1
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Dampe Acharige TM, Leusch FDL, Frid CLJ. Man-made polymers of natural compounds out weight microplastics in Australian seafood: Are we fixating on the wrong thing? MARINE POLLUTION BULLETIN 2025; 218:118160. [PMID: 40403609 DOI: 10.1016/j.marpolbul.2025.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025]
Abstract
Pollution from synthetic microparticles such as microplastic (MPs) is of global concern. Semi-synthetic microparticles, also known as manufactured natural polymers (MNPs), have received much less scientific attention, despite their morphological similarity to MPs, comparable chemical additives, and the shared potential to act as vector for chemical substances and microorganisms. This study assessed MP and MNP levels in five popular seafood species: sand whiting (Sillago cillata), squids (Loligo spp.), eastern king prawns (Melicertus plebejus), blue swimmer crabs (Portunus armatus), and flatheads (family Platycephalidae) sold fresh in local fish markets from the Gold Coast, Australia. Samples from three tissue types (gill, gut, and muscle) were digested with 10 % KOH and filtered through 5-micron stainless steel filter meshes. Visual microscopic screening was carried out for isolated microparticles, and size, shape, and colour were recorded; then, isolated suspected microparticles were analysed by μ-FTIR to identify the polymer type. Our results show that 88.6 % of seafood available in local fish markets on the Gold Coast was contaminated with at least one particle of MP or MNP. Pelagic species contained a higher particle concentration (0.630 ± 0.064 particles/g) compared to demersal species (0.130 ± 0.019 particles/g. Non-edible tissues exposed to the external environment (gill and gut) contained significantly higher concentrations (0.545 ± 0.046 particles/g) of microparticles compared to edible tissue (muscle) (0.203 ± 0.025 particles/g). There was 1.1-3.2 time more MNPs than MPs in all tissue samples except in prawn muscle and flathead gill tissues, indicating that MNPs may pose a greater threat than previously recognised.
Collapse
Affiliation(s)
- Tharindu M Dampe Acharige
- School of Environment and Science, Griffith University, Gold Coast Campus, Parklands Dr, Southport 4222, Australia.
| | - Frederic D L Leusch
- School of Environment and Science, Griffith University, Gold Coast Campus, Parklands Dr, Southport 4222, Australia
| | - Chris L J Frid
- School of Environment and Science, Griffith University, Gold Coast Campus, Parklands Dr, Southport 4222, Australia
| |
Collapse
|
3
|
Boondaeng A, Trakunjae C, Vaithanomsat P, Niyomvong N. Isolation of marine bacteria with potential for polyhydroxyalkanoate degradation and optimization for enzyme production. Sci Rep 2025; 15:15586. [PMID: 40320445 PMCID: PMC12050325 DOI: 10.1038/s41598-025-99034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Plastic materials are widely used because of their strength, light weight, durability, and environmental resistance. However, their decomposition rates are significantly slower than their typical lifespans. The rapid and continuous increase in plastic consumption has caused severe environmental impacts due to the accumulation of plastic waste. We identified potential polyhydroxyalkanoate (PHA)-degrading bacteria from marine environments capable of producing extracellular PHA depolymerases crucial for biodegrading PHAs. Marine debris was collected to screen poly [(R)-3-hydroxybutyric acid] (P(3HB))-degrading bacteria. Six isolates showed the ability to produce clear zones surrounding their colonies by degrading the bioplastic P(3HB). The isolate SS1-2, exhibiting the greatest degradation index of 1.44, was chosen for optimization through the statistical technique. The results indicated that NH4Cl was the best nitrogen source for enzyme production, and the response surface methodology (RSM) suggested that the greatest P(3HB) depolymerase production could be achieved when the concentrations of substrate loading and NH4Cl both set at 0.5%. Analysis of the 16S rRNA sequence of isolate SS1-2 revealed similarity to Pseudooceanicola antarcticus CGMCC 1.12662 (97.81% similarity). The findings of this study indicate the potential for further exploitation of this depolymerase in enzyme kinetics studies and its application in PHA degradation experiments.
Collapse
Affiliation(s)
- Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Nanthavut Niyomvong
- Department of Biology and Biotechnology, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand.
- Science Center, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand.
| |
Collapse
|
4
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
5
|
Koti A, Khongprom P, Ratanawilai S. Catalytic Pyrolysis Oil from Landfilled Plastics through Ni/HZSM-5 and Co/HZSM-5 Catalysts. ACS OMEGA 2025; 10:5744-5755. [PMID: 39989809 PMCID: PMC11840772 DOI: 10.1021/acsomega.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Plastic waste poses a significant environmental challenge. To address this issue, the pyrolysis process offers a promising solution to convert plastic waste into valuable products. This study investigated the pyrolysis of plastic waste sourced from a Hat Yai municipal landfill, aiming to optimize process conditions and characterize the resulting products. The plastic waste was classified into three primary types: polyethylene terephthalate (PET) (7 wt %), polypropylene (PP) (23 wt %), and polyethylene (PE) (70 wt %). Thermogravimetric analysis (TGA) revealed that the waste decomposed completely within the temperature range of 520-600 °C. To optimize pyrolysis conditions, experiments were conducted on both unwashed and water-washed plastic waste, varying particle size, catalyst type, and loading. Nickel- and cobalt-based zeolite catalysts (Ni/HZSM-5 and Co/HZSM-5) were employed to enhance the pyrolysis process. The results indicated that medium-sized, water-washed plastic waste, pyrolyzed at 560 °C with 5 wt % of 5 wt % Co/HZSM-5 catalyst, yielded the highest pyrolysis oil (47.42 ± 1.00 wt %) and a high heating value (HHV) of 38.06 ± 0.67 MJ/kg. To further optimize the process, central composite design (CCD) and response surface methodology (RSM) were utilized to investigate the effects of the temperature and catalyst loading on the pyrolysis oil yield and HHV. Optimal conditions were determined for both unwashed and washed plastic waste. Gas chromatography-mass spectrometry (GC-MS) analysis of the pyrolysis oil from both optimum conditions revealed a high proportion of hydrocarbon compounds similar to fossil fuels, including gasoline, jet fuel, and diesel. This study successfully optimized the catalytic pyrolysis of plastic waste, resulting in significant improvement in oil yield and product quality. The use of water-washed plastic waste and 5% Co/HZSM-5 catalyst proved to be effective in enhancing the pyrolysis process. These findings provide valuable insights into the sustainable management of plastic waste and the production of valuable resources.
Collapse
Affiliation(s)
- Arisa Koti
- Department of Chemical Engineering,
Faculty of Engineering, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| | - Parinya Khongprom
- Department of Chemical Engineering,
Faculty of Engineering, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| | - Sukritthira Ratanawilai
- Department of Chemical Engineering,
Faculty of Engineering, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
6
|
Voelp A, Bumajdad A, Al-Salem SM. Properties of Simulated Plastic Waste Mixtures in Upcycling Processes: An Experimental Evaluation. ACS OMEGA 2025; 10:4084-4093. [PMID: 39926560 PMCID: PMC11800051 DOI: 10.1021/acsomega.4c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Current production of virgin plastics stands at approximately 0.4 billion tonnes annually, with significant applications in packaging, construction, and the automotive industry. Despite the utility of plastics, their waste management remains a challenge. This study focuses on upcycling plastic waste (PW) through mechanical recycling, which adds value to discarded plastics and aligns with sustainable practices. We have investigated the mechanical and thermal properties of ternary and quaternary blends of the most common polyolefin polymers, low-density polyethylene and polypropylene (PP), simulating typical PW mixtures. The blends were prepared using twin screw extrusion for melting, mixing, and strand extrusion. The strands from the extruder were guided through a water bath, optionally dried, and pelletized, to determine the processing conditions variations. Aliquots of the blends were directly taken from the extruder to form specimens from the melts. Additionally, the produced pellets were remolten to form specimens, resulting in a second heating cycle (HC). Thermal stability, calorimetric properties, surface morphology, and mechanical characteristics of the blends were analyzed. Results indicate that ternary blends exhibit higher thermal stability but lower mechanical strength compared with quaternary blends. The addition of PP slightly reduced the onset temperature in quaternary blends. The melting temperatures of the blends show minimal change with additional HCs or drying, suggesting the maintenance of thermal properties. The ternary blends exhibit consistent mechanical properties regardless of the processing conditions, but the breakup force and tensile modulus of the quaternary blends were lower with additional HCs. The surface morphological studies revealed increased cavitation with two HCs and improved surface smoothness with drying. These findings support the potential of mechanical recycling to produce marketable plastic grades from mixed PW.
Collapse
Affiliation(s)
- Annika Voelp
- Chemical
Analysis Division (Material Characterization), Thermo Fisher Scientific GmbH, Pfannkuchstrasse 10-12, 76185 Karlsruhe, Germany
| | - Ali Bumajdad
- Department
of Chemistry, Faculty of Science, Kuwait
University, P.O. Box 5969, 13060 Safat, Kuwait
| | - Sultan Majed Al-Salem
- Environment
& Life Sciences Research Centre, Kuwait
Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
7
|
Zoveidadianpour Z, Alava JJ, Drever MC, Schuerholz G, Pierzchalski C, Douglas T, Heath WA, Juurlink B, Bendell L. Microplastic distribution and composition in mudflat sediments and varnish clams (Nuttallia obscurata) at two estuaries of British Columbia, Canada: An assessment of potential anthropogenic sources. MARINE POLLUTION BULLETIN 2025; 211:117367. [PMID: 39626500 DOI: 10.1016/j.marpolbul.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 02/13/2025]
Abstract
Widespread microplastic contamination affects the marine-coastal ecosystems in British Columbia, Canada. To understand the characteristics and spatial distribution of of microplastics (MPs), we compared the MPs in sediments (n = 159) and Varnish clams (Nuttallia obscurata; n = 160) collected from two estuarine ecosystems (Cowichan and K'ómoks) experiencing different anthropogenic impacts; primarily resource extraction (i.e., logging) at Cowichan and urban development at K'omoks. Our objective wasto determine the MP abundance levels in sediments and clams and infer possible sources of MPs at the two estuaries. Microplastic polymer type was confirmed through FTIR spectrometry. The average abundance of MPs in sediments were 14.37 ± 11.57 particles/kg in the Cowichan Estuary and 30.96 ± 14.58 particles/kg in the K'ómoks Estuary. Varnish clam samples contained average abundance of 3.62 ± 2.58 particles/g and 2.24 ± 1.96 particles/g in Cowichan and K'ómoks estuaries, respectively. The Cowichan Estuary's marine terminal and K'ómoks Marina were found to be hotspots for MPs, likely due to a combination of industrial and local sources. Fibers were the most common type of MPs found in both sediment (53.34 %) and clam samples (53.5 %) from Cowichan, as well as in clam samples in% K'ómoks, indicating a potential link to textile sources contributing to the widespread presence of MPs in the marine environment. There was no clear signal based on the primary use of the estuary. Polyethylene was the predominant polymer type of MPs found in sediment and clam samples at Cowichan, whereas Polyester was most common at K'ómoks. Our study revealed the ubiquitous nature of these emerging pollutants in the sensitive estuarine environments of BC, with implications for plastic waste management and the reduction of plastic pollution at the regional level.
Collapse
Affiliation(s)
- Zeinab Zoveidadianpour
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada; Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark C Drever
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd, Delta, British Columbia V4K 3N2, Canada
| | - Goetz Schuerholz
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Caitlin Pierzchalski
- Project Watershed Society, 2356A Rosewall Crescent in Tin Town, Courtenay, BC, V9N 8R9, Canada
| | - Tristan Douglas
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada; Faculty of Forestry, 2424 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William A Heath
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Bernhard Juurlink
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Leah Bendell
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Kalamaras G, Antonopoulou M, Soto Beobide A, Triantafyllidis V, Dailianis S. Disposable face masks into aquatic media: Chemical and biological testing of the released compounds during the leaching process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125290. [PMID: 39537088 DOI: 10.1016/j.envpol.2024.125290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The present study investigated the fate, and the biological effects posed by the presence of Disposable Face Masks (DFMs) into fresh- and saltwater media, using both chemical and biological testing. To this end, slightly fragmented DFMs were maintained in tanks with artificial sea water (ASW) or dH2O (DFMASW and DFMdH2O, respectively) for a period of 20 days (under continuous agitation, oxygen supply, and light/dark ration 1:1) to simulate both fresh- and saltwater natural conditions. Thereafter, DFMs leaching substances were determined, before proceeding to biological testing with the use of the marine bacterium Aliivibrio fischeri (Bioluminescence Inhibition assay), the fresh- and saltwater algal species Chlorococcum sp. and Tetraselmis suecica (algal bioassays), as well as the fairy shrimp Thamnocephalus platyurus, the water flea Daphnia magna, and the rotifer Brachionus calyciflorus (acute toxicity screening tests, in terms of microbiotest). According to the results, once into aquatic media (DFMASW and DFMdH2O) DFMs are subjected to degradation, leading to the release of organic, inorganic, and polymeric compounds (PP microfibers). Considering that possible interactions of the leaching substances could differentially affect the aquatic biota, the present study showed that DFMs leaching substances could be harmful to the fairy shrimp T. platyurus, and the water flea D. magna, with slight to non-toxic effects to be observed in case of Chlorococcum sp. and Tetraselmis suecica, the marine bacterium Aliivibrio fischeri, and the rotifer B. calyciflorus. The present findings showed that the DFMs improper disposal into fresh- and/or saltwater media, followed by their degradation and leaching processes, could lead to the release of substances of great environmental concern, thus promoting awareness about their proper handling and management, as well as the long-term monitoring of their environmental risk.
Collapse
Affiliation(s)
- Georgios Kalamaras
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Maria Antonopoulou
- School of Agricultural Sciences, Department of Sustainable Agriculture, University of Patras, GR-30131, Agrinio, Greece
| | - Amaia Soto Beobide
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504, Patras, Greece
| | - Vasilios Triantafyllidis
- School of Agricultural Sciences, Department of Food Science & Technology, University of Patras, GR-30131, Agrinio, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
9
|
Queiroz LG, Faustino LA, de Oliveira PFM, Pompêo M, Córdoba de Torresi SI. Transformative nanobioplasmonic effects: Toxicological implications of plasmonic silver nanoparticles in aquatic biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176592. [PMID: 39343390 DOI: 10.1016/j.scitotenv.2024.176592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silver nanoparticles (AgNPs) present unique properties, such as the induced localized surface plasmon resonance (LSPR) provoked under illumination with a proper wavelength, allowing these nanomaterials to be applied in fields such as catalysis and biomedicine. The study of AgNPs is also highly relevant from the environmental pollution viewpoint due to their high production and application in commercial products. Consequently, AgNPs reach aquatic environments and can be plasmonically stimulated under natural light conditions. This study investigates the toxic effects promoted by AgNPs under plasmonic excitation on the survival and physiology of the crustacean Daphnia similis. Two AgNP shapes (spherical and triangular) with plasmon bands absorbing in different spectral regions in the visible range were studied. The organisms were exposed to different AgNP concentrations under five different light conditions. Survival and changes in enzymatic biomarkers of oxidative stress and lipid storage were evaluated. Under LSPR conditions, we observed increased lethality for both AgNP shapes. LSPR effects of AgNPs showed mortality 2.6 and 1.7 times higher than the treatment under dark conditions for spherical and triangular morphologies respectively. The enzymatic assays demonstrated that plasmonic treatments triggered physiological responses. Significantly decreased activities were observed exclusively under LSPR conditions for both AgNP shapes. Considering all treatments, spherical AgNPs showed lower LC50 values than triangular ones, indicating their higher toxic potential. Our results demonstrate that LSPR AgNPs can induce biological responses associated with oxidative stress and survival. Therefore, this study highlights the potential risks of environmental contamination by plasmonically active metallic nanomaterials. These materials can enhance their toxicity when light-excited, yet the results also indicate promising opportunities for light-based therapies.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil.
| | - Leandro A Faustino
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil
| | - Paulo F M de Oliveira
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil
| | - Marcelo Pompêo
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Susana I Córdoba de Torresi
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
11
|
Mukherjee A, Ruj B, Sadhukhan AK, Gupta P, Parashar CK, Chatterjee PK. Applications of H 2-Enriched syngas and slag products from plastic wastes via novel plasma dual-stage-arc pyrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123025. [PMID: 39461150 DOI: 10.1016/j.jenvman.2024.123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Sustainable plastic waste management in the prevailing 'new-normal' post-pandemic scenario calls for calorific waste plastic up-cycling into high-end product recovery pathways. The present work employed a novel dual-stage arc plasma pyrolysis reactor to recover syngas and slag products from mixed plastics and Low-Density Polyethylene and Polyethylene Terephthalate (LDPE-PET) plastic waste feeds. Syngas product yield decreased while the solid slag yield increased with rising arc current, attaining 75% and 25% for mixed plastic waste feed and 59% and 41% for LDPE-PET wastes, respectively, at 200A arc current. The resultant syngas composition showed 83% and 77% H2 while 1.7% and 2.7% CO for mixed plastic waste-feed and LDPE-PET wastes, respectively, with no significant presence of CO2. Slag characterization studies revealed the presence of scattered pores on the slag surface, graphitic nanostructures due to scraped carbon depositions from electrode tips and the absence of aromatic groups due to complete conversion. High carbon content was observed in the slag due to the dissociation of lighter hydrocarbon and carbon dioxide on dual-arc exposure in two stages, underscoring the higher efficiency. For holistic integrated circular onsite 'plastic waste-to-resource' recovery-cum-application, electricity was generated from the resultant syngas and the slag was used for the manufacture of tiles in the community platform. Techno-economic evaluation of an up-scaled plasma pyrolysis facility shows the power recovery of 3.5 kWh/kg of waste plastic, with a net annual profit of $2800 and a payback period of 1.7 years. The findings of the present work suggest that the proposed integrated dual-arc plasma pyrolysis based plastic waste-to-resource recovery in circular-economy model has a viable outcome.
Collapse
Affiliation(s)
- Ankita Mukherjee
- Department of Chemical Engineering, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India; Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India
| | - Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India
| | - Anup Kumar Sadhukhan
- Department of Chemical Engineering, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India
| | - Parthapratim Gupta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India.
| | - Chintak Kamalesh Parashar
- Energy Research & Technology Group, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India
| | - Pradip Kumar Chatterjee
- Energy Research & Technology Group, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India
| |
Collapse
|
12
|
Ran T, Pang J, Wu D. Experimental study on recycling rubber to increase the impact resistance of cement mortar. Sci Rep 2024; 14:25230. [PMID: 39448631 PMCID: PMC11502711 DOI: 10.1038/s41598-024-73834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
The COVID-19 pandemic has led to a surge in medical waste generation, posing hazards to both the environment and global health. The impacts of the COVID-19 pandemic's medical waste hazard may persist long after the pandemic itself subsides. Improper disposal of medical waste can contaminate environment, posing risks to ecosystems and public health. Discarded medical rubber gloves, for example, can become a source of infection, improper disposal of these gloves can escalate the spread of infectious diseases and increase the risk of transmission of the virus to the general public. This study proposes an innovative and sustainable method to reinforce cement mortar by adding recycled glove rubber as an additive to cement mortar to increase its resistance to impact loads. This study conducted uniaxial compression tests, separating hopkinson pressure bar (SHPB) experiments and SEM observations to evaluate the quasi-static compressive strength and dynamic stress of recycled rubber fiber mortar (RRFM) with varying recycled rubber fiber (RRF) contents (0, 1%, 2%, 3%). Strain curves, dynamic increase factor (DIF), energy absorption rules, failure modes, and microstructure of RRFM mixtures. The experimental results demonstrate that with the addition of RRF, the dynamic stress-strain curve flattens and the peak strain gradually increases. The RRFM sample shows stronger toughness. In comparison to regular cement mortar (NM), RRFM has a higher DIF and specific absorbed energy, a faster increase in dynamic compressive strength, and the ability to absorb more energy per unit volume. Under the same impact load, RRFM has fewer and smaller cracks than NM. Scanning electron microscopy (SEM) testing also observed that RRF formed a strong connection pattern with the cement mortar matrix.
Collapse
Affiliation(s)
- Tao Ran
- School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, China
- School of Computing, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Jianyong Pang
- School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Di Wu
- School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
13
|
Ding J, Peng Y, Song X, Zhu M, Jiang H, Huang J, Sun T, Yang J, Zou H, Wang Z, Pan G. Impact of COVID-19 pandemic on microplastic occurrence in aquatic environments: A three-year study in Taihu Lake Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135530. [PMID: 39159580 DOI: 10.1016/j.jhazmat.2024.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The impact of the Coronavirus Disease 2019 (COVID-19) pandemic on microplastic (MP) occurrence in aquatic environments deserves an in-depth study. In this study, the occurrence of MPs and environmental flux of plastics before (2019) and during (2020 and 2021) the pandemic were comparatively investigated in various aquatic compartments in the Taihu Lake Basin in China. The field-based investigations from 2019 to 2021 for Taihu Lake have shown that, at the onset of the outbreak, the MP abundance declined at a rate of 62.3 %, but gradually recovered to the pre-pandemic level. However, the amount of plastics being released into aquatic environments showed a declining trend in 2020 and 2021 compared to those in 2019, with decrease rates of 13.7 % and 15.8 %, respectively. Characterization analysis of MP particles and source apportionment framework implied that while the contributions of tire abrasion and domestic waste to MP occurrence were depleted owing to the reduction in human activity during the pandemic, weathering and fragmentation of retained plastics contributed to the recovery of stored MPs. This study provides insights into the anthropogenic influences on MP occurrence, and supports policymakers in managing and controlling plastic contamination in large freshwater systems in the "new normal" phase.
Collapse
Affiliation(s)
- Jiannan Ding
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yi Peng
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaojun Song
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mingda Zhu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jichao Huang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Sun
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Zhenyu Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
| | - Gang Pan
- School of Humanity, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| |
Collapse
|
14
|
Husaini DC, Mendez RK, Arzu M, Harris-Thurton L. Plastic Waste in Latin America and the Caribbean (LAC): Impact on the Environment and Public Health-A Systematic Review. J Toxicol 2024; 2024:5698516. [PMID: 39377048 PMCID: PMC11458288 DOI: 10.1155/2024/5698516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Background The global spread and accumulation of plastics in freshwater, marine, and terrestrial settings are of great concern to public health and the environment, especially in developing countries with few resources. In the Caribbean and Latin America, nearly 17,000 tons of plastic waste are generated and trashed daily in open dumpsites with attendant consequences for the environment, the economy, aquatic life, the beauty of sea beaches, and public health. The increased use of plastics threatens public health and the ecosystem. Main Body. This systematic review assessed the impact of plastic waste on the environment, economy, and public health in LAC by searching relevant databases such as PubMed, HINARI, Google Scholar, and Scopus. PRISMA and Rayyan software were used to select and analyze research articles for the review. Conclusions The review showed that plastic pollution significantly impacts the environment, aquatic life, economy, and human health in LAC. The review further indicated that countries in LAC are working assiduously to address the issues associated with plastic pollution. The use of biodegradable plastics, cleanup campaigns, and policies/programs to reduce or ban plastics are some current efforts in many LAC countries. More research on the impact of plastic waste needs to be conducted, especially in the Caribbean, to address and mitigate the challenges of plastic pollution.
Collapse
Affiliation(s)
- Danladi Chiroma Husaini
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Rodeli Kaylin Mendez
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Michael Arzu
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Lydia Harris-Thurton
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| |
Collapse
|
15
|
Samitthiwetcharong S, Chavalparit O, Suwanteep K, Murayama T, Kullavanijaya P. Enhancing circular plastic waste management: Reducing GHG emissions and increasing economic value in Rayong province, Thailand. Heliyon 2024; 10:e37611. [PMID: 39309876 PMCID: PMC11416544 DOI: 10.1016/j.heliyon.2024.e37611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
This study evaluates the greenhouse gas (GHG) emissions and economic value creation of plastic waste (PW) management in Rayong, Thailand, a city on the eastern Gulf Coast with a significant amount of generated and leaked PW. By analyzing current practices, and developing and evaluating improvement scenarios, the study explores strategies for reducing GHG and enhancing economic benefits across the PW management chain. Four primary routes with varying capacities handle approximately 5,445.55 tonnes of PW via source separation recycling (5.18 %), post-sorting recycling (9.30 %), energy recovery (54.86 %), and landfills or opened dump disposal (30.66 %). About 83.21 % of the 16 ± 6.9 % PW in municipal solid waste (MSW) is recyclable, primarily consisting of high-density polyethylene (HDPE), polypropylene (PP), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and polyethylene terephthalate (PET). The current management practice generates an economic benefit of approximately 1.68 million USD/yr or 310 USD/t of PW, compared to the proposed scenarios, which enhances recycling efficiency and reduces landfill and energy recovery waste, yielding 2.27-6.48 million USD/yr or 420.64-1200.33 USD/t of PW. The practice emits about 7,028.47 tCO2e annually, while improved source and post-sorting efficiencies reduce GHG emissions by 2.86-3.17 times or -2.83 to -2.42 tCO2e/t of PW or a total of over 13,078.60-15,268.44 tCO2e. Burning PW increases approximately 1.6 times or 11,841.36 tCO2e/yr. Enhancing recycling efficiency, particularly through source separation, is key to promoting more productive and valuable PW separation, increasing economic value and GHG mitigation by approximately 3.87 and 3.17 times, respectively. These findings provide valuable insights for local authorities and policymakers to develop strategic interventions and policies that align with the improved scenario by enhancing source separation and recycling. The results demonstrate that improving the efficiency of separation at the source is critical for transitioning from a linear PW management strategy to a circular economy, significantly reducing landfill waste and mitigating environmental threats.
Collapse
Affiliation(s)
- Sutisa Samitthiwetcharong
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orathai Chavalparit
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Unit of Environmental Management and Sustainable Industry, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kultip Suwanteep
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Takehiko Murayama
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Pratin Kullavanijaya
- Excellent Center of Waste Utilization and Management, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|
16
|
Le VG, Nguyen MK, Lin C, Nguyen HL, Nguyen TQH, Hue NK, Truong QM, Chang SW, Nguyen XH, Nguyen DD. Review on personal protective equipment: Emerging concerns in micro(nano)plastic pollution and strategies for addressing environmental challenges. ENVIRONMENTAL RESEARCH 2024; 257:119345. [PMID: 38851370 DOI: 10.1016/j.envres.2024.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Tri Quang Hung Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen K Hue
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong, 75000, Viet Nam
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
17
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
19
|
Chen Y, Chen Q, Zuo C, Zhang S, Zhang M, Hou X, Shi H. Leaching potentials of microplastic fibers and UV stabilizers from coastal-littered face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134999. [PMID: 38925055 DOI: 10.1016/j.jhazmat.2024.134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Synthetic fibrous textiles are ubiquitous plastic commodities in everyday existence. Nevertheless, there exists a dearth of understanding regarding their environmental occurrence and the releasing capacities of associated additives. In this study, ten additives were determined in twenty-eight kinds of daily used plastic products including face masks, synthetic clothing, and food containers. Our results revealed that a typical kind of fibrous plastic, face masks, contained a greater variety of additives with UV stabilizers in particular, when compared to other plastic commodities. The above phenomena triggered our field investigation for the occurrence and release potentials of face mask fibers and the co-existing UV stabilizers into the environment. We further collected 114 disposed masks from coastal areas and analyzed their UV stabilizer concentrations. Results showed that the abundance of littered face masks ranged from 40-1846 items/km2 along the Yangtze Estuary, China; and UV stabilizers were of 0.3 ± 0.7 ng/g and 0.7 ± 1.7 ng/g in main bodies and ear ropes, respectively. The UV stabilizer concentrations in the field collected masks were only ∼7 % of their new counterparts, implying their potential leaching after disposal. By simulating the weathering scenario, we predict that a substantial amount of microplastics, with 1.1 × 1010 polypropylene fibers and 3.7 × 1010 polyester fibers, are probably be released daily into the coastal environment after face masks disposal; whereas the accompanied leaching amount of UV stabilizers was relatively modest under the current scenario.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning Province, Shenyang 110016, China
| | - Mengdan Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning Province, Shenyang 110016, China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning Province, Shenyang 110016, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Malloy J, Marlowe E, Jensen CJ, Liu IS, Hulse T, Murray AF, Bryan D, Denes TG, Gilbert DA, Yin G, Liu K. Microstructure-dependent particulate filtration using multifunctional metallic nanowire foams. NANOSCALE 2024; 16:15094-15103. [PMID: 39076072 DOI: 10.1039/d4nr02368d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nanowire foams that are efficient, robust, antimicrobial, and reusable, with the potential to further guard against multiple hazards. We have investigated the foam microstructures, detailing how the growth parameters influence the overall surface area and characteristic feature size, as well as the effects of the microstructures on the filtration performance. Nanogranules deposited on the nanowires during electrodeposition are found to greatly increase the surface area, up to 20 m2 g-1. Surprisingly, in the high surface area regime, the overall surface area gained from the nanogranules has little correlation with the improvement in capture efficiency. However, nanowire density and diameter play a significant role in the capture efficiency of PM0.3 particles, as do the surface roughness of the nanowire fibers and their characteristic feature sizes. Antimicrobial tests on the Cu foams show a >99.9995% inactivation efficiency after contacting the foams for 30 seconds. These results demonstrate promising directions to achieve a highly efficient multifunctional filtration platform with optimized microstructures.
Collapse
Affiliation(s)
- James Malloy
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | - Erin Marlowe
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | | | - Isaac S Liu
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Thomas Hulse
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
- Department of Physics, University of Louisville, Louisville, KY 40292, USA
| | - Anne F Murray
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Daniel Bryan
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dustin A Gilbert
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Gen Yin
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
21
|
Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK. Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131082. [PMID: 38972432 DOI: 10.1016/j.biortech.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Tony Hadibarata
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Lot 3288 & 3289, Off Jalan Ayer Hitam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
22
|
Lee YM, Kim KW, Yang JY, Kim BJ. Enhanced Crystallization of Sustainable Polylactic Acid Composites Incorporating Recycled Industrial Cement. Polymers (Basel) 2024; 16:1666. [PMID: 38932014 PMCID: PMC11207649 DOI: 10.3390/polym16121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Globally, the demand for single-use plastics has increased due to the rising demand for food delivery and household goods. This has led to environmental challenges caused by indiscriminate dumping and disposal. To address this issue, non-degradable plastics are being replaced with biodegradable alternatives. Polylactic acid (PLA) is a type of biodegradable plastic that has excellent mechanical properties. However, its applications are limited due to its low crystallinity and brittleness. Studies have been conducted to combat these limitations using carbon or inorganic nucleating agents. In this study, waste cement and PLA were mixed to investigate the effect of the hybrid inorganic nucleating agent on the crystallinity and mechanical properties of PLA. Waste cement accelerated the lamellar growth of PLA and improved its crystallinity. The results indicate that the flexural and impact strengths increased by approximately 3.63% and 76.18%, respectively.
Collapse
Affiliation(s)
- Yong-Min Lee
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Kwan-Woo Kim
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Jae-Yeon Yang
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Byung-Joo Kim
- Department of Materials Science and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea
- Material Application Research Institute, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
23
|
de Deus BCT, Costa TC, Altomari LN, Brovini EM, de Brito PSD, Cardoso SJ. Coastal plastic pollution: A global perspective. MARINE POLLUTION BULLETIN 2024; 203:116478. [PMID: 38735173 DOI: 10.1016/j.marpolbul.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Coastal ecosystems have ecological importance worldwide and require control and prevention measures to mitigate human pollution. The objective of this study was to perform a systematic review to provide a comprehensive overview of the global issue of coastal plastic pollution. 689 articles were eligible for qualitative synthesis and 31 were considered for quantitative analysis. There was an exponential increase in articles addressing coastal plastic pollution over the past 50 years. Studies were mainly carried out on beaches, and plastic bottles were the most found item, followed by cigarette butts. Polyethylene was the predominant plastic polymer, and white microplastic fragments stood out. China published most articles on the topic and Brazil had the highest number of sites sampled. Meta-analysis had significant effect sizes based on the reported data. These findings carry significant implications for environmental policies, waste management practices, and targeted awareness campaigns aimed at mitigating plastic pollution.
Collapse
Affiliation(s)
- Beatriz Corrêa Thomé de Deus
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Thaiane Cantarino Costa
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Leslie Nascimento Altomari
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Emília Marques Brovini
- Postgraduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Paulo Sérgio Duque de Brito
- VALORIZA Research Centre, Polytechnic Institute of Portalegre, Campus Politécnico, 10, 7300-555 Portalegre, Portalegre, Portugal
| | - Simone Jaqueline Cardoso
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil; Department of Zoology, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Akūlova L, Paegle L, Mārtiņsone I, Vanadziņš I, Knudsen LE, Matisāne L. COVID-19 pandemic influence on perceived exposure to chemical substances in Latvia: data from a focus group discussion and the HBM4EU citizen survey. Front Public Health 2024; 12:1382368. [PMID: 38846609 PMCID: PMC11155454 DOI: 10.3389/fpubh.2024.1382368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction The COVID-19 pandemic has globally influenced the exposure of populations to chemical substances through various channels. This study aims to evaluate the tendencies of the use of chemical products in Latvia amidst the pandemic. Answers from 597 respondents (26.6% male, 73.4% female, mean age 46.0 ± 12.2) which were gathered as part of the HBM4EU (Human Biomonitoring Initiative) citizen survey and 8 focus group participants were used. Methods The study utilized data from the HBM4EU citizen survey and conducted focus group discussions to understand the impact of the COVID-19 pandemic on chemical product usage in Latvia. Survey responses were analyzed to identify changes in exposure to chemicals, particularly in relation to disinfection agents and household products. Results More than two-thirds of survey participants reported increased exposure to chemicals during the COVID-19 pandemic, mainly related to the use of disinfection agents and household products. About 2-in-5 (39.8%) of survey respondents considered that the COVID-19 pandemic has increased their interest in exposure to chemicals. The excessive use of disinfectant products is the main concern of citizens (mentioned by 66.7%, n = 389). Also, two focus group participants noted that the use of disinfectant products is too widespread and should be minimized. Discussion The findings suggest that the COVID-19 pandemic has not only increased the use of chemical products in Latvia but also promoted an interest in safe and healthy use of chemicals which could be useful to raise the awareness of the general public.
Collapse
Affiliation(s)
- Lāsma Akūlova
- Laboratory of Hygiene and Occupational Diseases, Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Riga, Latvia
| | - Linda Paegle
- Laboratory of Hygiene and Occupational Diseases, Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Riga, Latvia
| | - Inese Mārtiņsone
- Laboratory of Hygiene and Occupational Diseases, Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Riga, Latvia
| | - Ivars Vanadziņš
- Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Riga, Latvia
| | - Lisbeth E. Knudsen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Linda Matisāne
- Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
25
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Synthetic Degradable Polyvinyl Alcohol Polymer and Its Blends with Starch and Cellulose-A Comprehensive Overview. Polymers (Basel) 2024; 16:1356. [PMID: 38794547 PMCID: PMC11124784 DOI: 10.3390/polym16101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Approximately 50% of global plastic wastes are produced from plastic packaging, a substantial amount of which is disposed of within a few minutes of its use. Although many plastic types are designed for single use, they are not always disposable. It is now widely acknowledged that the production and disposal of plastics have led to a plethora of negative consequences, including the contamination of both groundwater and soil resources and the deterioration of human health. The undeniable impact of excessive plastic manufacturing and waste generation on the global plastic pollution crisis has been well documented. Therefore, degradable polymers are a crucial solution to the problem of the non-degradation of plastic wastes. The disadvantage of degradable polymers is their high cost, so blending them with natural polymers will reduce the cost of final products and maximize their degradation rate, making degradable polymers competitive with industrial polymers that are currently in use daily. In this work, we will delineate various degradable polymers, including polycaprolactone, starch, and cellulose. Furthermore, we will elucidate several aspects of polyvinyl alcohol (PVA) and its blends with natural polymers to show the effects of adding natural polymers on PVA properties. This paper will study cost-effective and ecologically acceptable polymers by combining inexpensive natural polymers with readily accessible biodegradable polymers such as polyvinyl alcohol (PVA).
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
26
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
27
|
Vrabcová P, Scholz P, Linderová I, Kotoučková H. Eco-friendly hotels and guesthouses as a new opportunity for resilience and sustainability: Evidence from the Czech Republic. PLoS One 2024; 19:e0301936. [PMID: 38683791 PMCID: PMC11057784 DOI: 10.1371/journal.pone.0301936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The economic recovery of the tourism industry after the Covid-19 pandemic to find modern and efficient trends to increase profitability is accompanied by the adoption of comprehensive accommodation approaches towards resilience and environmental sustainability. The research aims at the application of environmental management elements and measures in all types of accommodation facilities in the Czech Republic (n1 = 1,016). A qualitative focus group method complemented the quantitative research using correspondence analysis, Levene's, Kruskal-Wallis, and Tukey's HSD tests (n2 = 9 + moderator). The results indicate that the differences in the number of environmental measures implemented were minimal for the monitored hotels and guesthouses. On the other hand, the star rating of accommodation facilities is not a key parameter in the environmental impact assessment. The most used environmental measures were devices reducing electricity consumption (hotels 94%, guesthouses 94%), separating waste (hotels 88%, guesthouses 89%), and water consumption reduction (hotels 85%, guesthouses 86%). At the same time, the most minor used were measures reducing chemical consumption (hotels 23%, guesthouses 22%) communication and environmental education of employees and guests (hotels 32%, guesthouses 18%).
Collapse
Affiliation(s)
- Pavla Vrabcová
- Faculty of Economics, Department of Economics Statistics, Technical University of Liberec, Liberec, Czech Republic
| | - Petr Scholz
- Department of Travel and Tourism, College of Polytechnics Jihlava, Jihlava, Czech Republic
| | - Ivica Linderová
- Department of Travel and Tourism, College of Polytechnics Jihlava, Jihlava, Czech Republic
| | - Hana Kotoučková
- Department of Mathematics, College of Polytechnics Jihlava, Jihlava, Czech Republic
| |
Collapse
|
28
|
Mahmood H, Furqan M, Meraj G, Shahid Hassan M. The effects of COVID-19 on agriculture supply chain, food security, and environment: a review. PeerJ 2024; 12:e17281. [PMID: 38680897 PMCID: PMC11048076 DOI: 10.7717/peerj.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
COVID-19 has a deep impact on the economic, environmental, and social life of the global population. Particularly, it disturbed the entire agriculture supply chain due to a shortage of labor, travel restrictions, and changes in demand during lockdowns. Consequently, the world population faced food insecurity due to a reduction in food production and booming food prices. Low-income households face food security challenges because of limited income generation during the pandemic. Thus, there is a need to understand comprehensive strategies to meet the complex challenges faced by the food industry and marginalized people in developing countries. This research is intended to review the agricultural supply chain, global food security, and environmental dynamics of COVID-19 by exploring the most significant literature in this domain. Due to lockdowns and reduced industrial production, positive environmental effects are achieved through improved air and water quality and reduced noise pollution globally. However, negative environmental effects emerged due to increasing medical waste, packaging waste, and plastic pollution due to disruptions in recycling operations. There is extensive literature on the effects of COVID-19 on the environment and food security. This study is an effort to review the existing literature to understand the net effects of the pandemic on the environment and food security. The literature suggested adopting innovative policies and strategies to protect the global food supply chain and achieve economic recovery with environmental sustainability. For instance, food productivity should be increased by using modern agriculture technologies to ensure food security. The government should provide food to vulnerable populations during the pandemic. Trade restrictions should be removed for food trade to improve international collaboration for food security. On the environmental side, the government should increase recycling plants during the pandemic to control waste and plastic pollution.
Collapse
Affiliation(s)
- Haider Mahmood
- Department of Finance, College of Business Administration, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maham Furqan
- College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Gowhar Meraj
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | - Muhammad Shahid Hassan
- Department of Economics and Statistics, Dr. Hassan Murad School of Management, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
29
|
Pavithra K, Vairaperumal T, Ks V, Mukhopadhyay M, Malar P, Chakraborty P. Microplastics in packaged water, community stored water, groundwater, and surface water in rivers of Tamil Nadu after the COVID-19 pandemic outbreak. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120361. [PMID: 38493646 DOI: 10.1016/j.jenvman.2024.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The increased load of plastic in waste streams after the COVID-19 pandemic outbreak has increased the possibility of microplastics (MPs) contamination channelling through the rivers and infiltrating the aquatic ecosystems. MPs in packaged water, community-stored water, groundwater, and surface water of Kaveri River (KR), Thamirabarani River (TR), Adyar River (AR), and Cooum River (CR) in Tamil Nadu were therefore investigated about 2 years after the COVID-19 pandemic outbreak. Using μFTIR and μRaman spectroscopy, polyamide, polypropylene, polyethylene, ethylene vinyl alcohol copolymer resin, and polyvinyl chloride were identified as the primary polymer types. The average number of MPs was 2.15 ± 1.9 MP/L, 1.1 ± 0.99 MP/L, 5.25 ± 1.15 MP/L, and 4 ± 2.65 MP/L in KR, TR, AR, and CR, respectively, and 1.75 ± 1.26 MP/L in groundwater, and 2.33 ± 1.52 MP/L in community stored water. Only LDPE was detected in recycled plastic-made drinking water bottles. More than 50% of MPs were found to be of size less than 1 mm, with fibrous MPs being the prevalent type, and a notable prevalence of blue-coloured microplastics in all the sample types. The Pollution Load Index (PLI) was >1 in all the rivers. Toxicity rating based on the polymer risk index (PORI) categorized AR and TR at medium risk (category II), compared to KR and CR at considerable risk (category III). Overall pollution risk index (PRI) followed a decreasing trend with CR > AR > KR > TR of considerable to low-risk category. Ecological risk assessment indicates a negligible risk to freshwater biota, except for four sites in the middle and lower stretches of Adyar River (AR - 2, AR - 4) and upper and lower stretches of Cooum River (CR - 1, CR - 3), located adjacent to direct sewer outlets, and one location in the lower stretch of Kaveri River (KR - 9), known for fishing and tourist activities.
Collapse
Affiliation(s)
- K Pavithra
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Tharmaraj Vairaperumal
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan, ROC; Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Vignesh Ks
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - P Malar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| |
Collapse
|
30
|
Zain A, Sadarangani SP, Shek LPC, Vasoo S. Climate change and its impact on infectious diseases in Asia. Singapore Med J 2024; 65:211-219. [PMID: 38650059 PMCID: PMC11132621 DOI: 10.4103/singaporemedj.smj-2023-180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
ABSTRACT Climate change, particularly increasing temperature, changes in rainfall, extreme weather events and changes in vector ecology, impacts the transmission of many climate-sensitive infectious diseases. Asia is the world's most populous, rapidly evolving and diverse continent, and it is already experiencing the effects of climate change. Climate change intersects with population, sociodemographic and geographical factors, amplifying the public health impact of infectious diseases and potentially widening existing disparities. In this narrative review, we outline the evidence of the impact of climate change on infectious diseases of importance in Asia, including vector-borne diseases, food- and water-borne diseases, antimicrobial resistance and other infectious diseases. We also highlight the imperative need for strategic intersectoral collaboration at the national and global levels and for the health sector to implement adaptation and mitigation measures, including responsibility for its own greenhouse gas emissions.
Collapse
Affiliation(s)
- Amanda Zain
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Sapna P Sadarangani
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lynette Pei-Chi Shek
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
31
|
Huang H, Shi Y, Gong Z, Wang J, Zheng L, Gao S. Revealing the characteristics of biofilms on different polypropylene plastic products: Comparison between disposable masks and takeaway boxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133400. [PMID: 38198871 DOI: 10.1016/j.jhazmat.2023.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.
Collapse
Affiliation(s)
- Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lezhou Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
32
|
Bihannic I, Gley R, Gallo L, Badura A, Razafitianamaharavo A, Beuret M, Billet D, Bojic C, Caillet C, Morlot P, Zaffino M, Jouni F, George B, Boulet P, Noûs C, Danger M, Felten V, Pagnout C, Duval JFL. Photodegradation of disposable polypropylene face masks: Physicochemical properties of debris and implications for the toxicity of mask-carried river biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133067. [PMID: 38039813 DOI: 10.1016/j.jhazmat.2023.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Collapse
Affiliation(s)
| | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Lucas Gallo
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | | | | | - David Billet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Clément Bojic
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Fatina Jouni
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Béatrice George
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
| | - Pascal Boulet
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | | |
Collapse
|
33
|
Ganguly RK, Chakraborty SK. Plastic waste management during and post Covid19 pandemic: Challenges and strategies towards circular economy. Heliyon 2024; 10:e25613. [PMID: 38370243 PMCID: PMC10869756 DOI: 10.1016/j.heliyon.2024.e25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Global petroleum consumption suffered drastically as lockdowns were put in place to contain the Coronavirus Disease 2019 (COVID-19). As a result, oil costs dropped, making virgin plastics more cost-effective than recycled plastics. The usage of plastic has increased as a result of lifestyle modifications, cost-based incentives, and other factors, further obscuring the issue. The utilization of personal protective equipment (PPE) during the pandemic had resulted in a significant surge in the quantity of plastic waste. The plastic packaging industry achieved a revenue milestone of US$ 909.2 billion in 2021, boosting a compound annual growth rate of 5.5 %. The escalating dependence on plastics imposed additional pressure on waste management systems, which were proven to be ineffective and insufficient in addressing the issue. This situation exacerbated the problem and contributed to environmental pollution. Globally, 40 % of plastic waste ended up in landfills, 25 % was incinerated, 16 % was recycled, and the remaining 19 % infiltrated within the environment. By investing in circular technologies like feedstock recycling and enhancing infrastructural and environmental conditions, it expected to become viable to manage plastic waste flows during such a period of crisis. Investing in valorization strategies that transform plastic waste into value-added goods, such as fuels and building materials, receives a compelling macroeconomic signal when both plastic waste and plastic demand are on the rise. A robust circular economy can be accomplished by finalising the life cycle of plastic waste. The concept of Plastic Waste Footprint (PWF) aims to assess the environmental impact of plastic products throughout their intended usage period. In the midst of the emerging challenges in waste management during and post pandemic period, this research study has been conducted to explore the challenges and strategies associated with plastic waste in the environment.
Collapse
Affiliation(s)
- Ram Kumar Ganguly
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | |
Collapse
|
34
|
Vuppaladadiyam SSV, Vuppaladadiyam AK, Sahoo A, Urgunde A, Murugavelh S, Šrámek V, Pohořelý M, Trakal L, Bhattacharya S, Sarmah AK, Shah K, Pant KK. Waste to energy: Trending key challenges and current technologies in waste plastic management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169436. [PMID: 38160846 DOI: 10.1016/j.scitotenv.2023.169436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Due to the 'forever' degrading nature of plastic waste, plastic waste management is often complicated. The applications of plastic are ubiquitous and inevitable in many scenarios. Current global waste plastics production is ca. 3.5 MMT per year, and with the current trend, plastic waste production will reach 25,000 MMT by 2040. However, the rapid growth in plastic manufacture and the material's inherent nature resulted in the accumulation of a vast amount of plastic garbage. The current recycling rate is <10 %, while the large volumes of discarded plastic waste cause environmental and ecological problems. Recycling rates for plastic vary widely by region and type of plastic. In some developed countries, the recycling rate for plastics is around 20-30 %, while in many developing nations, it is much lower. These statistics highlight the magnitude of the plastic waste problem and the urgent need for comprehensive strategies to manage plastic waste more effectively and reduce its impact on the environment. This review critically analyses past studies on the essential and efficient techniques for turning plastic trash into treasure. Additionally, an attempt has been made to provide a comprehensive understanding of the plastic upcycling process, the 3Rs policy, and the life-cycle assessment (LCA) of plastic conversion. The review advocates pyrolysis as one of the most promising methods of turning plastic trash into valuable chemicals. In addition, plastic waste management can be severely impacted due to uncontrollable events, such as Covid 19 pandemic. Recycling and chemical upcycling can certainly bring value to the end-of-life plastic. However, the LCA analysis indicated there is still a huge scope for innovation in chemical upcycling area compared to mechanical recycling. The formulation of policies and heightened public participation could play a pivotal role in reducing the environmental repercussions of plastic waste and facilitating a shift towards a more sustainable future.
Collapse
Affiliation(s)
| | | | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Urgunde
- Department of Chemistry and Biochemistry, Auburn University, AL 36849, USA
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, India
| | - Vít Šrámek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; Department of Gaseous and Solid Fuels and Air Protection, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Sankar Bhattacharya
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kamal K Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
35
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Athulya PA, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss CGP, Chandrasekaran N. Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:85. [PMID: 38367078 DOI: 10.1007/s10653-023-01800-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 02/19/2024]
Abstract
The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.
Collapse
Affiliation(s)
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andres Rodriguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/N, 32004, Ourense, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo-Campus Auga, 32004, Ourense, Spain
| | - Sandhya Devalla
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
37
|
Kurtjak M, Maček Kržmanc M, Spreitzer M, Vukomanović M. Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action. Pharmaceutics 2024; 16:228. [PMID: 38399282 PMCID: PMC10893416 DOI: 10.3390/pharmaceutics16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.K.); (M.S.); (M.V.)
| | | | | | | |
Collapse
|
38
|
Sanito RC, Mujiyanti DR, You SJ, Wang YF. A review on medical waste treatment in COVID-19 pandemics: Technologies, managements and future strategies. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:72-99. [PMID: 37955449 DOI: 10.1080/10962247.2023.2282011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Since the outbreak of COVID-19 few years ago, the increasing of the number of medical waste has become a huge issue because of their harmful impact to environment. A major concern associated to the limitation of technologies for dealing with medical waste, especially conventional technologies, are overcapacities since pandemic occurs. Moreover, the outbreak of new viruses from post COVID-19 should become a serious attention to be prevented not only environmental issues but also the spreading of viruses to new pandemic near the future. The high possibility of an outbreak of new viruses and mutation near the future should be prevented based on the experience associated with the SARS-CoV-2 virus in the last 3 yr. This review presented information and strategies for handling medical waste during the outbreak of COVID-19 and post-COVID-19, and also information on the current issues related to technologies, such as incineration, pyrolysis/gasification, autoclaves and microwave treatment for the dealing with high numbers of medical waste in COVID-19 to prevent the transmission of SARS-CoV-2 virus, their advantages and disadvantages. Plasma technology can be considered to be implemented as an alternative technology to deal with medical waste since incinerator is usually over capacities during the pandemic situation. Proper treatment of specific medical waste in pandemics, namely face masks, vaccine vials, syringes, and dead bodies, are necessary because those medical wastes are mediums for transmission of the SARS-CoV-2 virus. Furthermore, emission controls from incinerator and plasma are necessary to be implemented to reduce the high concentration of CO2, NOx, and VOCs during the treatment. Finally, future strategies of medical waste treatment in the perspective of potential outbreak pandemic from new mutation viruses are discussed in this review paper.Implications: Journal of the air and waste management association may consider our review paper to be published. In this review, we give important information related to the technologies, managements and strategies for handling the medical waste and control the transmission of SARS-CoV-2 virus, starting from proper technology to control the high number of medical waste, their pollutants and many strategies for controlling the spreading of SARS-CoV-2 virus. Moreover, this review also describes some strategies associated with control the transmission not only the SARS-CoV-2 virus but also the outbreak of new viruses near the future.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Surface Engineering Laboratory, Advanced Materials Research Center, Department of Mineral, Metallurgical and Materials Engineering, Laval University, Pavillon Adrien-Pouliot, Quebec City, Quebec, Canada
- CHU de Quebec, Hospital Saint-François d'Assise, Laval University, Quebec City, Quebec, Canada
| | - Dwi Rasy Mujiyanti
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
39
|
Kim H, Fang Y, Oh Y, Shanov VN, Ryu H, Chae S. Engineered Electrically Heatable Face Masks for Direct Inactivation of Aerosolized Viruses on the Mask Surfaces. ACS ES&T ENGINEERING 2024; 4:401-408. [PMID: 39737221 PMCID: PMC11684527 DOI: 10.1021/acsestengg.3c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
The COVID-19 pandemic has resulted in significant changes in our daily lives, including the widespread use of face masks. Face masks have been reported to reduce the transmission of viral infections by droplets; however, improper use and/or treatment of these masks can cause them to be contaminated, thereby reducing their efficacy. Moreover, regular replacement of face masks is essential to maintaining their effectiveness, which can be challenging in resource-limited healthcare settings. The initial scarcity of face masks during the early stages of the pandemic led to the development of reusable face mask solutions. This research aimed to design a porous, standalone electrically heatable carbon veil (CV) layer that can be applied to commercial face masks without compromising their breathability. The main objective of this study is to directly inactivate aerosolized viruses using CV heaters powered by a direct current (DC). Prototype face mask samples with the CV were produced and tested using the aerosolized MS2 bacteriophage. After contamination of the face mask with the MS2 bacteriophage, the mask was treated by applying a direct current of 6 V and 1.17 A, which caused the surface temperature of the CV layers to reach over 70 °C within 10 s. This rapid temperature increase through Joule heating effectively inactivates the captured MS2 bacteriophage, with an average inactivation efficiency exceeding 99%. The findings of this study provide valuable insights into the potential application of engineered carbon layers for the decontamination of face masks and air filters from aerosolized viruses, thereby potentially enabling their reuse.
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Yanbo Fang
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Yoontaek Oh
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio 45268, United States; Pegasus Technical Services, Inc., Cincinnati, Ohio 45268, United States
| | - Vesselin N. Shanov
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States; Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio 45268, United States
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
40
|
Awino FB, Apitz SE. Solid waste management in the context of the waste hierarchy and circular economy frameworks: An international critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:9-35. [PMID: 37039089 DOI: 10.1002/ieam.4774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Growing populations and consumption drive the challenges of solid waste management (SWM); globalization of transport, food production, and trade, including waste trading, distributes risks worldwide. Using waste hierarchy (WH; reduce, reuse, and recycle) and circular economy (CE) concepts, we updated a conceptual waste framework used by international organizations to evaluate SWM practices. We identified the key steps and the important factors, as well as stakeholders, which are essential features for effective SWM. Within this updated conceptual framework, we qualitatively evaluated global SWM strategies and practices, identifying opportunities, barriers, and best practices. We find that, although a few exceptional countries exhibit zero-waste compliance, most fare poorly, as exhibited by the high waste generation, incineration, and disposal (open dumping, landfilling) volumes. In the Global North, SWM strategies and practices rely heavily on technologies, economic tools, regulatory frameworks, education, and social engagement to raise stakeholder awareness and enhance inclusion and participation; in the Global South, however, many governments take sole legal responsibility for SWM, seeking to eliminate waste as a public "nuisance." Separation and recycling in the Global South are implemented mainly by "informal" economies in which subsistence needs drive recyclable material retrieval. Imported, regionally inappropriate tools, economic constraints, weak policies and governance, waste trading, noninclusive stakeholder participation, data limitations, and limited public awareness continue to pose major waste and environmental management challenges across nations. In the context of the framework, we conclude that best practices from around the world can be used to guide decision-making, globally. Despite variations in drivers and needs across regions, nations in both the Global North and South need to improve WH and CE compliance, and enhance stakeholder partnership, awareness, and participation throughout the SWM process. Partnerships between the Global North and South could better manage traded wastes, reduce adverse impacts, and enhance global environmental sustainability and equity, supporting UN Sustainable Development Goals. Integr Environ Assess Manag 2024;20:9-35. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Florence Barbara Awino
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Sabine E Apitz
- SEA Environmental Decisions, Hertfordshire, UK
- IEAM Editor-in-Chief
| |
Collapse
|
41
|
Doad R, Gupta R, Shitak R. Evaluation of biomedical waste generation in Himachal Pradesh before and during the Covid 19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167689. [PMID: 37820814 DOI: 10.1016/j.scitotenv.2023.167689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Himachal Pradesh dealt with the same crisis as other states in India due to the extensive dissemination of the COVID-19 coronavirus infection. Biomedical waste management is crucial for public health and environmental safety, and the pandemic's impact on waste generation is an understudied area. This study specifically utilizes data from the Himachal Pradesh Pollution Control Board as well as information from other governmental and non-governmental organizations, which are analysed and compared for the pre-pandemic and pandemic periods. This research offers a thorough analysis of waste generation of Himachal Pradesh both before and during the COVID-19 outbreak. Kangra (671 kg/day), Shimla (526 kg/day), are found to be high Bio medical waste generation (BMWG) districts whereas Kinnour (22 kg/day), Lahul Spiti (6 kg/day) are observed as lowest BMW generating districts in Himachal Pradesh on average basis in the year 2018 to 2020. The unexpected COVID-19 viral pandemic has caused a huge increase in Bio-medical waste (584 kg/day) in the year 2021 in comparison to that in the year 2020 (139 kg/day). The gaps analysis of Himachal Pradesh implementation of the Biomedical waste regulations was also assessed in this study. Deep burials have been severely prohibited by the Himachal Pradesh government; yet, two districts continue to dispose of BMWs using deep burial techniques. The findings reveal important insights into the changing patterns of BMW generation, shedding light on the challenges and requirements for effective waste management strategies during health crises. The insights obtained from this study can contribute in development of resilient waste management system that can effectively respond to future pandemics or health crises, ensuring the safety of healthcare workers, the public, and the environment.
Collapse
Affiliation(s)
- Ruchi Doad
- Centre for Energy and Environment, Dr B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| | - Renu Gupta
- Centre for Energy and Environment, Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Ritu Shitak
- Department of Pharmacology, Dr. Radhakrishnan Government Medical College Hamirpur, cum-consultant-cum State Nodal Officer PVPI under aegis of IPC, Ministry of Health and Family Welfare, GOI, Himachal Pradesh, India
| |
Collapse
|
42
|
Srisuk T, Charoenlarp K, Kampeerapappun P. Utilization of Waste Natural Fibers Mixed with Polylactic Acid (PLA) Bicomponent Fiber: Incorporating Kapok and Cattail Fibers for Nonwoven Medical Textile Applications. Polymers (Basel) 2023; 16:76. [PMID: 38201741 PMCID: PMC10780681 DOI: 10.3390/polym16010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Disposable surgical gowns are usually made from petroleum-based synthetic fibers that do not naturally decompose, impacting the environment. A promising approach to diminish the environmental impact of disposable gowns involves utilizing natural fibers and/or bio-based synthetic fibers. In this study, composite webs from polylactic acid (PLA) bicomponent fiber and natural fibers, cattail and kapok fibers, were prepared using the hot press method. Only the sheath region of the PLA bicomponent fiber melted, acting as an adhesive that enhanced the strength and reduced the thickness of the composite web compared with its state before hot pressing. The mechanical and physical properties of these composite webs were evaluated. Composite webs created from kapok fibers displayed a creamy yellowish-white color, while those made from cattail fibers showed a light yellowish-brown color. Additionally, the addition of natural fibers endowed the composite webs with hydrophobic properties. The maximum natural fiber content, at a ratio of 30:70 (natural fiber to PLA fiber), can be incorporated while maintaining proper water vapor permeability and mechanical properties. This nonwoven material presents an alternative with the potential to replace petroleum-based surgical gowns.
Collapse
Affiliation(s)
| | | | - Piyaporn Kampeerapappun
- Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand; (T.S.); (K.C.)
| |
Collapse
|
43
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
44
|
Araña KND, Dimaongon NG, Mauyag ND, Hadji Morad NM, Manupac SRR, Bacosa HP. Personal protective equipment (PPE) litter in terrestrial urban areas of Iligan City, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1486. [PMID: 37973642 DOI: 10.1007/s10661-023-12044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In recent years, many countries have relied on the massive use of personal protective equipment (PPE) following the recommendation of the World Health Organization (WHO) to combat COVID-19, an infectious disease caused by the SARS-CoV-2 virus. These PPEs include facemasks, face shields, disinfectant wipes, and disposable gloves. While PPE serves as protection, it can also be a source of pollution. This study is the first to establish a baseline monitoring and assessment of the spatial distribution of COVID-19-related PPE litter approaching the post-pandemic from the urban areas in Iligan City, Philippines. A total of 1632 COVID-19 PPE litter were gathered in all surveyed locations, predominantly facemasks (90.7%) and disinfectant wipes (8.8%). Among the surveyed areas, the location that recorded the highest count and density of PPE litter is in a residential zone (52.14%; n = 851; 0.0317 item m-2); the lowest was determined in recreational parks (2.57%; n = 42; 0.0016 item m-2). The significant difference in the total count of PPE items in each location could be traced to the varying land uses and ecosystems as well as the human behavior and activities. FTIR results reveal that all types of facemasks sampled are principally made of polypropylene, a material that threatens environmental sustainability and low recyclability. As the country is embracing the new normal and somewhat returning to pre-pandemic activities, this study calls for the prioritization of the government agendas on ecological solid waste management in the country.
Collapse
Affiliation(s)
- Kent Naiah D Araña
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Noralyn G Dimaongon
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Noronimah D Mauyag
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Nisriah M Hadji Morad
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Shekinah Ruth R Manupac
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines.
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines.
- Main Campus Bataraza Extension (MCBE), Mindanao State University-Main Campus, Lanao del Sur, 9700, Marawi, Philippines.
| |
Collapse
|
45
|
Ang L, Hernández-Rodríguez E, Cyriaque V, Yin X. COVID-19's environmental impacts: Challenges and implications for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165581. [PMID: 37482347 DOI: 10.1016/j.scitotenv.2023.165581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Strict measures have curbed the spread of COVID-19, but waste generation and movement limitations have had an unintended impact on the environment over the past 3 years (2020-2022). Many studies have summarized the observed and potential environmental impacts associated with COVID-19, however, only a few have quantified and compared the effects of these unintended environmental impacts; moreover, whether COVID-19 policy stringency had the same effects on the main environmental topic (i.e., CO2 emissions) across the 3 years remains unclear. To answer these questions, we conducted a systematic review of the recent literature and analyzed the main findings. We found that the positive environmental effects of COVID-19 have received more attention than the negative ones (50.6 % versus 35.7 %), especially in emissions reduction (34 % of total literature). Medical waste (14.5 %) received the highest attention among the negative impacts. Although global emission reduction, especially in terms of CO2, has received significant attention, the positive impacts were temporary and only detected in 2020. Strict COVID-19 policies had a more profound and significant effect on CO2 emissions in the aviation sector than in the power and industry sectors. For example, compared with 2019, international aviation related CO2 emissions dropped by 59 %, 49 %, and 25 % in 2020, 2021, and 2022, respectively, while industry related ones dropped by only 3.16 % in 2020. According to our developed evaluation matrix, medical wastes and their associated effects, including the persistent pollution caused by antibiotic resistance genes, heavy metals and microplastics, are the main challenges post the pandemic, especially in China and India, which may counteract the temporary environmental benefits of COVID-19. Overall, the presented results demonstrate methods to quantify the environmental effects of COVID-19 and provide directions for policymakers to develop measures to address the associated environmental issues in the post-COVID-19 world.
Collapse
Affiliation(s)
- Leeping Ang
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| | - Enrique Hernández-Rodríguez
- Institut de Recherche sur les Forets, Université du Quebec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Valentine Cyriaque
- Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Québec G1K 9A9, Canada
| | - Xiangbo Yin
- Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Québec G1K 9A9, Canada.
| |
Collapse
|
46
|
Garratt A, Nguyen K, Brooke A, Taylor MJ, Francesconi MG. Photocatalytic Hydrolysis-A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS ENVIRONMENTAL AU 2023; 3:342-347. [PMID: 38028741 PMCID: PMC10655588 DOI: 10.1021/acsenvironau.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a resource instead of a problem if high value products, such as fine chemicals and liquid fuel molecules, can be liberated from controlled its decomposition. This letter presents proof of concept on a low-cost, low energy approach to controlled decomposition of plastic, photocatalytic hydrolysis. This approach integrates photolysis and hydrolysis, both slow natural decomposition processes, with a photocatalytic process. The photocatalyst, α-Fe2O3, is embedded into a polylactic acid (PLA) plastic matrix. The photocatalyst/plastic composite is then immersed in water and subjected to low-energy (25 W) UV light for 90 h. The monomer lactide is produced as the major product. α-Fe2O3 (6.9 wt %) was found to accelerate the PLA degradation pathway, achieving 32% solid transformation into liquid phase products, in comparison to PLA on its own, which was found to not decompose, using the same conditions. This highlights a low energy route toward plastic waste upgrade and valorization that is less carbon intensive than pyrolysis and faster than natural degradation. By directly comparing a 25 W (0.025 kWh) UV bulb with a 13 kWh furnace, the photocatalytic reaction would directly consume 520× less energy than a conventional thermochemical pathway. Furthermore, this technology can be extended and applied to other plastics, and other photocatalysts can be used.
Collapse
Affiliation(s)
- Antonia Garratt
- School
of Natural Sciences, Chemistry, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- Energy
and Environment Institute, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Klaudia Nguyen
- School
of Natural Sciences, Chemistry, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- Energy
and Environment Institute, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Alexander Brooke
- School
of Natural Sciences, Chemistry, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Martin J. Taylor
- School
of Engineering, Chemical Engineering, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Maria Grazia Francesconi
- School
of Natural Sciences, Chemistry, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
47
|
Lv W, Shen Y, Xu S, Wu B, Zhang Z, Liu S. Underestimated health risks: Dietary restriction magnify the intestinal barrier dysfunction and liver injury in mice induced by polystyrene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165502. [PMID: 37451458 DOI: 10.1016/j.scitotenv.2023.165502] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) have gained significant attention due to their widespread presence in the environment. While studies have been conducted to investigate the risks associated with MPs, the potential effects of MPs on populations with varying dietary habits, such as dietary restriction (DR), remain largely undefined. The sensitivity of the body to invasive contaminants may increase due to insufficient food intake. Here, we aimed to investigate whether dietary restriction could affect the toxicity of MPs in mice. Following a 5-week exposure to 200 μg/L polystyrene microplastics (PSMPs), DR-PSMPs treatment group exhibited significant intestinal barrier dysfunction compared to ND-PSMPs treatment group, as determined by histopathological and biochemical analysis. Dietary restriction worsened liver oxidative stress and bile acid disorder in mice exposed to PSMPs. 16S rRNA sequencing analysis revealed that DR-PSMPs treatment caused alterations in gut microbiota composition, including the downregulation of probiotics abundance and upregulation of pathogenic bacteria abundance. The negative effects caused by PSMPs in mice with dietary restriction could attribute to increased MPs bioaccumulation, declined water intake, reduced probiotics abundance, and elevated pathogenic bacteria abundance, as well as the susceptibility of the dietary restriction individual. Our findings hint that the biological effects of contaminants could be affected by dietary habits.
Collapse
Affiliation(s)
- Wang Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yihan Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zongyao Zhang
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Su Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
48
|
Silva MG, Oliveira MM, Peixoto F. Assessing micro and nanoplastics toxicity using rodent models: Investigating potential mitochondrial implications. Toxicology 2023; 499:153656. [PMID: 37879514 DOI: 10.1016/j.tox.2023.153656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.
Collapse
Affiliation(s)
- Mónica G Silva
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Maria Manuel Oliveira
- Chemistry Research Centre (CQ-VR), Chemistry Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Chemistry Research Centre (CQ-VR), Biology and Environment Department University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
49
|
Tran TKA, Raju S, Singh A, Senathirajah K, Bhagwat-Russell G, Daggubati L, Kandaiah R, Palanisami T. Occurrence and distribution of microplastics in long-term biosolid-applied rehabilitation land: An overlooked pathway for microplastic entry into terrestrial ecosystems in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122464. [PMID: 37634566 DOI: 10.1016/j.envpol.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Wastewater treatment plants (WWTPs) efficiently eliminate over 98% of microplastics (MPs) from wastewater discharge, subsequently accumulating them in sludge. This sludge is frequently employed as fertilizer in agricultural practices or land rehabilitation. While there is significant research on biosolid application in agriculture, the discussion regarding its application in rehabilitating industrial zones and MPs contamination is limited. The current study investigates the abundance, distribution, and composition of MPs in rehabilitation land with long-term biosolid-application in Australia. Three minesite fields (designated 1-3), each with distinct biosolid application histories since 2011, 2012, and 2017, and a control field without any biosolid application history, were chosen for this study. The abundances of MPs in biosolid-applied fields 1-3 (6.04 ± 1.92 x 102 MP kg-1; 4.94 ± 0.73 x 102 MP kg-1; 2.48 ± 0.70 x 102 MP kg-1) were considerably higher compared to non-biosolid-applied field (0.70 ± 0.63 x 102 MP kg -1). This indicates that the application of biosolids significantly contributes to the presence of MPs in the soil. Moreover, the results suggest that with each successive application, the abundance of MPs increases. The abundance and size of MPs in both biosolid and non-biosolid soils decreased as the soil depth increased. Microbeads were dominant in soils where biosolids were applied (up to 61.9%), while fibres were dominant in non-biosolid soils (accounting for 85.7%). The distribution of plastic polymer types varied among fields and soil depths. Most MPs were microbeads of polyamide (PA), fragments of polyethylene (PE), foam of polystyrene (PS), and fibres of rayon. This research presents evidence that the extended utilization of biosolids results in elevated MP pollution in minesite rehabilitation land, highlighting a frequently overlooked origin of MP contamination in terrestrial settings. Additional evaluations needed to understand ecological risks of MPs in soil ecosystems affected by biosolid application.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Subash Raju
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Arjun Singh
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia; ICAR Central Soil Salinity Research Institute RRS Lucknow, India
| | - Kala Senathirajah
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lakshmi Daggubati
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Raji Kandaiah
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
50
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|