)
- Cláudio Pereira Pinheiro
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Beatriz Kaori Tokura
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Natália Soares Germano
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas - UNICAMP, Av. Albert Einstein, 500, Campinas, SP, 13083-852, Brazil
| | - Igor Tadeu Lazzarotto Bresolin
- Chemical Engineering Department, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil.
| |
Collapse
|
7
|
Ramamoorthy S, Prasanen P, Nehru S, Sundaramurthy A. Incorporation of CuS nanorods in polyelectrolyte multilayer microcapsules improved cancer cell cytotoxicity and signal intensity in ultrasound imaging. Int J Pharm 2024; 664:124638. [PMID: 39187033 DOI: 10.1016/j.ijpharm.2024.124638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The fabrications of hollow microcapsules (MCs) with new architecture and ability to incorporate different nanomaterials have received great interest for targeted cancer therapy. Recently, CuS based nanomaterials have been demonstrated to possess the ability to mimic Fenton-like activity in tumor environment and inducing cancer cell apoptosis by generating highly reactive oxygen species (ROS). In this study, we have developed poly(allylamine) hydrochloride (PAH)/dextran sulfate (DS) polyelectrolyte MCs capable of carrying doxorubicin (DOX) for targeted cancer therapy and ultrasound imaging. The electron microscopy investigations showed the formation of polymeric MCs of 3 µm in size with incorporated CuS NRs in their interior structure. The surface modification of MCs with folic acid (FA), and encapsulation of model hydrophilic molecules in MCs was studied by UV-Visible (UV-Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy and confocal laser scanning microscopy. The encapsulation efficiency of DOX was found to be 56 % and the release was found to be linear at pH 5.5 and 7.4 in the absence of ultrasound exposure. The ultrasound exposure resulted in sudden rupture of MCs at 1 MHz and 1 W/cm2 and caused burst release of DOX at both pH conditions. The FA decorated PAH/DS/CuS NR MCs exhibited improved anti-cancer activity against MDA-MB-231 cancer cells due to the synergistic effects of ultrasound mediated burst release of chemotherapeutic drug (DOX), glutathione-stimulated ROS and targeted cancer therapy. Further, the capsules showed better echogenicity than that of control PAH/DS MCs when imaged under medical ultrasound-scanning system. Hence, the MCs demonstrated in this study have huge potential for targeted cancer theranostics by offering an option to image the cancer cells during the treatment period.
Collapse
Affiliation(s)
- Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India; Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India
| | - Prasanth Prasanen
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India; Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India
| | - Sangamithra Nehru
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India; Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
8
|
Vijayasree VP, Abdul Manan NS. Bio-inspired magnetic chitosan/Iron oxide macromolecules for multiple anionic dyes adsorption from aqueous media. Int J Biol Macromol 2024; 277:134103. [PMID: 39047997 DOI: 10.1016/j.ijbiomac.2024.134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Organic anionic dyes are major water pollutants due to their low degradability caused by complex aromatic structures. Not only do they exert toxic, mutagenic, teratogenic, tumorigenic, and genotoxic effects, but they also decrease fertility and cause irritation to the skin and respiratory system in humans. This long-term toxicity has detrimental effects on aquatic organisms and their surroundings, resulting in an imbalanced ecosystem. In this study, a Cs@Fe3O4 magnetic biosorbent was synthesised to uptake three anionic dyes and characterised for FTIR, BET/BJH, XRD, TGA, VSM, and FESEM analyses. The biosorbent average surface area was confirmed to be 52.6524 m2/g, with average pore sizes of 7.3606 nm and 6.9823 nm for adsorption-desorption processes, respectively. Batch adsorption studies pH values, contact times, temperature, initial dye concentrations, and adsorbent dosages were examined. Several isotherm and kinetic models were studied to determine the adsorption mechanism. The adsorption data of these dyes at equilibrium was observed to match Langmuir's isotherm and pseudo-second-order kinetic models. The thermodynamic study revealed that the adsorption process for these dyes was an exothermic reaction. Maximum adsorption capacities for congo red, methyl orange, and metanil yellow were 117.77 mg/g, 137.77 mg/g, and 155.57 mg/g, respectively. The reusability of recovered Cs@Fe3O4 after dye adsorption was evaluated up to five continuous adsorption-desorption cycles for its possible industrial applications.
Collapse
Affiliation(s)
- V P Vijayasree
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ninie Suhana Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Center for Ionic Liquids, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Chonanant C, Chancharoen P, Kiatkulanusorn S, Luangpon N, Klarod K, Surakul P, Thamwiriyasati N, Singsanan S, Ngernyuang N. Biocomposite Scaffolds Based on Chitosan Extraction from Shrimp Shell Waste for Cartilage Tissue Engineering Application. ACS OMEGA 2024; 9:39419-39429. [PMID: 39346874 PMCID: PMC11425810 DOI: 10.1021/acsomega.4c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Chitosan-based scaffolding possesses unique properties that make it highly suitable for tissue engineering applications. Chitosan is derived from deacetylating chitin, which is particularly abundant in the shells of crustaceans. This study aimed to extract chitosan from shrimp shell waste (Macrobrachium rosenbergii) and produce biocomposite scaffolds using the extracted chitosan for cartilage tissue engineering applications. Chitinous material from shrimp shell waste was deproteinized and deacetylated. The extracted chitosan was characterized and compared to commercial chitosan through various physicochemical analyses. The findings revealed that the extracted chitosan shares similar trends in the Fourier transform infrared spectroscopy spectrum, energy dispersive X-ray mapping, and X-ray diffraction pattern to commercial chitosan. Despite differences in the degree of deacetylation, these results underscore its comparable quality. The extracted chitosan was mixed with agarose, collagen, and gelatin to produce the blending biocomposite AG-CH-COL-GEL scaffold by freeze-drying method. Results showed AG-CH-COL-GEL scaffolds have a 3D interconnected porous structure with pore size 88-278 μm, high water uptake capacity (>90%), and degradation percentages in 21 days between 5.08% and 30.29%. Mechanical compression testing revealed that the elastic modulus of AG-CH-COL-GEL scaffolds ranged from 44.91 to 201.77 KPa. Moreover, AG-CH-COL-GEL scaffolds have shown significant potential in effectively inducing human chondrocyte proliferation and enhancing aggrecan gene expression. In conclusion, AG-CH-COL-GEL scaffolds emerge as promising candidates for cartilage tissue engineering with their optimal physical properties and excellent biocompatibility. This study highlights the potential of using waste-derived chitosan and opens new avenues for sustainable and effective tissue engineering solutions.
Collapse
Affiliation(s)
- Chirapond Chonanant
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Pongrung Chancharoen
- Department
of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sirirat Kiatkulanusorn
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Nongnuch Luangpon
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kultida Klarod
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Pornprom Surakul
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Niramon Thamwiriyasati
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Sanita Singsanan
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Nipaporn Ngernyuang
- Thammasat
University Research Unit in Biomedical Science, Thammasat University, Pathum
Thani 12120, Thailand
- Chulabhorn
International College of Medicine, Thammasat
University, Pathum
Thani 12120, Thailand
| |
Collapse
|
10
|
El-Sawaf AK, El-Dakkony SR, Mubarak MF, Nassar AA. Synergistic effect of synthesized green nanocomposite of chitosan-activated carbon thin film (ACTF)@opuntia ficus-indica shell for removal of Sn (II) and As (V) ions from aqueous solution. CELLULOSE 2024. [DOI: 10.1007/s10570-024-05930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 01/03/2025]
|
11
|
Keanjun N, Rattanawongwiboon T, Sricharoen P, Laksee S, Saengsane N, Thepchuay Y, Porrawatkul P, Pimsen R, Kuyyogsuy A, Nuengmatcha P, Chanthai S, Subsadsana M, Limchoowong N. Ultrasound-assisted formation of composite materials from fish scale waste hydroxyapatite in the presence of gamma-irradiated chitosan for the removal of malachite green. RSC Adv 2024; 14:29737-29747. [PMID: 39355167 PMCID: PMC11443413 DOI: 10.1039/d4ra03102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
The fish processing sector produces millions of tons of trash annually-a biologically dangerous substance that could eventually turn into a source of pathogenic contamination. This work successfully shows how to extract tilapia fish scale hydroxyapatite with ultrasonic assistance and modify it using gamma-irradiated chitosan to remove malachite green from water samples. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and dynamic light scattering. Isotherm modeling was employed to investigate the sorption process of malachite green. The results revealed that the adsorbent could be used to remove malachite green in aqueous media, with a maximum adsorption capacity of 285.7 mg g-1. A pseudo-second-order model was then fitted to the kinetic data. The R 2 value of 0.9851 obtained indicated that the adsorption behavior was consistent with the Langmuir model. Analysis of the computed thermodynamic parameters revealed that the adsorption of the dye was a spontaneous and exothermic process. Proper waste management practices not only ensure environmental responsibility but also contribute to positive community relations by minimizing the impact on the local environment.
Collapse
Affiliation(s)
- Nattaporn Keanjun
- Department of Chemistry, Faculty of Science, Srinakharinwirot University Bangkok 10110 Thailand
| | - Thitirat Rattanawongwiboon
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization) Nakhon Nayok 26120 Thailand
| | - Phitchan Sricharoen
- Division of Health, Cosmetic and Anti-Aging Technology, Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon Bangkok 10800 Thailand
| | - Sakchai Laksee
- Division of Health, Cosmetic and Anti-Aging Technology, Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon Bangkok 10800 Thailand
| | - Naengnoi Saengsane
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Yanisa Thepchuay
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Paweena Porrawatkul
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Rungnapa Pimsen
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Arnannit Kuyyogsuy
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Prawit Nuengmatcha
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University Nakhon Si Thammarat 80280 Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Maliwan Subsadsana
- Program of Chemistry, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University Nakhon Ratchasima 30000 Thailand
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University Bangkok 10110 Thailand
| |
Collapse
|
12
|
Filipkowska U, Jóźwiak T. Dye Sorption from Mixtures on Chitosan Sorbents. Molecules 2024; 29:3602. [PMID: 39125007 PMCID: PMC11313689 DOI: 10.3390/molecules29153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This article presents studies on the sorption of the anionic dyes Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) from solutions of single dyes and from dye mixtures onto three chitosan sorbents-chitin, chitosan DD75% and chitosan DD95%. In this work, the influence of pH on sorption efficiency, the sorption equilibrium time for the tested anionic dyes and the sorption capacity in relation to the individual dyes and their mixtures were determined. It has been found that the sorption process for both dyes was most effective at pH 3 for chitin and chitosan DD75 and at pH 4 for chitosan DD95%. The obtained results were described by the double Langmuir equation (Langmuir 2). The obtained constants made it possible to determine the affinity of the tested dyes for the three sorbents and the sorption capacity of the sorbents. For RB5, the highest sorption capacity for chitosan DD95% was achieved with sorption from a single solution-of 742 mg/g DM and with sorption from mixed dyes-of 528 mg/g DM. For RY84, the highest efficiency was also achieved for chitosan DD95% and was 760 mg/g DM for a single dye solution and 437 mg/g DM for a mixture of dyes.
Collapse
Affiliation(s)
- Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland;
| | | |
Collapse
|
13
|
Kaewtrakulchai N, Samattakarn N, Chanpee S, Assawasaengrat P, Manatura K, Wongrerkdee S, Eiad-Ua A. Solid shrimp waste derived nanoporous carbon as an alternative bio-sorbent for oxytetracycline removal from aquaculture wastewater. Heliyon 2024; 10:e32427. [PMID: 38933975 PMCID: PMC11200350 DOI: 10.1016/j.heliyon.2024.e32427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, it has been critical to effectively remove oxytetracycline (OTC) from aquaculture wastewater before releasing into the environment. The adsorption process is recognized as an efficient pathway for removing OTC since it is a simple, stable, and cost-effective method. This study aims to develop nanoporous carbon entirely from shrimp waste (SW) via hydrothermal carbonization assisted with KOH activation. Existing KOH significantly increases the porosity of SW nanoporous carbon. The optimal SW porous carbon was obtained using 5 wt%KOH for activation, which had the largest surface area of 679.51 m2/g with the total pore volume of 0.458 cm3/g. Moreover, the SW porous carbon with the highest porosity was selected for the OTC adsorption. The Langmuir isotherm model and the pseudo-second-order kinetic model match the experimental data, implying that the adsorption mechanism is mono-layered adsorption due to micropores by chemisorption interaction. The adsorption capacity significantly improved by increasing the dosage of SW nanoporous carbon. The SW nanoporous carbon adsorption for OTC is primarily regulated by pore filling affected by hydrogen bonding, and π-π* interaction also plays a significant role. The SW nanoporous carbon showed an efficient OTC adsorption after 5 regeneration cycles. This work demonstrates biomass waste recycling and emphasizes the potential of aquatic food processing waste-derived nanoporous carbon for antibiotic adsorption.
Collapse
Affiliation(s)
- Napat Kaewtrakulchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Nippit Samattakarn
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirayu Chanpee
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pornsawan Assawasaengrat
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Kanit Manatura
- Department of Mechanical Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhonpatom, 73140, Thailand
| | - Sutthipoj Wongrerkdee
- Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Apiluck Eiad-Ua
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology, Bangkok, 10520, Thailand
| |
Collapse
|
14
|
Ayach J, Duma L, Badran A, Hijazi A, Martinez A, Bechelany M, Baydoun E, Hamad H. Enhancing Wastewater Depollution: Sustainable Biosorption Using Chemically Modified Chitosan Derivatives for Efficient Removal of Heavy Metals and Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2724. [PMID: 38893988 PMCID: PMC11173971 DOI: 10.3390/ma17112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Driven by concerns over polluted industrial wastewater, particularly heavy metals and dyes, this study explores biosorption using chemically cross-link chitosan derivatives as a sustainable and cost-effective depollution method. Chitosan cross-linking employs either water-soluble polymers and agents like glutaraldehyde or copolymerization of hydrophilic monomers with a cross-linker. Chemical cross-linking of polymers has emerged as a promising approach to enhance the wet-strength properties of materials. The chitosan thus extracted, as powder or gel, was used to adsorb heavy metals (lead (Pb2+) and copper (Cu2+)) and dyes (methylene blue (MB) and crystal violet (CV)). Extensive analysis of the physicochemical properties of both the powder and hydrogel adsorbents was conducted using a range of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM), as well as 1H and 13C nuclear magnetic resonance (NMR). To gain a comprehensive understanding of the sorption process, the effect of contact time, pH, concentration, and temperature was investigated. The adsorption capacity of chitosan powder for Cu(II), Pb(II), methylene blue (MB), and crystal violet (CV) was subsequently determined as follows: 99, 75, 98, and 80%, respectively. In addition, the adsorption capacity of chitosan hydrogel for Cu(II), Pb(II), MB, and CV was as follows: 85, 95, 85, and 98%, respectively. The experimental data obtained were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The isotherm study revealed that the adsorption equilibrium is well fitted to the Freundlich isotherm (R2 = 0.998), and the sorption capacity of both chitosan powder and hydrogel was found to be exceptionally high (approximately 98%) with the adsorbent favoring multilayer adsorption. Besides, Dubinin has given an indication that the sorption process was dominated by Van der Waals physical forces at all studied temperatures.
Collapse
Affiliation(s)
- Jana Ayach
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Luminita Duma
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343, Jordan;
| | - Akram Hijazi
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
| | - Agathe Martinez
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), Place Eugène Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| | - Hussein Hamad
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
| |
Collapse
|
15
|
Celebi Ö, Bahadir T, Şimşek İ, Aydın F, Kahve Hİ, Tulun Ş, Büyük F, Celebi H. Surface defects due to bacterial residue on shrimp shell. Int J Biol Macromol 2024; 263:130353. [PMID: 38403225 DOI: 10.1016/j.ijbiomac.2024.130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The changes in the surface chemistry and morphological structure of chitin forms obtained from shrimp shells (ShpS) with and without microorganisms were evaluated. Total mesophilic aerobic bacteria (TMAB), estimated Pseudomonas spp. and Enterococcus spp. were counted in Shp-S by classical cultural counting on agar medium, where the counts were 6.56 ± 0.09, 6.30 ± 0.12, and 3.15 ± 0.03 CFU/g, respectively. Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM)/Energy dispersed X-ray (EDX) were used to assess the surface chemistry/functional groups and morphological structure for ChTfree (non-microorganism), and ChTmo (with microorganisms). ChTfree FTIR spectra presented a detailed chitin structure by OH, NH, and CO stretching vibrations, whereas specific peaks of chitin could not be detected in ChTmo. Major differences were also found in SEM analysis for ChTfree and ChTmo. ChTfree had a flat, prominent micropore, partially homogeneous structure, while ChTmo had a layered, heterogeneous, complex dense fibrous, and lost pores form. The degree of deacetylation was calculated for ChTfree and ChTmo according to FTIR and EDX data. The results suggest that the degree of deacetylation decreases in the presence of microorganisms, affecting the production of beneficial components negatively. The findings were also supported by the molecular docking model.
Collapse
Affiliation(s)
- Özgür Celebi
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Halil İbrahim Kahve
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Hakan Celebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
16
|
Solgi M, Mohamed MH, Udoetok IA, Steiger BGK, Wilson LD. Evaluation of a granular Cu-modified chitosan biocomposite for sustainable sulfate removal from aqueous media: A batch and fixed-bed column study. Int J Biol Macromol 2024; 260:129275. [PMID: 38242408 DOI: 10.1016/j.ijbiomac.2024.129275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Adsorption-based treatment of sulfate contaminated water sources present challenges due to its favourable hydration characteristics. Herein, a copper-modified granular chitosan-based biocomposite (CHP-Cu) was prepared and characterized for its sulfate adsorption properties at neutral pH via batch equilibrium and fixed-bed column studies. The CHP-Cu adsorbent was characterized by complementary methods: spectroscopy (IR, Raman, X-ray photoelectron), thermal gravimetry analysis (TGA) and pH-based surface charge analysis. Sulfate adsorption at pH 7.2 with CHP-Cu follows the Sips isotherm model with a maximum adsorption capacity (407 mg/g) that exceeds most reported values of granular biosorbents at similar conditions. For the dynamic adsorption study, initial sulfate concentration, bed height, and flow rate were influential parameters governing sulfate adsorption. The Thomas and Yoon-Nelson models yield a sulfate adsorption capacity (146 mg/g) for the fixed bed system at optimized conditions. CHP-Cu was regenerated over 5 cycles (33 % to 31 %) with negligible Cu-leaching. The adsorbent also displays excellent sulfate uptake properties, regenerability, and sustainable adsorbent properties for effective point-of-use sulfate remediation in aqueous media near neutral pH (7.2). This sulfate remediation strategy is proposed for other oxyanion systems relevant to contaminated environmental surface and groundwater resources.
Collapse
Affiliation(s)
- Mostafa Solgi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Mohamed H Mohamed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Inimfon A Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Bernd G K Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|
17
|
Zhang Z, Weng B, Hu Z, Si Z, Li L, Yang Z, Cheng Y. Chitosan‑iodine complexes: Preparation, characterization, and antibacterial activity. Int J Biol Macromol 2024; 260:129598. [PMID: 38253142 DOI: 10.1016/j.ijbiomac.2024.129598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Bacterial infections have always been a major threat to public health, and the development of effective antibacterial substances from natural polymers is crucial. 2-Aminoisonicotinic acid (AN) was grafted onto chitosan by 1-ethyl-(3-dimethylaminopropyl)carbodiimide-mediated coupling reactions, and then modified chitosan‑iodine (CSAN-I) complexes were prepared by solvent-assisted grinding. The samples were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction, confirming that CSAN-I complexes had been successfully prepared. Thermogravimetric (TG) analysis indicated that the chemical modification of chitosan and iodine complexation reduced the thermal stability; X-ray photoelectron spectroscopy (XPS) analysis revealed that 81 % of the iodine in CSAN-I complex was in the form of triiodide ions. The iodine contents of three CSAN-I complexes (CSAN-I-1, CSAN-I-2 and CSAN-I-3) were 1.59 ± 0.22 %, 3.18 ± 0.26 %, and 5.56 ± 0.41 %, respectively. The antibacterial effects were evaluated in vitro, and the results indicated that CSAN-I complexes had strong antibacterial activities against both E. coli and S. aureus. In particular, CSAN-I-3 exhibited the best antibacterial effect. In addition, CSAN-I-3 was nontoxic to L929 cells with good cytocompatibility. Therefore, CSAN-I complexes can be considered as promising candidates for wound management in clinical applications.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boya Weng
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhenyu Si
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lefan Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziming Yang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yu Cheng
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
18
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
19
|
Zhang M, An H, Gu Z, Zhang YC, Wan T, Jiang HR, Zhang FS, Jiang BG, Han N, Wen YQ, Zhang PX. Multifunctional wet-adhesive chitosan/acrylic conduit for sutureless repair of peripheral nerve injuries. Int J Biol Macromol 2023; 253:126793. [PMID: 37709238 DOI: 10.1016/j.ijbiomac.2023.126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| |
Collapse
|
20
|
Deokar GS, Deokar AM, Kshirsagar SJ, Buranasompob A, Nirmal NP. Extraction, physicochemical characterization, functionality, and excipient ability of corn fiber gum-starch isolate from corn milling industry waste. Int J Pharm 2023; 645:123401. [PMID: 37696343 DOI: 10.1016/j.ijpharm.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Corn processing industries generate an extensive fibrous byproduct consisting of corn fiber gum (CFG) and residual starch (S). The present study hypothesized that CFG and S could be isolated as a single crosslinked conjugate. The isolated CFG-S conjugate was acidic, with a pKa value of 11.49, and a swelling index of 99.60%. Henderson-Hasselbalch equation predicted negligible ionization throughout the gastrointestinal pH range. The DSC thermogram highlights glass transition and temperature-specific structure stabilization through the exothermic crystallization domain. FTIR, SEM & XRD confirmed the structural conjugation and integrity of the conjugate. Tablets containing Venlafaxine hydrochloride as a model drug were prepared using CFG-S (14 and 57%) as excipient by wet granulation method. Percentage cumulative drug release with low concentration was up to 99.67175 ± 0.09 % in 5 h whereas with high concentration, it was extended to 12 h (P < 0.05). Korsemayer-Peppas release exponent indicates zero order (R2 = 0.9935) kinetics with super case-II anomalous transport showing diffusion and erosion as drug release mechanisms. The results confirmed that CFG-S isolate could act as a good binding agent at low concentrations and release extending cross-linked matrix former at a higher concentration for release retardant excipient.
Collapse
Affiliation(s)
- Gitanjali Sambhajirao Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Archana Maruti Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sanjay Jayprakash Kshirsagar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Athisaya Buranasompob
- Center for Innovation and Reference on Food for Nutrition, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Deaprtment of Food Science, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
21
|
Rahman MM, Maniruzzaman M. A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. RESULTS IN ENGINEERING 2023; 19:101362. [DOI: 10.1016/j.rineng.2023.101362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
22
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
23
|
Hyaluronic Acid-Coated Chitosan Nanoparticles as an Active Targeted Carrier of Alpha Mangostin for Breast Cancer Cells. Polymers (Basel) 2023; 15:polym15041025. [PMID: 36850308 PMCID: PMC9965946 DOI: 10.3390/polym15041025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.
Collapse
|
24
|
Bertolo MRV, Dias LD, Oliveira Filho JGD, Alves F, Marangon CA, Amaro Martins VDC, Ferreira MD, Bagnato VS, Guzzi Plepis AMD, Bogusz S. Central composite design optimization of active and physical properties of food packaging films based on chitosan/gelatin/pomegranate peel extract. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Dat NM, Huong LM, Cong CQ, Hai ND, Nam NTH, Thinh DB, Duy HK, Danh TT, Loi PHHP, Phong MT, Hieu NH. Green synthesis of chitosan-based membrane modified with uniformly micro-sizing selenium particles decorated graphene oxide for antibacterial application. Int J Biol Macromol 2022; 220:348-359. [PMID: 35981679 DOI: 10.1016/j.ijbiomac.2022.08.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
In this study, selenium microparticles (SeMPs) were green-synthesized by utilizing the Terminalia catappa leaves extract as an effective reducing agent. SeMPs were then decorated onto graphene oxide (GO) with the assistance of ultrasound using the ex-situ technique to obtain the SeMPs-GO composite. SeMPs and SeMPs-GO were thoroughly characterized with modern analytical methods, whereas the antibacterial performance of the composites was evaluated via the optical density method. Particularly, SeMPs-GO held up an inhibition of 99 % against both Gram-positive and Gram-negative bacteria strains as well as restrained 50 % of fungal activity. SeMPs-GO was additionally incorporated onto chitosan (CTS) to collect the SeMPs-GO/CTS membrane which was characterized by similar advanced analysis methods. The antibacterial property of the membrane was determined by the inhibition zone diameter. Furthermore, the membrane exhibited good thermal and mechanical characteristics, showing no sign of degradation at a temperature below 260 °C, and a tensile strength of 38 N/mm2. The swelling degree reached 148 % after 6 h of immersion in water, which was stable after 72 h (153 %). The obtained membrane can potentially be utilized for medical and food applications.
Collapse
Affiliation(s)
- Nguyen Minh Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Le Minh Huong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Che Quang Cong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Doan Ba Thinh
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Huynh Khanh Duy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Tong Thanh Danh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Pham Hoang Huy Phuoc Loi
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Mai Thanh Phong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
26
|
Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: Performance evaluation and optimization using BBD-RSM approach. ENVIRONMENTAL RESEARCH 2022; 209:112861. [PMID: 35143802 DOI: 10.1016/j.envres.2022.112861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, Imam Abdulrahman bin Faisal University, Dammam, 31982, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ihsanullah Ihsanullah
- Center for Environment & Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia; Center of Research Excellences in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
27
|
Surface Chemical and Morphological Analysis of Chitosan/1,3-β-d-Glucan Polysaccharide Films Cross-Linked at 90 °C. Int J Mol Sci 2022; 23:ijms23115953. [PMID: 35682630 PMCID: PMC9180171 DOI: 10.3390/ijms23115953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022] Open
Abstract
The cross-linking temperature of polymers may affect the surface characteristics and molecular arrangement, which are responsible for their mechanical and physico-chemical properties. The aim of this research was to determine and explain in detail the mechanism of unit interlinkage of two-component chitosan/1,3-β-d-glucan matrices gelled at 90 °C. This required identifying functional groups interacting with each other and assessing surface topography providing material chemical composition. For this purpose, various spectroscopic and microscopic approaches, such as attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were applied. The results indicate the involvement mainly of the C-C and C-H groups and C=O⋯HN moieties in the process of biomaterial polymerization. Strong chemical interactions and ionocovalent bonds between the N-glucosamine moieties of chitosan and 1,3-β-d-glucan units were demonstrated, which was also reflected in the uniform surface of the sample without segregation. These unique properties, hybrid character and proper cell response may imply the potential application of studied biomaterial as biocompatible scaffolds used in regenerative medicine, especially in bone restoration and/or wound healing.
Collapse
|
28
|
Balde A, Kim SK, Abdul NR. Crab (Charybdis natator) exoskeleton derived chitosan nanoparticles for the in vivo delivery of poorly water-soluble drug: Ibuprofen. Int J Biol Macromol 2022; 212:283-293. [PMID: 35609839 DOI: 10.1016/j.ijbiomac.2022.05.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
The study aims to extract and purify chitosan (CS) from the exoskeleton of crab (C. natator) and develop ibuprofen (IBU) encapsulated CS nanoparticles (IBU-CSNPs). Analysis of purified CS revealed characteristic functional and crystallinity peaks. Moreover, morphological analysis of prepared IBU-CSNPs showed uniform spherical shape with a size range of 40-100 nm whereas encapsulation efficiency (EE%) and loading capacity (LC%) were estimated to be 68.94 ± 1.61% and 28 ± 1.18% respectively. Further, in vitro release profile of IBU from IBU-CSNPs was observed to be in biphasic form with initial release up to 15 h followed by the sustained release in different test conditions. Further, the effects of purified CS on the viability of RAW264.7 cells exhibited no toxic effects in higher concentrations. Furthermore, fluorescein isothiocyanate (FITC) conjugated nanoparticles (FITC-IBU-CSNPs) were investigated on in vivo model of adult zebrafish for time-dependent circulation and accumulation of the drug through the nano-carrier system. It was observed that the drug diffusion from the nanoparticles was in a sustained manner throughout the gastrointestinal region which resulted in suppression of inflammation. Overall, this study provides an effective and facile process for preparing a crab CS-based nano-carrier system used for the delivery of IBU in vivo which may help in the curing of prolonged chronic inflammatory diseases. Moreover, it may also help to reduce adverse effects of these drugs in the gastrointestinal tract such as ulcers and bleeding.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Life Science, Korea Maritime and Ocean University, Busan, South Korea
| | - Nazeer Rasool Abdul
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India.
| |
Collapse
|
29
|
Olafadehan OA, Bello VE, Amoo KO. Production and characterization of composite nanoparticles derived from chitosan, CTAB and bentonite clay. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ekambaram R, Sugumar M, Karuppasamy S, Prasad P, Dharmalingam S. Fabrication of wheatgrass incorporated PCL/chitosan biomimetic nanoscaffold for skin wound healing: In vitro and In silico analysis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydr Polym 2022; 288:119356. [DOI: 10.1016/j.carbpol.2022.119356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023]
|
32
|
Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Rahayu AP, Islami AF, Saputra E, Sulmartiwi L, Rahmah AU, Kurnia KA. The impact of the different types of acid solution on the extraction and adsorption performance of chitin from shrimp shell waste. Int J Biol Macromol 2022; 194:843-850. [PMID: 34838575 DOI: 10.1016/j.ijbiomac.2021.11.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/05/2022]
Abstract
The properties of chitin-based adsorbents varied among studies since they are influenced by different factors, such as the types of base and acid used to extract the chitin. Therefore, this works aimed to investigate the impact of four different acid solutions on the extraction and properties of chitin from shrimp shell waste, and to evaluate the adsorption performance of the obtained chitin on removing dye from an aqueous solution. The result showed that H2SO4, HCl, and HNO3 could remove high minerals from the shrimp shell, while the effect of CH3COOH was inferior. The Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) indicated that the extracted chitin was α-amorphous structure, regardless of the type of acid solution. However, the type of acid solution influenced the crystallinity index of the extracted chitin. The Scanning Electron Microscope (SEM) showed both fibrillar material and porous structures. In addition, the chitin extracted through demineralization using H2SO4 was more effective in removing RBBR dye from aqueous solution, followed by HCl, HNO3, and the last, CH3COOH treatment. The performances of chitin-based adsorbent could be attributed to the strength of acid solution used to remove mineral during the extraction process and the obtained pore structures.
Collapse
Affiliation(s)
- Ardiani Putri Rahayu
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Afifah Faradilla Islami
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Eka Saputra
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Laksmi Sulmartiwi
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Anisa Ur Rahmah
- Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Pabelan, Kartasura, Sukoharjo 57162, Indonesia
| | - Kiki Adi Kurnia
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| |
Collapse
|
34
|
Godeau XY, Andrianandrasana FJ, Volkova O, Szczepanski CR, Zenerino A, Montreuil O, Godeau RP, Kuzhir P, Godeau G. Investigation on dung beetle's (Heliocopris Hope, 1838) chitosan valorisation for hydrogel 3D printing. Int J Biol Macromol 2021; 199:172-180. [PMID: 34971640 DOI: 10.1016/j.ijbiomac.2021.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Biopolymers and their derivatives are materials with increasing interest for industry and especially for sustainable engineering development. Among such kind of materials, carbohydrate polymer like highly deacetylated chitin (chitosan) is widely used for a wide range of applications, including material and biomedical developments. The majority of industrially produced chitosan is based on chitin extracted from crustacean exoskeleton. However, with increase of interest on this material, chitosan's production will rapidly become insufficient and other species should be investigated as new sources of chitosan. In the present work, we focus on the preparation of chitosan from giant dung beetles (Genus Heliocopris, Hope, 1838). This genus was chosen to show the possibility to take animals that develop and leave near dejection and valuate them for material applications. This work includes all the chitosan extraction procedures, chitosan characterisation IR, SEM, NMR, ash content, and deacetylation degree. Finally, the prepared carbohydrate polymer is used to form hydrogel. The prepared gel has been characterised and used for 3D printing, to show the compatibility of extracted chitosan with biomaterial application.
Collapse
Affiliation(s)
| | - Freddy Jocelyne Andrianandrasana
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Olga Volkova
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Olivier Montreuil
- UMR 7179 MNHN/CNRS, MECADEV, Muséum National d'Histoire Naturelle, Entomologie, CP 50, 45 rue Buffon, 75231 Paris cedex 05, France
| | - René-Paul Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France
| | - Guilhem Godeau
- Université Côte d'Azur, IMREDD, 06200 Nice, France; Université Côte d'Azur, CNRS UMR 7010 INPHYNI, Parc Valrose Nice, 06108, France.
| |
Collapse
|
35
|
Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM. Antimicrobial Activity of Chemically and Biologically Treated Chitosan Prepared from Black Soldier Fly ( Hermetia illucens) Pupal Shell Waste. Microorganisms 2021; 9:microorganisms9122417. [PMID: 34946019 PMCID: PMC8706517 DOI: 10.3390/microorganisms9122417] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 °C for 2 h and 1 M NaOH for 4 h at 100 °C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 °C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm−1—wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis,Pseudomonas aeruginosa,Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.
Collapse
Affiliation(s)
- Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Francis Ndwigah
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
36
|
El boumlasy S, La Spada F, Tuccitto N, Marletta G, Mínguez CL, Meca G, Rovetto EI, Pane A, Debdoubi A, Cacciola SO. Inhibitory Activity of Shrimp Waste Extracts on Fungal and Oomycete Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112452. [PMID: 34834815 PMCID: PMC8619012 DOI: 10.3390/plants10112452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 05/11/2023]
Abstract
(1) Background: This study was aimed at determining the in vitro inhibitory effect of new natural substances obtained by minimal processing from shrimp wastes on fungi and oomycetes in the genera Alternaria, Colletotrichum, Fusarium, Penicillium, Plenodomus and Phytophthora; the effectiveness of the substance with the highest in vitro activity in preventing citrus and apple fruit rot incited by P. digitatum and P. expansum, respectively, was also evaluated. (2) Methods: The four tested substances, water-extract, EtOAc-extract, MetOH-extract and nitric-extract, were analyzed by HPLC-ESI-MS-TOF; in vitro preliminary tests were carried out to determine the minimal inhibitory/fungicidal concentrations (MIC and MFC, respectively) of the raw dry powder, EtOAc-extract, MetOH-extract and nitric-extract for each pathogen. (3) Results: in the agar-diffusion-assay, nitric-extract showed an inhibitory effect on all pathogens, at all concentrations tested (100, 75, 50 and 25%); the maximum activity was on Plenodomus tracheiphilus, C. gloeosporioides and Ph. nicotianae; the diameters of inhibition halos were directly proportional to the extract concentration; values of MIC and MFC of this extract for all pathogens ranged from 2 to 3.5%; the highest concentrations (50 to 100%) tested in vivo were effective in preventing citrus and apple fruit molds. (4) Conclusions: This study contributes to the search for natural and ecofriendly substances for the control of pre- and post-harvest plant pathogens.
Collapse
Affiliation(s)
- Soumia El boumlasy
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Science, University Abdelmalek Essaadi, Tetouan B.P. 2117, Morocco; (S.E.b.); (A.D.)
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Nunzio Tuccitto
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy; (N.T.); (G.M.)
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy; (N.T.); (G.M.)
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carlos Luz Mínguez
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.M.); (G.M.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.M.); (G.M.)
| | - Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Abderrahmane Debdoubi
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Science, University Abdelmalek Essaadi, Tetouan B.P. 2117, Morocco; (S.E.b.); (A.D.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
- Correspondence: ; Tel.: +39-095-7147371
| |
Collapse
|
37
|
Sharma S, Madhyastha H, Laxmi Swetha K, Maravajjala KS, Singh A, Madhyastha R, Nakajima Y, Roy A. Development of an in-situ forming, self-healing scaffold for dermal wound healing: in-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112263. [PMID: 34474822 DOI: 10.1016/j.msec.2021.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022]
Abstract
The importance of the extra-cellular matrix (ECM) for wound healing has been extensively researched. Understanding its importance, multiple ECM mimetic scaffolds have been developed. However, the majority of such scaffolds are prefabricated. Due to their stiffness, prefabricated scaffolds cannot come into direct contact with the basal skin cells at the wound bed, limiting their efficacy. We have developed a unique wound dressing, using chitosan (CH) and chondroitin sulfate (CS), that can form a porous scaffold (CH-CS PEC) in-situ, at the wound site, by simple mixing of the polymer solutions. As CH is positively and CS is negatively charged, mixing these two polymer solutions would lead to electrostatic cross-linking between the polymers, converting them to a porous, viscoelastic scaffold. Owing to the in-situ formation, the scaffold can come in direct contact with the cells at the wound bed, supporting their proliferation and biofunction. In the present study, we confirmed the cross-linked scaffold formation by solid-state NMR, XRD, and TGA analysis. We have demonstrated that the scaffold had a high viscoelastic property, with self-healing capability. Both keratinocyte and fibroblast cells exhibited significantly increased migration and functional markers expression when grown on this scaffold. In the rat skin-excisional wound model, treatment with the in-situ forming CH-CS PEC exhibited enhanced wound healing efficacy. Altogether, this study demonstrated that mixing CH and CS solutions lead to the spontaneous formation of a highly viscoelastic, porous scaffold, which can support epidermal and dermal cell proliferation and bio-function, with an enhanced in-vivo wound healing efficacy.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan.
| | - K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India.
| |
Collapse
|
38
|
Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS NANO 2021; 15:3079-3097. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The desire for all-organic-composed nanoparticles (NPs) of considerable biocompatibility to simultaneously diagnose and treat cancer is undeniably interminable. Heretofore, metal-based agents dominate the landscape of available magnetic resonance imaging (MRI) contrast agents and photothermal therapeutic agents, but with associated metal-specific downsides. Here, an all-organic metal-free nanoprobe, whose appreciable biocompatibility is synergistically contributed by its tetra-organo-components, is developed as a viable alternative to metal-based probes for MRI-guided tumor-targeted photothermal therapy (PTT). This rationally entails a glycol chitosan (GC)-linked polypyrrole (PP) nanoscaffold that provides abundant primary and secondary amino groups for amidation with the carboxyl groups in a nitroxide radical (TEMPO) and folic acid (FA), to obtain GC-PP@TEMPO-FA NPs. Advantageously, the appreciably benign GC-PP@TEMPO-FA features high nitroxide loading (r1 = 1.58 mM-1 s-1) and in vivo nitroxide-reduction resistance, prolonged nitroxide-systemic circulation times, appreciable water dispersibility, potential photodynamic therapeutic and electron paramagnetic resonance imaging capabilities, considerable biocompatibility, and ultimately achieves a 17 h commensurate MRI contrast enhancement. Moreover, its GC component conveys a plethora of PP to tumor sites, where FA-mediated tumor targeting enables substantial NP accumulation with consequential near-complete tumor regression within 16 days in an MRI-guided PTT. The present work therefore promotes the engineering of organic-based metal-free biocompatible NPs in synergism, in furtherance of tumor-targeted image-guided therapy.
Collapse
Affiliation(s)
- Ozioma U Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis I Nosike
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Zubair M Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| |
Collapse
|
39
|
Kalisz G, Przekora A, Kazimierczak P, Gieroba B, Jedrek M, Grudzinski W, Gruszecki WI, Ginalska G, Sroka-Bartnicka A. Application of Raman Spectroscopic Imaging to Assess the Structural Changes at Cell-Scaffold Interface. Int J Mol Sci 2021; 22:ijms22020485. [PMID: 33418952 PMCID: PMC7825142 DOI: 10.3390/ijms22020485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Raman spectroscopic imaging and mapping were applied to characterise three-compound ceramic composite biomaterial consisting of chitosan, β-1,3-d-glucan (curdlan) and hydroxyapatite (HA) developed as a bone tissue engineering product (TEP). In this rapidly advancing domain of medical science, the urge for quick, reliable and specific method for products evaluation and tissue–implant interaction, in this case bone formation process, is constantly present. Two types of stem cells, adipose-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMDSCs), were cultured on composite surface. Raman spectroscopic imaging provided advantageous information on molecular differences and spatial distribution of compounds within and between the cell-seeded and untreated samples at a microscopic level. With the use of this, it was possible to confirm composite biocompatibility and bioactivity in vitro. Deposition of HA and changes in its crystallinity along with protein adsorption proved new bone tissue formation in both mesenchymal stem cell samples, where the cells proliferated, differentiated and produced biomineralised extracellular matrix (ECM). The usefulness of spectroscopic Raman imaging was confirmed in tissue engineering in terms of both the organic and inorganic components considering composite–cells interaction.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (B.G.); (M.J.)
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (P.K.); (G.G.)
- Correspondence: (A.P.); or (A.S.-B.); Tel.: +48-81448-7020 (A.P.); +48-81448-7225 (A.S.-B.)
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (P.K.); (G.G.)
| | - Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (B.G.); (M.J.)
| | - Michal Jedrek
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (B.G.); (M.J.)
- Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland; (W.G.); (W.I.G.)
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland; (W.G.); (W.I.G.)
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (P.K.); (G.G.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (B.G.); (M.J.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: (A.P.); or (A.S.-B.); Tel.: +48-81448-7020 (A.P.); +48-81448-7225 (A.S.-B.)
| |
Collapse
|
40
|
Tsurkan MV, Voronkina A, Khrunyk Y, Wysokowski M, Petrenko I, Ehrlich H. Progress in chitin analytics. Carbohydr Polym 2021; 252:117204. [DOI: 10.1016/j.carbpol.2020.117204] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
|
41
|
Zhou C, Wang Y. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:787-804. [PMID: 33354165 PMCID: PMC7738282 DOI: 10.1080/14686996.2020.1848213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The amount of biomass wastes is rapidly increasing, which leads to numerous disposal problems and governance issues. Thus, the recycling and reuse of biomass wastes into value-added applications have attracted more and more attention. This paper reviews the research on biomass waste utilization and biomass wastes derived functional materials in last five years. The recent research interests mainly focus on the following three aspects: (1) extraction of natural polymers from biomass wastes, (2) reuse of biomass wastes, and (3) preparation of carbon-based materials as novel adsorbents, catalyst carriers, electrode materials, and functional composites. Various biomass wastes have been collected from agricultural and forestry wastes, animal wastes, industrial wastes and municipal solid wastes as raw materials with low cost; however, future studies are required to evaluate the quality and safety of biomass wastes derived products and develop highly feasible and cost-effective methods for the conversion of biomass wastes to enable the industrial scale production.
Collapse
Affiliation(s)
- Chufan Zhou
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
- CONTACT Yixiang Wang Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
42
|
Marmier T, Szczepanski CR, Candet C, Zenerino A, Godeau RP, Godeau G. Investigation on Mecynorhina torquata Drury, 1782 (Coleoptera, Cetoniidae, Goliathini) cuticle: Surface properties, chitin and chitosan extraction. Int J Biol Macromol 2020; 164:1164-1173. [PMID: 32702421 DOI: 10.1016/j.ijbiomac.2020.07.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Naturally derived polymers, such as cellulose or chitin, are materials with increasing interest for a sustainable future. Considering the pollution associated with plastics recycling, natural and fully biocompatible materials like cellulose and chitin are becoming increasingly more relevant for sustainable engineering applications. Chitin and highly deacetylated chitin (chitosan) are already implemented in a wide range of materials applications, especially in biomedical fields. One interesting aspect of chitin is that the majority of industrially produced chitin is extracted from shrimp exoskeleton. However, other arthropods can also be investigated as a source of chitin. In this work, we focus on the extraction of chitin and preparation of chitosan from a beetle specie: Mecynorhina torquata. This includes characterization of the native Mecynorhina torquata surfaces and all intermediate surfaces throughout the chitosan extraction procedure. The final product, prepared chitosan, is also characterized using IR, SEM, ash content, and deacetylation degree. In addition, spectacular iridescent surfaces of Mecynorhina torquata are highlighted at the intermediate steps during chitin extraction. Finally, as proof of concept, the isolated chitosan is used to form hydrogel.
Collapse
Affiliation(s)
- Tanguy Marmier
- Université Côte d'Azur, INPHYNI, UMR 7010, 06000 Nice, France; Université Côte d'Azur, IMREDD, 06200 Nice, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - René-Paul Godeau
- Université Côte d'Azur, INPHYNI, UMR 7010, 06000 Nice, France; Université Côte d'Azur, IMREDD, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d'Azur, INPHYNI, UMR 7010, 06000 Nice, France; Université Côte d'Azur, IMREDD, 06200 Nice, France.
| |
Collapse
|
43
|
Akakuru OU, Liu C, Iqbal MZ, Dar GI, Yang G, Qian K, Nosike EI, Xing J, Zhang Z, Li Y, Li J, Wu A. A Hybrid Organo-Nanotheranostic Platform of Superlative Biocompatibility for Near-Infrared-Triggered Fluorescence Imaging and Synergistically Enhanced Ablation of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002445. [PMID: 32954652 DOI: 10.1002/smll.202002445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou, 310018, China
| | - Gohar Ijaz Dar
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gao Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Kun Qian
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis Ikechukwu Nosike
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| |
Collapse
|