1
|
Allay A, Benkirane C, Ben Moumen A, Fauconnier ML, Bouakline H, Nkengurutse J, Serghini Caid H, Elamrani A, Mansouri F. Optimizing ethanol-modified supercritical CO₂ extraction for enhanced bioactive compound recovery in hemp seed oil. Sci Rep 2025; 15:8551. [PMID: 40075119 PMCID: PMC11904181 DOI: 10.1038/s41598-025-91441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This work aimed to extract hemp seed oil using modified supercritical CO2 with ethanol, while optimizing the overall process through response surface methodology. The effects of extraction temperature (30-60 °C), pressure (10-20 MPa), and time (120-300 min) on oil yield, total phenols (TPC), total tocopherols, oxidative stability index (OSI), total chlorophylls, total carotenoids, quality indices, and color were assessed. For a maximum yield of 28.83 g/100 g of fresh seeds, the oil was extracted at 50 °C and 20 MPa for 244 min. In addition, CO2 modified with different proportions of ethanol (2.5-20%) under the optimized SFE conditions was also tested for enhancing phenolic compound extractability in hemp seed oil. The best proportion was 10% ethanol, which significantly increased the oil yield to 30.13%, TPC to 294.15 GAE mg/kg, total tocopherols to 484.38 mg/kg, and OSI to 28.01 h, without affecting the quality parameters and the fatty acid profile. Furthermore, the phenolic compounds in the extracted oils were analyzed via HPLC-DAD/ESI-MS2. These findings indicated that CO2 modified with ethanol enhanced the extraction of phenolic compounds, 26 of which were identified. Among these, the most abundant compounds were N-trans-caffeoyltyramine, and cannabisins A and B, with concentrations of 50.32, 13.72, and 16.11 mg/kg oil, respectively. The oil obtained by SFE with SC-CO2 + ethanol could be valorized by evaluating its biological activities and its anti-aging, dermato-protective and antimicrobial properties for use in the cosmetics, pharmaceutical and food applications.
Collapse
Affiliation(s)
- Aymane Allay
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Chaymae Benkirane
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Abdessamad Ben Moumen
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Hamza Bouakline
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Jacques Nkengurutse
- Biology Department, Faculty of Sciences, University of Burundi, P.O. Box 2700, Bujumbura, Burundi.
| | - Hana Serghini Caid
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Ahmed Elamrani
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Farid Mansouri
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
- Higher School of Education and Training, Mohammed I University, BP-410, 60000, Oujda, Morocco
| |
Collapse
|
2
|
Baek SH, Lee JW, Ho TC, Park Y, Ata SM, Yun HJ, Gang G, Getachew AT, Chun BS, Lee SG, Cao L. A comparative study of extraction methods for recovery of bioactive components from brown algae Sargassum serratifolium. Food Sci Biotechnol 2025; 34:237-244. [PMID: 39758719 PMCID: PMC11695544 DOI: 10.1007/s10068-024-01649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 01/07/2025] Open
Abstract
Species of Sargassum genus are known to be rich sources of bioactive compounds. However, there is a lack of studies comparing extraction methods for these bioactive components. This study aimed to compare the total phenolic contents, total antioxidant capacity, tyrosinase inhibitory effect, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), two algal meroterpenoids, of Sargassum serratifolium extracts acquired by different extraction methods. The methods employed in this study included conventional solid-liquid extraction using methanol (SME), supercritical fluid extraction using CO2 with ethanol as a co-solvent (SC-CO2 + ethanol), and pressurized liquid extraction (PLE) at two temperatures (25 and 100 °C). PLE at 100 °C (PLE100) exhibited the highest total yield, total phenolic content, total antioxidant capacity and tyrosinase inhibitory activity. Notably, SME resulted in the highest recovery of both SHQA and SCM. Compared to SME, PLE100 exhibited a two-fold increase in antioxidant capacity but a minimal increase in phenolic content.
Collapse
Affiliation(s)
- Su Hyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., Yangsan-si, Gyeongsangnam-do Korea
| | - Yena Park
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Shymaa M. Ata
- Department of Home Economics, School of Specific Education, Menofia University, Menofia, Egypt
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Korea
| |
Collapse
|
3
|
Schoss K, Glavač NK. Supercritical CO 2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3409. [PMID: 39683202 DOI: 10.3390/plants13233409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Supercritical fluid extraction using carbon dioxide (SFE-CO2) brings a convincing advance in the production of plant oils used in cosmetics, in fortified foods and dietary supplements, and in pharmaceuticals and medicine. The SFE-CO2-extracted, hexane-extracted, and cold-pressed plant oils of pumpkin (Cucurbita pepo L.), flax (Linum usitatissimum L.), linden (Tilia sp.), poppy (Papaver somniferum L.), apricot (Prunus armeniaca L.), and marigold (Calendula officinalis L.) seeds were investigated in terms of oil yield, fatty acid composition, unsaponifiable matter yield and composition, and the antioxidant activity of unsaponifiable matter. SFE-CO2 proved to be the preferred extraction method for four out of six plant materials, especially for seeds with lower oil content. However, for seeds with higher oil content, such as apricots, cold pressing is a viable alternative. A comparison of fatty acid composition did not reveal significant differences between extraction techniques. SFE-CO2 extraction improved the total phytosterol content of oils, especially pumpkin seed oil. A high variability in the antioxidant potential of the unsaponifiable matter studied was determined, with pumpkin seed oil showing the highest antioxidant activity. A correlation analysis was performed between unsaponifiable composition and antioxidant activity, and showed statistically significant correlations with squalene, cycloartenol, and an unidentified compound. This is the first comparison of the phytosterol compositions of linseed, apricot, linden, and marigold. Through continued optimization, SFE-CO2 has the potential to revolutionize the production of plant oils and provide a sustainable and efficient alternative.
Collapse
Affiliation(s)
- Katja Schoss
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
5
|
Vicentini‐Polette CM, Yamada BS, Ramos PR, da Silva MG, de Oliveira AL. High Pressure Extraction as a Green Alternative to the Conventional Sunflower Oil ( Helianthus annuus) Production Process - Extraction with Pressurized Ethanol in an Intermittent Process and with Supercritical Fluid. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300335. [PMID: 39545253 PMCID: PMC11557510 DOI: 10.1002/gch2.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/09/2024] [Indexed: 11/17/2024]
Abstract
This research explores green-technology alternatives to extract vegetable oils as alternatives to hexane, a non-renewable solvent, focussing on sunflower oil. It compares pressurized liquid extraction (PLE) with ethanol and supercritical fluid extraction (SFE) with CO2. Both processes aim to maximize oil yield, tocopherol content (α, β, γ, and δ), fatty acid profile (FA), and triacylglycerol (TAG) composition. Results show that SFE at 32 MPa achieves an 87.58% oil recovery, while PLE at 84 °C achieves 93.93%. PLE with ethanol extracts polar minority compounds along with the oil due to its higher temperature, favoring extraction. The total tocopherol content is 91.17 mg/100 g of oil in optimized SFE conditions, with α-tocopherol extraction influenced by temperature, γ and δ-tocopherol by pressure. PLE yields 83.16 mg/100 g of oil in tocopherols influenced less by process variables. The fatty acid (FA) profile do not vary in the oils obtained from different processes or based on the variables within each process, with linoleic and oleic acids being the most abundant. Similarly, triacylglycerols (TAGs) C54:5 and C54:6 are predominant. The optimization of SFE and PLE processes indicates a strong potential for using green solvents in the extraction of tocopherol-rich sunflower oil.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini‐Polette
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Beatriz Satie Yamada
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Paulo Rodolfo Ramos
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| | - Marta Gomes da Silva
- Instituto de Tecnologia de Alimentos (ITAL)Centro de Ciência e Qualidade de AlimentosAv. Brasil, 2880CampinasSP13070–178Brazil
| | - Alessandra Lopes de Oliveira
- LTAPPNDepartamento de Engenharia de AlimentosFaculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)Av. Duque de Caxias Norte, 225PirassunungaSP13635–900Brazil
| |
Collapse
|
6
|
Zhu F, Zhao B, Hu B, Zhang Y, Xue B, Wang H, Chen Q. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68022-68053. [PMID: 37147548 DOI: 10.1007/s11356-023-26900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Natural ceramide, a biologically active compound present in plants, has been used widely in food, cosmetics, and pharmaceutical industries. Abundant ceramide has been detected in sewage sludge, which has inspired the idea to recycle ceramide from it. Therefore, the methods of extracting, purifying, and detecting ceramides from plants were reviewed, with the aim to establish methods to get condensed ceramide from sludge. Ceramide extraction methods include traditional methods (maceration, reflux, and Soxhlet extraction) and green technologies (ultrasound-assisted, microwave-assisted, and supercritical fluid extraction). In the past two decades, more than 70% of the articles have used traditional methods. However, green extraction methods are gradually improved and showed high extraction efficiency with lower solvent consumed. The preferred technique for ceramide purification is chromatography. Common solvent systems include chloroform-methanol, n-hexane-ethyl acetate, petroleum ether-ethyl acetate, and petroleum ether-acetone. For structural determination of ceramide, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry are used in combination. Among quantitative analysis methods for ceramide, liquid chromatography-mass spectrometry was the most accurate. This review concludes that with our prilemenary experiment results it is feasible to apply the plant "extraction + purification" process of ceramide to sludge, but more optimization need to be performed to get better results.
Collapse
Affiliation(s)
- Fenfen Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bing Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bo Hu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Yuhui Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qian Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
7
|
Daim Costa L, Pereira Trindade R, da Silva Cardoso P, Barros Colauto N, Andrea Linde G, Murowaniecki Otero D. Pachira aquatica (Malvaceae): An unconventional food plant with food, technological, and nutritional potential to be explored. Food Res Int 2023; 164:112354. [PMID: 36737942 DOI: 10.1016/j.foodres.2022.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Pachira aquatica (Malvaceae) is an unconventional food plant (UFP) native to Mexico and found all over Brazil, where it is commonly known as monguba. It has an arboreal shape, exotic flowers, and a fruit similar to cocoa with several seeds. Although its main application is in urban ornamentation and folk medicine, monguba's fruit has a great potential for use in the food, pharmacology, cosmetic, and bioenergy industry, mainly due to its oil's characteristics. This review aims to compile the nutritional composition, bioactive and antioxidant activities, and technological and nutritional potential of monguba's seed, leaf, and fruit pericarp. It reviews studies of different databases between January 2018 and October 2021. Monguba seeds are rich in lipids, proteins, and minerals; the bark is rich in fiber; and all parts of the fruit have bioactive compounds. Discussing the use of UFP is a way of finding new alternative food sources, usually discarded, offering products with high nutritional value allied to technological and consumption potential, such as the monguba fruit.
Collapse
Affiliation(s)
- Lyvia Daim Costa
- Departament of Food Science, Faculty of Nutrition, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil
| | - Renata Pereira Trindade
- Departament of Food Science, Faculty of Nutrition, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil
| | - Patrick da Silva Cardoso
- Departament of Food Science, Faculty of Nutrition, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil
| | - Nelson Barros Colauto
- Departament of Food Science, Faculty of Pharmacy, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil
| | - Giani Andrea Linde
- Departament of Food Science, Faculty of Nutrition, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil
| | - Deborah Murowaniecki Otero
- Departament of Food Science, Faculty of Nutrition, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil; Departament of Food Science, Faculty of Pharmacy, Federal University of Bahia (UFBA), CEP 40110907, Salvador, Ba, Brazil.
| |
Collapse
|
8
|
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023; 28:887. [PMID: 36677944 PMCID: PMC9862941 DOI: 10.3390/molecules28020887] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Postharvest Technology, College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Nirmal P
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anina Jose
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens Zographou, 157 84 Athens, Greece
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Sneha K
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
9
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
10
|
Tileuberdi N, Turgumbayeva A, Yeskaliyeva B, Sarsenova L, Issayeva R. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed ( Brassica napus L.). Molecules 2022; 27:8824. [PMID: 36557956 PMCID: PMC9781536 DOI: 10.3390/molecules27248824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.
Collapse
Affiliation(s)
- Nazym Tileuberdi
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aknur Turgumbayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Lazzat Sarsenova
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Raushan Issayeva
- Faculty of Medicine and Healthcare, Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
11
|
Hou Z, Jiang S, Cao X, Cao L, Pang M, Yang P, Jiang S. Performances of phospholipids and changes of antioxidant capacity from rapeseed oil during enzymatic degumming. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Selective supercritical fluid extraction of non-polar phytochemicals from black beans (Phaseolus vulgaris L.) by-products. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Mohamad Jahis BM, Ilham Z, Supramani S, Sohedein MNA, Ibrahim MF, Abd-Aziz S, Rowan N, Wan-Mohtar WAAQI. Ganodiesel: A New Biodiesel Feedstock from Biomass of the Mushroom Ganoderma lucidum. SUSTAINABILITY 2022; 14:10764. [DOI: 10.3390/su141710764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
There is a pressing demand for new sustainable eco-friendly approaches to producing green energy worldwide. This study represents the novel production of biodiesel feedstock from the medicinal mushroom Ganoderma lucidum QRS 5120 using state-of-the-art biotechnology tools. Response surface methodology (RSM) was used to enhance G. lucidum production in a repeated-batch fermentation strategy. By referring to the broth replacement ratio (BRR) and broth replacement time point (BRTP), RSM that was formulated using a central composite design (CCD) resulted in a significant model for all tested variables, which are exopolysaccharide (EPS), endopolysaccharide (ENS) and biomass, with BRR (%) of 60, 75 and 90, and BRTP (days) of 11, 13 and 15. The model was validated using the optimised conditions, and the results showed 4.21 g/L of EPS (BRR 77.46% and BRTP 12 days), 2.44 g/L of ENS (BRR 60% and BRTP 12.85 days), and 34.32 g/L of biomass (BRR 89.52% and BRTP 10.96 days) were produced. Biomass produced from the G. lucidum was subsequently used as feedstock for biodiesel production. Approximately 20.36% of lipid was successfully extracted from the dried G. lucidum biomass via a solvent extraction and subsequently converted to Ganodiesel through a transesterification process. The Ganodiesel produced fulfilled most of the international standards, i.e., US (ASTM D6751-08) and EU (EN 14214). Overall, this study demonstrates the optimised G. lucidum production and its lipid production as a new biodiesel feedstock.
Collapse
|
14
|
Martini G, Nerli BB, Malpiedi LP. A novel method based on saponification coupled to micelle-extraction for recovering valuable bioactive compounds from soybean oil deodorizer distillate. Food Chem 2022; 384:132610. [DOI: 10.1016/j.foodchem.2022.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
15
|
Morya S, Menaa F, Jiménez-López C, Lourenço-Lopes C, BinMowyna MN, Alqahtani A. Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods 2022; 11:foods11131824. [PMID: 35804639 PMCID: PMC9265468 DOI: 10.3390/foods11131824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
India plays an important role in the production of oilseeds, which are mainly cultivated for future extraction of their oil. In addition to the energic and nutritional contribution of these seeds, oilseeds are rich sources of bioactive compounds (e.g., phenolic compounds, proteins, minerals). A regular and moderate dietary supplementation of oilseeds promotes health, prevents the appearance of certain diseases (e.g., cardiovascular diseases (CVDs), cancers) and delays the aging process. Due to their relevant content in nutraceutical molecules, oilseeds and some of their associated processing wastes have raised interest in food and pharmaceutical industries searching for innovative products whose application provides health benefits to consumers. Furthermore, a circular economy approach could be considered regarding the re-use of oilseeds’ processing waste. The present article highlights the different oilseed types, the oilseeds-derived bioactive compounds as well as the health benefits associated with their consumption. In addition, the different types of extractive techniques that can be used to obtain vegetable oils rich from oilseeds, such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE) and supercritical fluid extraction (SFE), are reported. We conclude that the development and improvement of oilseed markets and their byproducts could offer even more health benefits in the future, when added to other foods.
Collapse
Affiliation(s)
- Sonia Morya
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University (LPU), Punjab 144001, India
- Correspondence: (S.M.); (F.M.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation (Fluorotronics-CIC), San Diego 92037, CA, USA
- Correspondence: (S.M.); (F.M.)
| | | | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain;
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
16
|
Dhara O, Rani KNP, Chakrabarti PP. Supercritical Carbon Dioxide Extraction of Vegetable Oils – Retrospect and Prospect. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olivia Dhara
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - K N Prasanna Rani
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
| | - Pradosh Prasad Chakrabarti
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
17
|
High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large amounts of food waste are produced each year. These residues require appropriate management to reduce their environmental impact and, at the same time, economic loss. However, this waste is still rich in compounds (e.g., colorants, antioxidants, polyphenols, fatty acids, vitamins, and proteins) that can find potential applications in food, pharmaceutical, and cosmetic industries. Conventional extraction techniques suffer some drawbacks when applied to the exploitation of food residues, including large amounts of polluting solvents, increased time of extraction, possible degradation of the active molecules during extraction, low yields, and reduced extraction selectivity. For these reasons, advanced extraction techniques have emerged in order to obtain efficient residue exploitation using more sustainable processes. In particular, performing extraction under high-pressure conditions, such as supercritical fluids and pressurized liquid extraction, offers several advantages for the extraction of bioactive molecules. These include the reduced use of toxic solvents, reduced extraction time, high selectivity, and the possibility of being applied in combination in a cascade of progressive extractions. In this review, an overview of high-pressure extraction techniques related to the recovery of high added value compounds from waste generated in food industries is presented and a critical discussion of the advantages and disadvantages of each process is reported. Furthermore, the possibility of combined multi-stage extractions, as well as economic and environmental aspects, are discussed in order to provide a complete overview of the topic.
Collapse
|
18
|
Othman N, Hean CG, Azman EM, Suleiman N. Effect of Process Variables in Supercritical Carbon Dioxide Extraction of Tocotrienols from Hydrolysed Palm Fatty Acid Distillate (
PFAD
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Othman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - C. G. Hean
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - E. M. Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - N Suleiman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
19
|
Alvarez-Henao MV, Cardona L, Hincapié S, Londoño-Londoño J, Jimenez-Cartagena C. Supercritical fluid extraction of phytosterols from sugarcane bagasse: Evaluation of extraction parameters. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Medeiros Vicentini-Polette C, Rodolfo Ramos P, Bernardo Gonçalves C, Lopes De Oliveira A. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem X 2021; 12:100166. [PMID: 34825173 PMCID: PMC8604745 DOI: 10.1016/j.fochx.2021.100166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Free fatty acid profile in vegetable oils was determined. The extraction process may influence the free fatty acid profile. Linoleic and oleic acids were present in higher proportions. The methodology applied was satisfactory for qualitative analysis.
This study determined the total acidity, fatty acids profile (TFAs), and free fatty acids (FFAs) present in sunflower and soybean oils obtained by green processes (supercritical carbon dioxide-scCO2 and pressurized liquid extraction-PLE). The determination of the primary fatty acids responsible for product acidity can provide a higher quality product. Sunflower (scCO2/PLE-ethanol) and soybean (PLE-ethanol/PLE-hexane) samples were evaluated. The TFAs profile was determined by gas chromatography - mass spectrometry. The total FFAs content was determined by titrimetric method. For the qualitative determination of the FFAs present in the oils, a new technique capable of repeatably identifying the main FFAs was applied, using GC/MS. The primary fatty acids (palmitic, stearic, oleic, linoleic, eicosenoic, and linolenic) were present in all samples, both as TFAs and FFAs. However, fatty acids of lesser intensity showed variations. The applied methodology provided relevant data on the FAs that cause acidity in vegetable oils obtained by green processes.
Collapse
Affiliation(s)
- Carolina Medeiros Vicentini-Polette
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Paulo Rodolfo Ramos
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Cintia Bernardo Gonçalves
- (in memoriam) LES, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - Alessandra Lopes De Oliveira
- LTAPPN, Department of Food Engineering, Faculty of Animals Sciences and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
21
|
Ferreira de Mello BT, Stevanato N, Filho LC, da Silva C. Pressurized liquid extraction of radish seed oil using ethanol as solvent: Effect of pretreatment on seeds and process variables. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Determination of vitamin E and β-sitosterol in vegetable oil wastes by graphene-based magnetic solid-phase extraction method coupled with GC-MS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
de Almeida-Couto JMF, Abrantes KKB, Barão CE, Wisniewski A, da Silva C, Cabral VF, Cardozo-Filho L. Pressurized mixture of CO2 and propane for enhanced extraction of non-edible vegetable oil. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
de Souza FG, Náthia-Neves G, de Araújo FF, Dias Audibert FL, Delafiori J, Neri-Numa IA, Catharino RR, de Alencar SM, de Almeida Meireles MA, Pastore GM. Evaluation of antioxidant capacity, fatty acid profile, and bioactive compounds from buritirana (Mauritiella armata Mart.) oil: A little-explored native Brazilian fruit. Food Res Int 2021; 142:110260. [PMID: 33773690 DOI: 10.1016/j.foodres.2021.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Buritirana (Mauritiella armata Mart.) is a fruit species native to the Amazon and Cerrado region, belonging to the Arecaceae family. It has high nutritional and functional potential, yet little explored. In this study, we evaluated for the first time the overall yield, behavior of total carotenoids in the extraction kinetics, fatty acid profile, bioactive compounds, and the antioxidant capacity of the oil from buritirana fractions obtained by supercritical CO2. The highest extraction yield was found in the pulp and whole without seed at 60 °C (18.06 ± 0.40 and 14.55 ± 1.10 g 100 g-1 of the freeze-dried sample (fdw), respectively), and in the peel at 40 °C (8.31 ± 0.73 g 100 g-1 fdw). During the extraction kinetics, the pulp had the highest yields of oil (41.57%) and total carotenoids (8.34 mg g-1) after 61 min at 40 °C. The antioxidant potential, fatty acid profile, and α-tocopherol content were dependent on both fraction and temperature, with oleic acid being the main fatty acid. The oil from the whole fraction without seed had the largest number (20) of identified phenolic compounds. The extraction at 60 °C reduced the relative intensity of most compounds in the whole without seed and pulp. Moreover, it increased the intensity of the compounds in the peel. These results suggest that buritirana is a good oil source with great bioactive potential to produce new products with functional claims.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Grazielle Náthia-Neves
- LASEFI - Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Flavia Luísa Dias Audibert
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Jeany Delafiori
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | | | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
26
|
Highly Efficient Deacidification Process for Camelina sativa Crude Oil by Molecular Distillation. SUSTAINABILITY 2021. [DOI: 10.3390/su13052818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recovery and reuse of high-acidity vegetable oil waste (higher content of free fatty acids) is a major concern for reducing their effect on the environment. Moreover, the conventional deacidification processes are known to show drawbacks, such as oil losses or higher costs of wastewater treatment, for which it requires great attention, especially at the industrial scale. This work presents the design of a highly efficient and sustainable process for Camelina sativa oil deacidification by using an ecofriendly method, namely molecular distillation. Experimental studies were performed to identify operating conditions for removing of free fatty acids (FFA) by molecular distillation which involves the oil evaporation in high vacuum conditions. The experimental studies were supported by statistical analysis and technical-economic analysis. Response surface methodology (RSM) was employed to formulate and validate second-order models to predict deacidification efficiency, FFA concentration, and triacylglyceride (TAG) concentration in deodorized oil based on three parameters effects, validated by statistical p-value < 0.05. For a desirability function value of 0.9826, the optimal parameters of evaporator temperature at 173.5 °C, wiper speed at 350 rpm, and feed flowrate at 2 mL/min were selected. The results for process design at optimal conditions (using conventional and molecular distillation methods) showed an efficiency over 92%, a significant reduction in FFA (up to 1%), and an increase in TAG (up to 93%) in refined oil for both methods. From an economical point of view, the deacidification by molecular distillation of Camelina sativa oil is a sustainable process: no wastewater generation, no solvents and water consumption, and lower production costs, obtaining a valuable by-product (FFA).
Collapse
|
27
|
Harrabi S, Ferchichi A, Fellah H, Feki M, Hosseinian F. Chemical Composition and in vitro Anti-inflammatory Activity of Wheat Germ Oil Depending on the Extraction Procedure. J Oleo Sci 2021; 70:1051-1058. [PMID: 34349086 DOI: 10.5650/jos.ess20317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to examine the chemical composition of wheat germ oil extracted by three different methods, and to evaluate its inhibitory effect on the cyclooxygenase and proteinase activities. The results showed that the contents of policosanols, tocopherols and phytosterols were affected by the extraction procedure. However, the fatty acid composition of the different oil extracts was nearly the same. Among the tested oils samples, cold pressed oil exhibited the strongest inhibitory activity against proteinase (93.4%, IC50 =195.7 µg/mL) and cyclooxygenase 1 (80.5%, IC50 =58.6 µg/mL). Furthermore, the cold pressed oil had the highest content of octacosanol, β-sitosterol and α-linolenic acid, suggesting that those bioactive compounds could be essential for the potent ani-cyclooxygenase activity. The present data revealed that wheat germ oil contained cyclooxygenase and trypsin inhibitors, which are the promising therapeutic target for the treatment of various inflammatory diseases. Thus, wheat germ oil might be used to develop functional foods and pharmaceutic products for the human health.
Collapse
Affiliation(s)
- Saoussem Harrabi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar
| | - Azza Ferchichi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar
| | - Hayet Fellah
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar
| | - Moncef Feki
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar
| | - Farah Hosseinian
- Food Science Program, Carleton University.,Institute of Biochemistry, Carleton University
| |
Collapse
|
28
|
Valorization of Tropical Biomass Waste by Supercritical Fluid Extraction Technology. SUSTAINABILITY 2020. [DOI: 10.3390/su13010233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inception of sustainable and cleaner extraction technology has paved the way for the innovative development of nonconventional extractions, such as supercritical fluid extraction, apart from conventional extraction counterparts. The concept of biomass waste-to-wealth for the conversion of biomass waste or by-products into value-added products for diversified applications had piqued the prominent interest of researchers and industry players, especially with the abundance of biomass resources readily available in tropical regions that have yet to be tapped into to reach their full potential. In this paper, a critical review of the developments of supercritical fluid technology from its initial inception up to commercialized scalability, including its limitations, extraction of potential tropical biomass wastes for various types of applications, such as biopesticides, bio-repellents, phenolics, and lipids for biofuel, and its role in circular bioeconomy and sustainable development approaches, are discussed in detail.
Collapse
|