1
|
Breideband L, Wächtershäuser KN, Sarkar R, Puspathasan M, Stelzer EH, Pampaloni F. Gravitational forces and matrix stiffness modulate the invasiveness of breast cancer cells in bioprinted spheroids. Mater Today Bio 2025; 31:101640. [PMID: 40124331 PMCID: PMC11930500 DOI: 10.1016/j.mtbio.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The progression of breast cancer is influenced by the stiffness of the extracellular matrix (ECM), which becomes stiffer as cancer advances due to increased collagen IV and laminin secretion by cancer-associated fibroblasts. Intriguingly, breast cancer cells cultivated in two-dimensions exhibit a less aggressive behavior when exposed to weightlessness, or microgravity conditions. This study aims to elucidate the interplay between matrix stiffness and microgravity on breast cancer progression. For this purpose, three-dimensional spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231) were formed. These spheroids were subsequently bioprinted in hydrogels of varying stiffness, obtained by the mixing of gelatin methacrylate and poly(ethylene) glycol diacrylate mixed at different ratios. The constructs were printed with a custom stereolithography (SLA) bioprinter converted from a low-cost, commercially available 3D printer. These bioprinted structures, encapsulating breast cancer spheroids, were then placed in a clinostat (microgravity simulation device) for a duration of seven days. Comparative analyses were conducted between objects cultured under microgravity and standard earth gravity conditions. Protein expression was characterized through fluorescent microscopy, while gene expression of MCF-7 constructs was analyzed via RNA sequencing. Remarkably, the influence of a stiffer ECM on the protein and gene expression levels of breast cancer cells could be modulated and sometimes even reversed in microgravity conditions. The study's findings hold implications for refining therapeutic strategies for advanced breast cancer stages - an array of genes involved in reversing aggressive or even metastatic behavior might lead to the discovery of new compounds that could be used in a clinical setting.
Collapse
Affiliation(s)
- Louise Breideband
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ryan Sarkar
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Melosha Puspathasan
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ernst H.K. Stelzer
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| |
Collapse
|
2
|
İrem Güler S, Altan CL, Esma Demircioglu E, Verimli N, Abisoglu B, Bayraktaroglu C, Beker MC, Sibel Erdem S. Glow in the dark tumor: Enhanced near-IR visualization and destruction of cancer with a self-quenched theranostic. Eur J Pharm Biopharm 2025; 208:114632. [PMID: 39837426 DOI: 10.1016/j.ejpb.2025.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Late diagnosis is one of the major obstacles for the treatment of breast cancer which can be overcome with a system offering sensitive imaging and selective therapeutic effect. In this study, we developed a "dark-bright" multifunctional drug delivery system bringing real-time imaging and non-invasive therapy together. Theranostic ability of the system was delivered by Verteporfin (VP), serving as a fluorescence probe and a photosensitizer. To create a "dark state" system via self-quenching ability of VP, it was immobilized onto the superparamagnetic iron oxide nanoparticle (SPION) surface. Upon cellular uptake of the "dark state" system, release of VP led to fluorescence regain, switching the system to "bright state" after which photodynamic therapy (PDT) was initiated to lead to cell death. Theranostic feature of the system was evaluated in MCF-7 and MDA-MB-231 cell lines. Following internalization, fluorescence signal was increased up to ∼56-fold in MCF-7 cells. The IC50 value decreased ∼20-fold and ∼117-fold in MCF-7 and MDA-MB-231 cell lines, respectively. Moreover, the system significantly inhibited migration in the highly aggressive MDA-MB-231 cell line and induced apoptosis by caspase-3 activation. The developed "dark-bright" system is a promising multifunctional drug delivery vehicle with extraordinary theranostic features for the detection and destruction of micro tumors.
Collapse
Affiliation(s)
- S İrem Güler
- Istanbul Medipol University Research Institute for Health Sciences and Technologies (SABITA) Drug Development Center Istanbul Turkey; International School of Medicine Medical Biochemistry Istanbul Medipol University Istanbul Turkey
| | - Cem Levent Altan
- Department of Chemical Engineering Yeditepe University Atasehir Istanbul Turkey
| | - E Esma Demircioglu
- Istanbul Medipol University Research Institute for Health Sciences and Technologies (SABITA) Drug Development Center Istanbul Turkey
| | - Nihan Verimli
- Istanbul Medipol University Research Institute for Health Sciences and Technologies (SABITA) Drug Development Center Istanbul Turkey; International School of Medicine Medical Biochemistry Istanbul Medipol University Istanbul Turkey
| | - Beyza Abisoglu
- Department of Chemical Engineering Yeditepe University Atasehir Istanbul Turkey
| | - Cigdem Bayraktaroglu
- Istanbul Medipol University Research Institute for Health Sciences and Technologies (SABITA) Drug Development Center Istanbul Turkey
| | - Mustafa Caglar Beker
- School of Medicine Department of Physiology Istanbul Medeniyet University Istanbul Turkey
| | - S Sibel Erdem
- Istanbul Medipol University Research Institute for Health Sciences and Technologies (SABITA) Drug Development Center Istanbul Turkey; International School of Medicine Medical Biochemistry Istanbul Medipol University Istanbul Turkey.
| |
Collapse
|
3
|
Alexandrova A, Kontareva E, Pustovalova M, Leonov S, Merkher Y. Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration. Life (Basel) 2025; 15:127. [PMID: 39860067 PMCID: PMC11766853 DOI: 10.3390/life15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility. The cytoskeletal mechanisms employed by metastatic cells during the migration process closely resemble the use of the actin cytoskeleton in endocytosis. In our previous work, we revealed that tumor cells exhibiting high metastatic potential (MP) are more adept at encapsulating 100-200 nm nanoparticles than those with lower MP. The objective of this study was to investigate whether nanoparticle encapsulation could effectively differentiate leader tumor cells during their CCM. To achieve our objectives, we employed a two-dimensional CCM model grounded in the wound-healing ("scratch") assay, utilizing two breast cancer cell lines, MCF7 and MDA-MB-231, which display low and high migratory potential, respectively. We conducted calibration experiments to identify the "optimal time" at which cells exhibit peak speed during wound closure. Furthermore, we carried out experiments to assess nanoparticle uptake, calculating the colocalization coefficient, and employed phalloidin staining to analyze the anisotropy and orientation of actin filaments. The highest activity for low-MP cells was achieved at 2.6 h during the calibration experiments, whereas high-MP cells were maximally active at 3.9 h, resulting in 8% and 11% reductions in wound area, respectively. We observed a significant difference in encapsulation efficiency between leader and peripheral cells for both high-MP (p < 0.013) and low-MP (p < 0.02) cells. Moreover, leader cells demonstrated a considerably higher anisotropy coefficient (p < 0.029), indicating a more organized, directional structure of actin filaments compared to peripheral cells. Thus, nanoparticle encapsulation offers a groundbreaking approach to identifying the most aggressive and invasive leader cells during the CCM process in breast cancer. Detecting these cells is crucial for developing targeted therapies that can effectively curb metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Anastasia Alexandrova
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Elizaveta Kontareva
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Margarita Pustovalova
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
| | - Sergey Leonov
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yulia Merkher
- The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia; (A.A.); (S.L.)
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Okorafor CC, Shastri S, Wen K, Ebong EE. Mechanisms of triple-negative breast cancer extravasation: Impact of the physical environment and endothelial glycocalyx. FASEB J 2024; 38:e23785. [PMID: 38949120 DOI: 10.1096/fj.202400380r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple-negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple-negative breast cancer extravasation, as these mechanisms may be potential new targets for anti-metastasis therapy.
Collapse
Affiliation(s)
- Chinedu C Okorafor
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Sanjana Shastri
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, USA
| | - Ke Wen
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Pickett MR, Chen YI, Kamra M, Kumar S, Kalkunte N, Sugerman GP, Varodom K, Rausch MK, Zoldan J, Yeh HC, Parekh SH. Assessing the impact of extracellular matrix fiber orientation on breast cancer cellular metabolism. Cancer Cell Int 2024; 24:199. [PMID: 38840117 PMCID: PMC11151503 DOI: 10.1186/s12935-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].
Collapse
Affiliation(s)
- Madison R Pickett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Mohini Kamra
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nikhith Kalkunte
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Kelsey Varodom
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, 78712, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Hsin-Chin Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Gonzalez‐Molina J, Hahn P, Falcão RM, Gultekin O, Kokaraki G, Zanfagnin V, Braz Petta T, Lehti K, Carlson JW. MMP14 expression and collagen remodelling support uterine leiomyosarcoma aggressiveness. Mol Oncol 2024; 18:850-865. [PMID: 37078535 PMCID: PMC10994236 DOI: 10.1002/1878-0261.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
Fibrillar collagen deposition, stiffness and downstream signalling support the development of leiomyomas (LMs), common benign mesenchymal tumours of the uterus, and are associated with aggressiveness in multiple carcinomas. Compared with epithelial carcinomas, however, the impact of fibrillar collagens on malignant mesenchymal tumours, including uterine leiomyosarcoma (uLMS), remains elusive. In this study, we analyse the network morphology and density of fibrillar collagens combined with the gene expression within uLMS, LM and normal myometrium (MM). We find that, in contrast to LM, uLMS tumours present low collagen density and increased expression of collagen-remodelling genes, features associated with tumour aggressiveness. Using collagen-based 3D matrices, we show that matrix metalloproteinase-14 (MMP14), a central protein with collagen-remodelling functions that is particularly overexpressed in uLMS, supports uLMS cell proliferation. In addition, we find that, unlike MM and LM cells, uLMS proliferation and migration are less sensitive to changes in collagen substrate stiffness. We demonstrate that uLMS cell growth in low-stiffness substrates is sustained by an enhanced basal yes-associated protein 1 (YAP) activity. Altogether, our results indicate that uLMS cells acquire increased collagen remodelling capabilities and are adapted to grow and migrate in low collagen and soft microenvironments. These results further suggest that matrix remodelling and YAP are potential therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Jordi Gonzalez‐Molina
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Paula Hahn
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Raul Maia Falcão
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Cellular Biology and GeneticsFederal University of Rio Grande do NorteNatalBrazil
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Georgia Kokaraki
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Tirzah Braz Petta
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Cellular Biology and GeneticsFederal University of Rio Grande do NorteNatalBrazil
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Biomedical Laboratory ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Joseph W. Carlson
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
7
|
Park Y, Lee D, Lee JE, Park HS, Jung SS, Park D, Kang DH, Lee SI, Woo SD, Chung C. The Matrix Stiffness Coordinates the Cell Proliferation and PD-L1 Expression via YAP in Lung Adenocarcinoma. Cancers (Basel) 2024; 16:598. [PMID: 38339350 PMCID: PMC10854616 DOI: 10.3390/cancers16030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The extracellular matrix (ECM) exerts physiological activity, facilitates cell-to-cell communication, promotes cell proliferation and metastasis, and provides mechanical support for tumor cells. The development of solid tumors is often associated with increased stiffness. A stiff ECM promotes mechanotransduction, and the predominant transcription factors implicated in this phenomenon are YAP/TAZ, β-catenin, and NF-κB. In this study, we aimed to investigate whether YAP is a critical mediator linking matrix stiffness and PD-L1 in lung adenocarcinoma. We confirmed that YAP, PD-L1, and Ki-67, a marker of cell proliferation, increase as the matrix stiffness increases in vitro using the lung adenocarcinoma cell lines PC9 and HCC827 cells. The knockdown of YAP decreased the expression of PD-L1 and Ki-67, and conversely, the overexpression of YAP increased the expression of PD-L1 and K-67 in a stiff-matrix environment (20.0 kPa). Additionally, lung cancer cells were cultured in a 3D environment, which provides a more physiologically relevant setting, and compared to the results obtained from 2D culture. Similar to the findings in 2D culture, it was confirmed that YAP influenced the expression of PD-L1 and K-67 in the 3D culture experiment. Our results suggest that matrix stiffness controls PD-L1 expression via YAP activation, ultimately contributing to cell proliferation.
Collapse
Affiliation(s)
- Yeonhee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, Republic of Korea;
| | - Dahye Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Jeong Eun Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Hee Sun Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Sung Soo Jung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Dongil Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Song-I Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Seong-Dae Woo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (D.L.); (J.E.L.); (H.S.P.); (S.S.J.); (D.P.); (D.H.K.); (S.-I.L.); (S.-D.W.)
| |
Collapse
|
8
|
Kim E, Riehl BD, Bouzid T, Yang R, Duan B, Donahue HJ, Lim JY. YAP mechanotransduction under cyclic mechanical stretch loading for mesenchymal stem cell osteogenesis is regulated by ROCK. Front Bioeng Biotechnol 2024; 11:1306002. [PMID: 38274006 PMCID: PMC10809151 DOI: 10.3389/fbioe.2023.1306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
While yes-associated protein (YAP) is now recognized as a potent mechanosensitive transcriptional regulator to affect cell growth and differentiation including the osteogenic transcription of mesenchymal stem cells (MSCs), most studies have reported the YAP mechanosensing of static mechanophysical cues such as substrate stiffness. We tested MSC response to dynamic loading, i.e., cyclic mechanical stretching, and assessed YAP mechanosensing and resultant MSC osteogenesis. We showed that cyclic stretching at 10% strain and 1 Hz frequency triggered YAP nuclear import in MSCs. YAP phosphorylation at S127 and S397, which is required for YAP cytoplasmic retention, was suppressed by cyclic stretch. We also observed that anti-YAP-regulatory Hippo pathway, LATS phosphorylation, was significantly decreased by stretch. We confirmed the stretch induction of MSC osteogenic transcription and differentiation, and this was impaired under YAP siRNA suggesting a key role of YAP dynamic mechanosensing in MSC osteogenesis. As an underlying mechanism, we showed that the YAP nuclear transport by cyclic stretch was abrogated by ROCK inhibitor, Y27632. ROCK inhibitor also impaired the stretch induction of F-actin formation and MSC osteogenesis, thus implicating the role of the ROCK-F-actin cascade in stretch-YAP dynamic mechanosensing-MSC osteogenesis. Our results provide insight into bone tissue engineering and skeletal regenerative capacity of MSCs especially as regards the role of dynamic mechanical loading control of YAP-mediated MSC osteogenic transcription.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bin Duan
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Henry J. Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
9
|
Raha A, Wu Y, Zhong L, Raveenthiran J, Hong M, Taiyab A, Wang L, Wang B, Geng F. Exploring Piezo1, Piezo2, and TMEM150C in human brain tissues and their correlation with brain biomechanical characteristics. Mol Brain 2023; 16:83. [PMID: 38124148 PMCID: PMC10731887 DOI: 10.1186/s13041-023-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Unraveling the intricate relationship between mechanical factors and brain activity is a pivotal endeavor, yet the underlying mechanistic model of signaling pathways in brain mechanotransduction remains enigmatic. To bridge this gap, we introduced an in situ multi-scale platform, through which we delineate comprehensive brain biomechanical traits in white matter (WM), grey-white matter junctions (GW junction), and the pons across human brain tissue from four distinct donors. We investigate the three-dimensional expression patterns of Piezo1, Piezo2, and TMEM150C, while also examining their associated histological features and mechanotransduction signaling networks, particularly focusing on the YAP/β-catenin axis. Our results showed that the biomechanical characteristics (including stiffness, spring term, and equilibrium stress) associated with Piezo1 vary depending on the specific region. Moving beyond Piezo1, our result demonstrated the significant positive correlations between Piezo2 expression and stiffness in the WM. Meanwhile, the expression of Piezo2 and TMEM150C was shown to be correlated to viscoelastic properties in the pons and WM. Given the heterogeneity of brain tissue, we investigated the three-dimensional expression of Piezo1, Piezo2, and TMEM150C. Our results suggested that three mechanosensitive proteins remained consistent across different vertical planes within the tissue sections. Our findings not only establish Piezo1, Piezo2, and TMEM150C as pivotal mechanosensors that regulate the region-specific mechanotransduction activities but also unveil the paradigm connecting brain mechanical properties and mechanotransduction activities and the variations between individuals.
Collapse
Affiliation(s)
- Arjun Raha
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yuning Wu
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Lily Zhong
- Integrated Biomedical Engineering and Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Jatheeshan Raveenthiran
- Integrated Biomedical Engineering and Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Minji Hong
- Integrated Biomedical Engineering and Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Li Wang
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Bill Wang
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Veeresh PKM, Basavaraju CG, Dallavalasa S, Anantharaju PG, Natraj SM, Sukocheva OA, Madhunapantula SV. Vitamin D3 Inhibits the Viability of Breast Cancer Cells In Vitro and Ehrlich Ascites Carcinomas in Mice by Promoting Apoptosis and Cell Cycle Arrest and by Impeding Tumor Angiogenesis. Cancers (Basel) 2023; 15:4833. [PMID: 37835527 PMCID: PMC10571758 DOI: 10.3390/cancers15194833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of aggressive and resistant breast cancers is growing at alarming rates, indicating a necessity to develop better treatment strategies. Recent epidemiological and preclinical studies detected low serum levels of vitamin D in cancer patients, suggesting that vitamin D may be effective in mitigating the cancer burden. However, the molecular mechanisms of vitamin D3 (cholecalciferol, vit-D3)-induced cancer cell death are not fully elucidated. The vit-D3 efficacy of cell death activation was assessed using breast carcinoma cell lines in vitro and a widely used Ehrlich ascites carcinoma (EAC) breast cancer model in vivo in Swiss albino mice. Both estrogen receptor-positive (ER+, MCF-7) and -negative (ER-, MDA-MB-231, and MDA-MB-468) cell lines absorbed about 50% of vit-D3 in vitro over 48 h of incubation. The absorbed vit-D3 retarded the breast cancer cell proliferation in a dose-dependent manner with IC50 values ranging from 0.10 to 0.35 mM. Prolonged treatment (up to 72 h) did not enhance vit-D3 anti-proliferative efficacy. Vit-D3-induced cell growth arrest was mediated by the upregulation of p53 and the downregulation of cyclin-D1 and Bcl2 expression levels. Vit-D3 retarded cell migration and inhibited blood vessel growth in vitro as well as in a chorioallantoic membrane (CAM) assay. The intraperitoneal administration of vit-D3 inhibited solid tumor growth and reduced body weight gain, as assessed in mice using a liquid tumor model. In summary, vit-D3 cytotoxic effects in breast cancer cell lines in vitro and an EAC model in vivo were associated with growth inhibition, the induction of apoptosis, cell cycle arrest, and the impediment of angiogenic processes. The generated data warrant further studies on vit-D3 anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Prashanth Kumar M. Veeresh
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
| | - Chaithanya G. Basavaraju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
| | - Preethi G. Anantharaju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
| | - Suma M. Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide 5000, Australia;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (P.K.M.V.); (C.G.B.); (S.D.); (P.G.A.); (S.M.N.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
11
|
Rafaeva M, Jensen ARD, Horton ER, Zornhagen KW, Strøbech JE, Fleischhauer L, Mayorca-Guiliani AE, Nielsen SR, Grønseth DS, Kuś F, Schoof EM, Arnes L, Koch M, Clausen-Schaumann H, Izzi V, Reuten R, Erler JT. Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front Immunol 2023; 14:1154528. [PMID: 37539058 PMCID: PMC10395327 DOI: 10.3389/fimmu.2023.1154528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adina R. D. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Edward R. Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W. Zornhagen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan E. Strøbech
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Sebastian R. Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dina S. Grønseth
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Filip Kuś
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M. Schoof
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Raphael Reuten
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine T. Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Cunha MR, Catta-Preta CMC, Takarada JE, Moreira GA, Massirer KB, Couñago RM. A novel BRET-based assay to investigate binding and residence times of unmodified ligands to the human lysosomal ion channel TRPML1 in intact cells. J Biol Chem 2023:104807. [PMID: 37172730 DOI: 10.1016/j.jbc.2023.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Here we report a Bioluminescence Resonance Energy Transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human Transient Receptor Potential Mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically-relevant environment of lysosomes.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Carolina M C Catta-Preta
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Current address: Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Gabriela A Moreira
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| |
Collapse
|
13
|
Lopez-Cavestany M, Hahn SB, Hope JM, Reckhorn NT, Greenlee JD, Schwager SC, VanderBurgh JA, Reinhart-King CA, King MR. Matrix stiffness induces epithelial-to-mesenchymal transition via Piezo1-regulated calcium flux in prostate cancer cells. iScience 2023; 26:106275. [PMID: 36950111 PMCID: PMC10025097 DOI: 10.1016/j.isci.2023.106275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/21/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023] Open
Abstract
Cells utilize calcium channels as one of the main signaling mechanisms to sense changes in the extracellular space and convert these changes to intracellular signals. Calcium regulates several key signaling networks, such as the induction of EMT. The current study expands on the understanding of how EMT is controlled via the mechanosensitive calcium channel Piezo1 in cancerous cells, which senses changes in the extracellular matrix stiffness. We model the biophysical environment of healthy and cancerous prostate tissue using polyacrylamide gels of different stiffnesses. Significant increases in calcium steady-state concentration, vimentin expression, and aspect ratio, and decreases in E-cadherin expression were observed by increasing matrix stiffness and also after treatment with Yoda1, a chemical agonist of Piezo1. Overall, this study concludes that Piezo1-regulated calcium flux plays a role in prostate cancer cell metastatic potential by sensing changes in ECM stiffness and modulating EMT markers.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Su Bin Hahn
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob M. Hope
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Noah T. Reckhorn
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua D. Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob A. VanderBurgh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Nguyen TMH, Lai YS, Chen YC, Lin TC, Nguyen NT, Chiu WT. Hypoxia-induced YAP activation and focal adhesion turnover to promote cell migration in mesenchymal TNBC cells. Cancer Med 2023; 12:9723-9737. [PMID: 36757143 PMCID: PMC10166962 DOI: 10.1002/cam4.5680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Hypoxia is commonly characterized by malignant tumors that promote the aggressiveness and metastatic potential of cancer. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with approximately 46% capacity related to distant metastasis. Transcriptional factor yes-associated protein (YAP), a core component of the Hippo pathway, is associated with poor prognosis and outcome in cancer metastasis. Here, we explored the effect of hypoxia-mediated YAP activation and focal adhesions (FAs) turnover in mesenchymal TNBC cell migration. METHODS We characterized the effect of hypoxia on YAP in different breast cancer cell lines using a hypoxia chamber and CoCl2 . RESULTS Hypoxia-induced YAP nuclear translocation is significantly observed in normal breast epithelial cells, non-TNBC cells, mesenchymal TNBC cells, but not in basal-like TNBC cells. Functionally, we demonstrated that YAP activation was required for hypoxia to promote mesenchymal TNBC cell migration. Furthermore, hypoxia induced the localization of FAs at the leading edge of mesenchymal TNBC cells. In contrast, verteporfin (VP), a YAP inhibitor, significantly reduced the migration and the recruitment of nascent FAs at the cell periphery under hypoxia conditions, which only showed in mesenchymal TNBC cells. CONCLUSIONS Our data support the hypothesis that YAP is novel factor and positively responsible for hypoxia-promoting mesenchymal TNBC cell migration. Our findings provide further evidence and outcomes to help prevent the progression of TNBC.
Collapse
Affiliation(s)
- Thi My Hang Nguyen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Taiwan, Taiwan
| | - Tzu-Chien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ngoc Thang Nguyen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan.,Department of Chemistry, National Cheng Kung University, Taiwan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, Khalili-Tanha G, Khooei A, Morelli L, Avan A, Danen EH, Schmidt T, Giovannetti E. Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2023; 15:628. [PMID: 36765586 PMCID: PMC9913151 DOI: 10.3390/cancers15030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine. METHODS The prognostic value of ITGA2 was analysed in publicly available databases and tissue-microarrays of two cohorts of radically resected and metastatic patients treated with gemcitabine. PANC-1 and its gemcitabine-resistant clone (PANC-1R) were analysed by RNA-sequencing and label-free proteomics. The role of ITGA2 in migration, proliferation, and apoptosis was investigated using hydrogel-coated wells, siRNA-mediated knockdown and overexpression, while collagen-embedded spheroids assessed invasion and ECM remodeling. RESULTS High ITGA2 expression correlated with shorter progression-free and overall survival, supporting its impact on prognosis and the lack of efficacy of gemcitabine treatment. These findings were corroborated by transcriptomic and proteomic analyses showing that ITGA2 was upregulated in the PANC-1R clone. The aggressive behavior of these cells was significantly reduced by ITGA2 silencing both in vitro and in vivo, while PANC-1 cells growing under conditions resembling PDAC stiffness acquired resistance to gemcitabine, associated to increased ITGA2 expression. Collagen-embedded spheroids of PANC-1R showed a significant matrix remodeling and spreading potential via increased expression of CXCR4 and MMP2. Additionally, overexpression of ITGA2 in MiaPaCa-2 cells triggered gemcitabine resistance and increased proliferation, both in vitro and in vivo, associated to upregulation of phospho-AKT. CONCLUSIONS ITGA2 emerged as a new prognostic factor, highlighting the relevance of stroma mechanical properties as potential therapeutic targets to counteract gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | | | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Alireza Khooei
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Erik H. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| |
Collapse
|