1
|
Yang Q, Chu S, Li M, Zhou Z, Su Q, Xue X, Han Y, Li H. In-situ synthesized multifunctional petal-like geopolymer/Mo₂S₃ composite membrane for water purification and recovery. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137564. [PMID: 39938379 DOI: 10.1016/j.jhazmat.2025.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
In this paper, a multi-functional petal-like geopolymer/Mo₂S₃ composite membrane (PG/Mo₂S₃CM) was synthesized in situ through the hydrothermal method, with a porous geopolymer membrane (PGM), thiourea, and sodium molybdate as the raw materials. When the contents of thiourea and sodium molybdate were 4.14 g and 4.38 g respectively, the PG/Mo₂S₃CM demonstrated optimal performance in water treatment. The high degradation rate of Rhodamine B (RB) and the significant removal rate of Ni(Ⅱ) exceeded 99 % and 92 % respectively. The PG/Mo₂S₃CM exhibits excellent continuous use performance, reusability performance, and environmental tolerance. Under one sun irradiation, the evaporation rate of the PG/Mo₂S₃CM reached 1.53 kg·m⁻²·h⁻¹ . The experimental results confirm the enhancing mechanisms of RB and Ni(Ⅱ) removal. The increase in •OH, sulfur vacancies, and the synergistic effect between PGM and Mo₂S₃ are the reasons for the high performance of PG/Mo₂S₃CM. The enhancing mechanisms of solar-driven evaporation on PG/Mo₂S₃CM involve the synergistic effect of the good water transfer rate of PGM and the excellent photothermal effect of molybdenum sulfide. This work offers a novel strategy for the development of a multifunctional geopolymer composite material for use in the field of water purification and recovery.
Collapse
Affiliation(s)
- Qianyi Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Shiliang Chu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China.
| | - Mingxing Li
- School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhicheng Zhou
- China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China
| | - Qiaoqiao Su
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China; School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China.
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China; School of Chemistry and Chemical Engineering & School of Civil Engineering and Architecture, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; China Southern Power Grid Guangxi Power Grid Co Lt, Power Dispatching & Control Ctr, Nanning, Guangxi 530023, PR China.
| | - Yaocong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Heping Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| |
Collapse
|
2
|
Khan A, Nayarisseri A, Singh SK. Characterization and optimization of azo dyes degrading microbes isolated from textile effluent. Sci Rep 2025; 15:11241. [PMID: 40175441 PMCID: PMC11965336 DOI: 10.1038/s41598-025-95359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Azo dyes are highly recalcitrant, persistent, and toxic compounds, extensively used in the textile industry. The untreated discharge of dye effluents from the textile industry poses severe environmental and health risks. This research aimed to isolate and identify bacterial strains from textile wastewater that can decolorize azo dyes. After the subsequent screening of 89 isolates, 4 novel strains were identified utilizing the 16S rRNA gene sequencing technique that could effectively decolorize and degrade azo dyes, methyl red, direct yellow 12, and acid black 210. A thorough assessment of physicochemical parameters was conducted to optimize for maximum decolorization for all four strains. At pH 7, 37° C, and 50 mg/L dye concentration, the maximum decolorization for methyl red, direct yellow 12, and acid black 210 was 79.09% > 72.20% > 64.76%; 84.45% > 62.59% > 54.29%; 83.12% > 70.22% > 61.42%; and 92.71% > 83.02% > 69.84%, for isolate 1, isolate 2, isolate 3, and isolate 4, respectively. The novel strains belonged to the Sphingomonas, Pseudomonas, Shewanella, and Priestia species. The unique sequences of these bacterial strains have been submitted to the GenBank database under the accession numbers "OQ202071", "PP708911", "PP708909", and "PP086977," respectively. Further, an enzyme study and statistical optimization of Priestia flexa species was performed. A Central Composite Design and Response Surface Methodology has been applied for synergistic effects of process parameters namely pH (5-9), initial dye concentration (100-250 mg/L), and temperature (25°-45° C) on the decolorization of the model dyes. The regression analysis indicated a strong correlation between the experimental data and the second-order polynomial supported by a high coefficient of determination (R²). For all three dyes analyzed, the difference between the experimental and predicted values was found to be less than 10%. Fourier Transform Infrared spectroscopy was further employed to analyze and confirm the degradation of the three dyes.
Collapse
Affiliation(s)
- Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, Indore, 452010, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, 452010, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
3
|
Cui X, Zhang H, Qu J, Chao M, Ma S, Hu Q, Yu X. Synthesis of waterborne polyurethane-carboxymethyl chitosan cross-linked biodegradable bio-based porous materials for the adsorption of methylene blue. Int J Biol Macromol 2025; 301:140420. [PMID: 39884597 DOI: 10.1016/j.ijbiomac.2025.140420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The development of green and cost-effective biomass adsorbents is necessary for removing large amounts of dyes from wastewater. In this study, polyurethane prepolymers were synthesized using polycaprolactone diol (OH-PCL-OH), isophorone diisocyanate, and 2,2-dihydroxymethylpropionic acid, which were subsequently dispersed in aqueous carboxymethyl chitosan (CMCS) solution to produce waterborne polyurethane (WPU)-CMCS porous materials. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), thermogravimetric (TGA) and mercury intrusion porosimetry (MIP). The effects of pH, temperature, initial concentration and contact time on the adsorption properties of the adsorbents were investigated. The adsorption kinetics and isotherms were used to fit the adsorption data, and the reusability and biodegradability of the adsorbent were investigated. The results showed that the maximum adsorption capacity of WPU-CMCS10 was 222.65 mg·g-1 and the adsorption process followed the Langmuir model. After four adsorption-resolution cycles, the removal of dyes remained at 70.36 %, whereas in the biodegradability test, the mass loss of WPU-CMCS10 reached 43.04 % after 25 weeks, indicating that the adsorbent had good reusability and biodegradability.
Collapse
Affiliation(s)
- Xiubin Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haitao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Jianbo Qu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mingzhen Chao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shanghong Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qingfei Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Nguyen HDP, Le BNT, Nguyen HN, Nguyen TVT, Duong TLH, Hoang TC, Duy NPT, Nguyen MV, Duong LN, Le LQ, Pham TPT. Demonstration of adapted packed-bed bioreactor for accurate and rapid estimation of biochemical oxygen demand: insights into the influence of microbial community structure and functions. World J Microbiol Biotechnol 2025; 41:31. [PMID: 39794618 DOI: 10.1007/s11274-025-04249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD5) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD5 in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD5 in textile wastewater using GGA standard solution. Metagenomic analysis revealed the dominance of the genera Enterobacter, Acinetobacter, Chryseobacterium, and Comamonas in the adapted microbial community, which are recognized for their significant potential in azo dye degradation. The imputed metagenome showed an enhanced showed an enhanced abundance of "Amino Acid Degradation" and "Carbohydrate Degradation" functions, confirming the improved ability of adapted community to utilization of GGA in the standard solution. These findings suggest that adaptation of exogenous microbial consortium to a nutrient environment composed of GGA and target wastewater may shift the community to that dominated by strains having both utilization ability of GGA and target compounds which, in turn, enhance the accuracy of the adapted PBBRs for estimation of BOD5 in target wastewater.
Collapse
Affiliation(s)
- Hoang-Duy P Nguyen
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Bao-Ngoc T Le
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Hong-Nhung Nguyen
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Thuy-Van T Nguyen
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Thanh-Linh H Duong
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Tien-Cuong Hoang
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Phuc Thanh Duy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh V Nguyen
- Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Linh N Duong
- Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Loan Q Le
- Institute of Tropical Biology - Vietnam Academy of Science and Technology, 9/621 Hanoi High Way, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thuy-Phuong T Pham
- Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
5
|
Wang Y, Zhang T, Huang M, Zhang M, He YC. Preparation of dandelion flower extract-based polyvinyl alcohol-chitosan-dandelion-CuNPs composite gel for efficient bacteriostatic and dye adsorption. Int J Biol Macromol 2024; 281:136512. [PMID: 39406320 DOI: 10.1016/j.ijbiomac.2024.136512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
A multifunctional composite gel with efficient bacteriostatic and dye adsorption properties was prepared using polyvinyl alcohol, chitosan, and soybean isolate protein as carriers, CuNPs prepared by green reduction of dandelion extract as bacteriostatic agent, and glutaraldehyde as cross-linking agent. The composite gel showed good inhibition capacity of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa with the diameter of inhibition zone of 27.0-28.3 mm by agar diffusion method. The composite gel antibacterial rate remained above 90 % after 14 days of preparation. After 6 times reuse of composite gel in water, the antibacterial rate remained above 90 %, proving its good stability and reusability. Adding dandelion extract and CuNPs greatly improved the gel antioxidant property, acquiring free radical scavenging rate at 95.6 %. This composite gel had good biocompatibility and adsorption performance, and the maximum adsorption amount of methylene blue and methyl orange was 40.36 mg/g and 41.81 mg/g, respectively. To sum up, the green composition of composite gel has good antimicrobial performance and high dye adsorption, which holds significant promising for treating the water body pollution and protecting the environment. To build cost-effective antibacterial and dye adsorption process on a large-scale, in-depth exploration about this topic is still needed to develop.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Tingting Zhang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Meizi Huang
- School of Animal Pharmacy, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu ShenQi Medicine Technology Co., Ltd., Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Ming Zhang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yu-Cai He
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Berillo D, Malika T, Baimakhanova BB, Sadanov AK, Berezin VE, Trenozhnikova LP, Baimakhanova GB, Amangeldi AA, Kerimzhanova B. An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels 2024; 10:646. [PMID: 39451299 PMCID: PMC11508006 DOI: 10.3390/gels10100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar-agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites-such as antibiotics, enzymes, and precursors-and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products.
Collapse
Affiliation(s)
- Dmitriy Berillo
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
- Department of Pharmaceutical and Toxicological Chemistry, School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Turganova Malika
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
| | - Baiken B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Amankeldi K. Sadanov
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Vladimir E. Berezin
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Lyudmila P. Trenozhnikova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Gul B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Alma A. Amangeldi
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | | |
Collapse
|
7
|
Manamela L, Nombona N. Cellulose Acetate Supported MOF-5/Crystalline Nanocellulose Composite Film as an Adsorbent Material for Methylene Blue Removal from Aqueous Solutions. ACS OMEGA 2024; 9:37621-37635. [PMID: 39281923 PMCID: PMC11391463 DOI: 10.1021/acsomega.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
In this study, a novel, low-cost, and efficient adsorbent film was fabricated by a solvothermal method. The adsorbent film was developed to be hydrolytically stable, not vulnerable to aggregation in aqueous environments, and not prone to secondary contamination. The adsorbent consists of cellulose acetate (CA) as a support embedded with a MOF-5/crystalline nanocellulose (CNC) composite material. The CA-supported MOF-5/CNC film was characterized using a variety of techniques, including X-ray diffraction, thermal gravimetric analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, which revealed hydroxyl and carbonyl functional groups on the adsorbent film. The film was evaluated for the adsorptive removal of methylene blue (MB) from an aqueous solution. Adsorption was characterized by a rapid increase in MB adsorption during the first hour with equilibrium achieved within 4-5 h into the adsorption process. The maximum adsorption capacity was determined to be 4.29 mg/g and the maximum dye removal efficiency was 77%. The MB adsorption process best fitted the Freundlich isotherm and pseudo-second-order kinetic models. Thermodynamic studies showed that the adsorption was exothermic and feasible. The adsorbent film showed admirable regeneration ability, demonstrating its cost-effectiveness and its potential as a promising material for wastewater treatment.
Collapse
Affiliation(s)
- Lebogang Manamela
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Gauteng, Pretoria 0002, South Africa
| | - Nolwazi Nombona
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Gauteng, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Belli TJ, Dalbosco V, Bassin JP, Lunelli K, Costa RED, Lapolli FR. Treatment of azo dye-containing wastewater in a combined UASB-EMBR system: Performance evaluation and membrane fouling study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121701. [PMID: 38968882 DOI: 10.1016/j.jenvman.2024.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This work investigated the treatment of azo dye-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor combined with an electro-membrane bioreactor (EMBR). Current densities of 20 A m-2 and electric current exposure mode of 6'ON/30'OFF were applied to compare the performance of the EMBR to a conventional membrane bioreactor (MBR). The results showed that dye (Drimaren Red CL-7B) removal occurred predominantly in the UASB reactor, which accounted for 57% of the total dye removal achieved by the combined system. When the MBR was assisted by electrocoagulation, the overall azo dye removal efficiency increased from 60.5 to 67.1%. Electrocoagulation batch tests revealed that higher decolorization rates could be obtained with a current density of 50 A m-2. Over the entire experimental period, the combined UASB-EMBR system exhibited excellent performance in terms of chemical oxygen demand (COD) and NH4+-N removal, with average efficiencies above 97%, while PO43--P was only consistently removed when the electrocoagulation was used. Likewise, a consistent reduction in the absorption spectrum of aromatic amines was observed when the MBR was electrochemically assisted. In addition to improving the pollutants removal, the use of electrocoagulation reduced the membrane fouling rate by 68% (0.25-0.08 kPa d-1), while requiring additional energy consumption and operational costs of 1.12 kWh m-3 and 0.32 USD m-3, respectively. Based on the results, it can be concluded that the combined UASB-EMBR system emerges as a promising technological approach for textile wastewater treatment.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil.
| | - Vlade Dalbosco
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, Brazil
| | - Karina Lunelli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil
| | - Rayra Emanuelly da Costa
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
9
|
Hama Aziz KH, Fatah NM, Muhammad KT. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232033. [PMID: 39076783 PMCID: PMC11285854 DOI: 10.1098/rsos.232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 07/31/2024]
Abstract
Synthetic organic dyes, which are resistant to biodegradation, pose a notable health risk, potentially leading to cancer and respiratory infections. Researchers have addressed this concern by exploring physicochemical methods to remove organic dyes from wastewater. A particularly promising solution involves modified biochar adsorbents, which demonstrate high efficiency in organic dye removal. Biochar, a charcoal-like material derived from biomass pyrolysis, offers advantages such as low cost, eco-friendliness, high efficiency and reusability. Beyond its role in sustainable soil remediation, biochar proves effective in removing organic dyes from wastewater after undergoing physical or chemical modification. Acid-base activation or metal-heteroatom impregnation enhances biochar's adsorption capacity. This comprehensive review examines the attributes of biochar, common methods for production and modification, and the impacts of raw materials, pyrolysis temperature, heating rate and residence time. It further elucidates the biochar adsorption mechanism in the removal of organic dyes, assessing factors influencing efficiency, including biochar feedstock, solution pH, adsorption temperature, particle size, initial dye concentration, biochar dosage and reaction time. It explores challenges, opportunities, reusability and regeneration methods of biochar in treating organic dye wastewater. It also discusses recent advances in organic dye removal using adsorption-based biochar. The review ultimately advocates for enhancing biochar's adsorption performance through post-modification.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah City, Kurdistan Region 46001, Iraq
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Kurdistan Region 46001, Iraq
| | - Nazhad Majeed Fatah
- Department of Environmental Science, College of Environmental Sciences, University of Sulaimani, Sulaymaniyah-Chwarta 46001, Iraq
| | - Khalid Taib Muhammad
- Department of Natural Resources, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah 46001, Iraq
| |
Collapse
|
10
|
Pethe A, Debnath M. Wastewater treatment using moving bed biofilm reactor technology: a case study of ceramic industry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11026. [PMID: 38641883 DOI: 10.1002/wer.11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
Biological approaches and coagulation are frequently used to reduce the chemical oxygen demand (COD) for treatment of ceramic effluent water. The technology known as the moving bed biofilm reactor (MBBR) can accomplish this goal. Further, the process of emulsification-aided innovative MBBR using biosurfactants can be proposed for ceramic effluent treatment. In a step-by-step upgrading scheme, biosurfactants and a consortia of halophilic and halotolerant microbial culture was utilized for the treatment of the effluent water. Over the course of 21 days, a progressive decrease in COD of up to 95.79% was achieved. Over the next 48 h period, the biochemical oxygen demand (BOD) was reduced by 98.3%, while total suspended solids (TSS) decreased by 79.41%. With the use of this innovative MBBR technology, biofilm formation accelerated, lowering the COD, BOD, and TSS levels. This allows treated water to be used for further research on recycling it back into the ceramics sector and repurposing it for agricultural purposes. PRACTITIONER POINTS: Implementation of modified MBBR technology for the treatment of effluent water. Biosurfactants could reduce in the organic and inorganic loads. Increase in MLSS values with COD removal observed. The plant operations without the use of chemical coagulants was effective with biosurfactants. Biofilm formation on carriers was scraped and the presence of surfactin and rhamnolipid was confirmed.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| |
Collapse
|
11
|
Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C, González-López F, Cuartas-Uribe B, Mendoza-Roca JA. Efficient bioremediation of indigo-dye contaminated textile wastewater using native microorganisms and combined bioaugmentation-biostimulation techniques. CHEMOSPHERE 2024; 353:141538. [PMID: 38428533 DOI: 10.1016/j.chemosphere.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
In this work, the bioremediation of wastewater from the textile industry with indigo dye content was carried out using combined bioaugmentation, bioventilation, and biostimulation techniques. Initially, the inoculum was prepared by isolating the microorganisms from the textile wastewater in a 2 L bioreactor. Then, the respirometry technique was implemented to determine the affinity of the microorganisms and the substrate by measuring CO2 and allowed the formulation of an empirical mathematical model for the growth kinetics of the microorganism. Finally, the bioremediation was carried out in a 3 L bioreactor obtaining an indigo dye removal efficiency of 20.7 ± 1.2%, 24.0 ± 1.5%, and 29.7 ± 1.1% for equivalent wavelengths of 436 nm, 525 nm, and 620 nm. The chemical oxygen demand showed an average reduction of 88.9 ± 2.5%, going from 470.7 ± 15.6 to 52.3 ± 10.7 ppm after 30 days under constant agitation and aeration. A negative generalized exponential model was fitted to assess the affinity of the microorganism with the wastewater as a substrate by evaluating the production of CO2 during the bioremediation. Bioremediation techniques improve water discharge parameters compared to chemical treatments implemented in the industry, reducing the use of substances that can generate secondary pollution. Bioaugmentation, biostimulation, and bioventing of the textile wastewater in this study demonstrate the potential of these combined techniques to serve as an efficient alternative for indigo-contaminated wastewater in the textile industry.
Collapse
Affiliation(s)
- Leidy Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1(a) No. 70-01, Medellín, 050031, Colombia
| | - Margarita Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1(a) No. 70-01, Medellín, 050031, Colombia
| | - Carlos Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1(a) No. 70-01, Medellín, 050031, Colombia.
| | - Federico González-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1(a) No. 70-01, Medellín, 050031, Colombia
| | - Beatriz Cuartas-Uribe
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, 46022, Valencia, Spain
| | - José Antonio Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
12
|
Liu X, Wang J. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: An overview. CHEMOSPHERE 2024; 351:141255. [PMID: 38244870 DOI: 10.1016/j.chemosphere.2024.141255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The treatment of dye-containing wastewater generated from textile industries is still a challenge, and various technologies, including physical, chemical and biological ones have been used. In recent years, the ionizing radiation (usually including gamma ray generated by radionuclide, such as 60Co and 137Cs, and electron beam generated by electron accelerator) technology has received increasing attention for degrading refractory or toxic organic pollutants in wastewater because of its unique advantages, such as no chemical additives, fast reaction rate, strong degradation capacity, high efficiency, flexibility, controllability. Compared to the conventional wastewater treatment processes, ionizing radiation technology, as a disruptive wastewater treatment technology, is more efficient for the decolorization and degradation of dyes and the treatment of dye-containing wastewater. In this paper, the recent advances in the treatment of dye-containing wastewater by ionizing radiation, in particular by electron beam (EB) radiation were summarized and analyzed, focusing on the decolorization and degradation of various dyes. Firstly, the formation of various reactive species induced by radiation and their interactions with dye molecules, as well as the influencing factors on the removal efficiency of dyes were discussed. Secondly, the researches on the treating dye-containing wastewater by electron beam radiation technology were systematically reviewed. Then, the decolorization and degradation mechanisms by electron beam radiation were further discussed in detail. And the integrated processes that would contribute to the advancement of this technology in practical applications were examined. More importantly, the recent advances of electron beam radiation technology from laboratory to application were reviewed, especially successful operation of dye-containing wastewater treatment facilities in China. And eventually, current challenges, future research directions, and outlooks of electron beam radiation technology were proposed for further advancing this technology for the sustainable development of water resources.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
13
|
Benali J, Ben Atitallah I, Ghariani B, Mechichi T, Hadrich B, Zouari-Mechichi H. Optimized decolorization of two poly azo dyes Sirius Red and Sirius Blue using laccase-mediator system. 3 Biotech 2024; 14:93. [PMID: 38433848 PMCID: PMC10907334 DOI: 10.1007/s13205-024-03937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024] Open
Abstract
Factors, namely pH, laccase-like activity, dyes concentration as well as 1-Hydroxybenzotriazole (HBT) concentration was examined. The results indicated that the maximum decolorization yield and rate reached 98.30 ± 0.10% and 5.84 ± 0.01%/min, respectively for Sirius Blue, and 99.34 ± 0.47% and 5.85 ± 0.12%/min, respectively for Sirius Red after 4 h. The presence of the redox mediator 1-hydroxybenzotriazole (HBT) greatly improved the decolorization levels. The optimum concentrations of HBT, dyes, and laccase were 0.62 mM, 50 mg/L, and 0.89 U/mL respectively at pH 4.58 for both dyes. Phytotoxicity tests using treated and untreated dyes proved that the applied treatment slightly decreased the toxicity of the by-products. However, the germination index (GI) increased from 14.6 to 36.08% and from 31.6 to 36.96% for Sirius Red and Sirius Blue, respectively. The present study focused on the treatment of two recalcitrant azo dyes, namely: Sirius Blue (Direct Blue 71) and Sirius Red (Direct Red 80). The decolorization was performed using cell-free supernatant from Coriolopsis gallica culture with high laccase activity. Response surface methodology (RSM) and Box-Behnken design were applied to optimize the decolorization of the two tested dyes. The effect of four.
Collapse
Affiliation(s)
- Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Imen Ben Atitallah
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Bouthaina Ghariani
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, 11432 Riyadh, Saudi Arabia
| | - Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PO box 1173, 3038 Sfax, Tunisia
| |
Collapse
|
14
|
Li Z, Deng S, An Q, Zhao B, Yang Z, Xu B, Zhang W. Enhanced activation of persulfate by modified red mud biochar for degradation of dye pollutant: Resource utilization and non-radical activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120181. [PMID: 38271882 DOI: 10.1016/j.jenvman.2024.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
The substantial development of the dyeing and printing industry has resulted in an increased discharge of dye wastewater containing a large amount of recalcitrant organic pollutants. Furthermore, the landfill disposal of red mud has led to significant environmental pollution such as soil erosion and groundwater contamination. Therefore, this study aimed to promote the resource utilization of red mud by preparing advanced oxidation catalyst, resulting in effective treatment of dye wastewater, and the primary reaction mechanism was revealed. In this study, biochar-loading red mud (RBC) was applied to activate persulfate (PDS) for the degradation of acid orange 7 (AO7) with the initial concentration of 50 mg L-1. The maximum removal rate of 2.45 mg L·min-1 was achieved in 20 min and corresponding with the removal ratio of 98.0% under the PDS concentration of 20 mM (4.76 g L-1). Eventually, the removal ratio of 99.2% was attained within 60 min. The high catalytic efficiency was probably ascribed to the singlet oxygen (1O2) dominant non-radical pathway and RBC-mediated electron transfer mechanism. It was found that Fe(II), specific surface areas and functional groups on the catalyst were highly related to its catalytic efficiency and passivation. RBC had better reusability due to the loading of biochar and the reduction of zero-valent iron. The non-radical pathway mechanism and electron transfer mechanism were proposed for the activation of PDS, and non-radical pathway played a dominant role. Besides, the degradation pathways and toxicity assessment were analyzed. This research proposed a new electron transfer mechanism for activation process of PDS, which can provide a theoretical support for further studies. Overall, this study demonstrated that catalysts synthesized from red mud and biomass exhibit highly efficient activation in degrading the model pollutant AO7 through PDS activation. The catalyst displayed promising reusability and practical applicability, offering potential advancements in both the resource utilization and reduction of red mud.
Collapse
Affiliation(s)
- Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang An
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Bin Zhao
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Zihao Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Bohan Xu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Weifeng Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
15
|
Gomez A, Rodríguez Albarrán MJ, Vergara Sanchez J, Torres C, Osorio D, Martínez H, Saldarriaga H, Reyes PG. Physical-Chemical Assessment of Azo Dye Basic Violet I (BVI) Discoloration Using the Corona Plasma in Batch and Flow Systems. ACS OMEGA 2024; 9:8037-8047. [PMID: 38405453 PMCID: PMC10882621 DOI: 10.1021/acsomega.3c07559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
The decolorization of the Basic violet I (BVI) dye when interacted with a corona discharge is studied in the present work, taking in account two systems, batch and flux. The current and voltage were measured during the whole process in which a corona plasma was generated, with an applied power of 51.9 and 167.72 W where the transport gas was air. A batch reactor and a flow reactor were used, where 500 and 5000 mL of samples were treated, respectively. Optical emission spectra (OES) were measured where the oxidizing species ·OH were at wavelengths of 307.597 and 310.148 nm, associated with the A2∑+ - X2Π transition. The absorption spectra for the batch system showed a discoloration of 85.7% in the first 10 min, while in the flow system, the absorption was 93.9% at the same time and 4.5% at the same time by conventional heating. Characteristics of the final sample included an acidic solution with an electrical conductivity of 449.20 ± 55.44 and 313.6 ± 39.58 μS/cm, a dissolved oxygen concentration of 7.74 ± 0.2 and 6.37 ± 0.23 mg/L, an absorbance of 0.04 ± 0.01 and 0.03 ± 0.01 au, with turbidity measuring 1.22 ± 1.59 and 10.34 ± 4.96 NTU, and an energy cost of 1.1 × 10-1 and 6.3 × 10-1 g/kWh in the batch and continuous flow systems, respectively. The interaction of the corona plasma with water promoted the production of reactive species, resulting in the discoloration of the Basic Violet I dye.
Collapse
Affiliation(s)
- Aaron Gomez
- Laboratorio
de Física Avanzada, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca C.P. 50000, México
| | - María José Rodríguez Albarrán
- Laboratorio
de Física Avanzada, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca C.P. 50000, México
- Unidad
de Irradiación y Seguridad Radiológica, Instituto de
Ciencias Nucleares, Universidad Nacional
Autónoma de México, Ciudad de México C.P. 04510, México
| | - Josefina Vergara Sanchez
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62209, Morelos, México
| | - Cesar Torres
- Laboratorio
de Análisis y Sustentabilidad Ambiental, Escuela de Estudios
Superiores de Xalostoc, Universidad Autónoma
del Estado de Morelos, Ayala C.P. 62715, México
| | - Daniel Osorio
- Laboratorio
de Biofísica Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca C.P. 50000, México
| | - Horacio Martínez
- Laboratorio
de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca C.P. 62210, México
| | - Hugo Saldarriaga
- Centro de
Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62209, Morelos, México
| | - Pedro Guillermo Reyes
- Laboratorio
de Física Avanzada, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca C.P. 50000, México
| |
Collapse
|
16
|
Kashi E, Surip SN, Khadiran T, Nawawi WI, De Luna Y, Yaseen ZM, Jawad AH. High adsorptive performance of chitosan-microalgae-carbon-doped TiO 2 (kronos)/ salicylaldehyde for brilliant green dye adsorption: Optimization and mechanistic approach. Int J Biol Macromol 2024; 259:129147. [PMID: 38181921 DOI: 10.1016/j.ijbiomac.2023.129147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
A composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO2 kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.e., adsorbent dose, pH of the media and contact time. The optimum conditions appointed by the optimisation process were further affirmed by the desirability test and employed in the equilibrium studies in batch mode and the results exhibited a better fit towards the pseudo-second-order kinetic model as well as Freundlich and Langmuir isotherm models, with a maximum adsorption capacity of 957.0 mg/g. Furthermore, the reusability study displayed the adsorptive performance of CsMaTk/S remains effective throughout five adsorption cycles. The possible interactions between the dye molecules and the surface of the adsorbent were derived based on the analyses performed and the electrostatic attractions, H-bonding, Yoshida-H bonding, π-π and n-π interactions are concluded to be the responsible forces in this adsorption process.
Collapse
Affiliation(s)
- Elmira Kashi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Wan Izhan Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau, Perlis, Malaysia
| | - Yannis De Luna
- Program of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
17
|
Wang Z, Gao Q, Luo H, Zhao J, Fan H, Chen Y, Xiang J. Visible Light-Driven SnIn 4S 8 Photocatalyst Decorated on Polyurethane-Impregnated Microfiber Non-Woven Fabric for Pollutant Degradation. Polymers (Basel) 2024; 16:369. [PMID: 38337258 DOI: 10.3390/polym16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, polyurethane has drawn great attention because of its many advantages in physical and chemical performance. In this work, firstly, polyurethane was impregnated in a non-woven fabric (NWF). Then, polyurethane-impregnated NWF was coagulated utilizing a wet phase inversion. Finally, after alkali treatment, microfiber non-woven fabrics with a porous polyurethane matrix (PNWF) were fabricated and used as substrates. SnIn4S8 (SIS) prepared by a microwave-assisted method was used as a photocatalyst and a novel SIS/PNWF substrate with multiple uses and highly efficient catalytic degradation ability under visible light was successfully fabricated. The surface morphology, chemical and crystal structures, optical performance, and wettability of SIS/PNWF substrates were observed. Subsequently, the photocatalytic performance of SIS/PNWF substrates was investigated by the decomposition of rhodamine B (RhB) under visible light irradiation. Compared with SIS/PNWF-2% (2%, the weight ratio of SIS and PNWF, same below), SIS/PNWF-5% as well as SIS/PNWF-15%, SIS/PNWF-10% substrates exhibited superior photocatalytic efficiency of 97% in 2 h. This may be due to the superior photocatalytic performance of SIS and the inherent hierarchical porous structure of PNWF substrates. Additionally, the hydrophobicity of SIS/PNWF substrates can enable them to float on the solution and further be applied on an open-water surface. Furthermore, tensile strength and recycle experiments demonstrated that SIS/PNWF substrates possessed superior mechanical strength and excellent recycle stability. This work provides a facile and efficient pathway to prepare SIS/PNWF substrates for the degradation of organic pollutants with enhanced catalytic efficiency.
Collapse
Affiliation(s)
- Zhonghui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haihang Luo
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yi Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Zouari-Mechichi H, Benali J, Alessa AH, Hadrich B, Mechichi T. Efficient Decolorization of the Poly-Azo Dye Sirius Grey by Coriolopsis gallica Laccase-Mediator System: Process Optimization and Toxicity Assessment. Molecules 2024; 29:477. [PMID: 38257390 PMCID: PMC10819905 DOI: 10.3390/molecules29020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| |
Collapse
|
19
|
Deng S, Yang M, An Q, Li Z, Zhao B, Ran B. Efficient rhodamine B dye degradation by red mud-grapefruit peel biochar catalysts activated persulfate in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119034-119049. [PMID: 37919501 DOI: 10.1007/s11356-023-30537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
The continuous and rapid development of textile industry intensifies rhodamine B dye (RhB) wastewater pollution. Meanwhile, massive red mud (RM) solid waste generated by the industrial alumina production process poses detrimental effects to the environment after leaching. For resource utilization and to reduce the expansion of RhB pollution, RM and peel red mud-biochar composite (RMBC) catalyst were synthesized in activating peroxydisulfate (PDS) for RhB degradation. Firstly, characterization results showed that compared to RM, RMBC had a higher content of catalytically active metals (Fe, Al, Ti) (higher than 0.92-4.18%), smaller pore size, and larger specific surface area (10 times), which verified RMBC had more potential catalytic oxidation activity. Secondly, under optimal dosage (catalyst, PDS), pH 4.6, and 20 mg L-1 RhB, it was found that the RhB degradation ratio of RM was 76.70%, which was reduced to 41% after three cycles, while that of RMBC was 89.98% and 67%, respectively. The results indicated that the performance of RMBC was significantly superior to that of RM. Furthermore, the quenching experiments, electron paramagnetic resonance spectroscopy tests, FTIR, and XPS analysis showed the function of O-H, C=O, C-O, Fe-O, and Fe-OH functional groups, which converted the PDS to the active state and hydrolyzed it to produce free radicals ([Formula: see text], 1O2, [Formula: see text]) for RhB degradation. And, Q Exactive Plus MS test obtained that RhB was degraded to CO2, H2O, and intermediate products. This study aimed to raise a new insight to the resource utilization of RM and the control of dye pollution.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Maolin Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
20
|
Biswas J, Sarkar HS, Paul AK, Mandal S. Simultaneous conversion of chromium and malachite green coexists in halophilic bacterium Halomonas xianhensis SUR308 isolated from a solar saltern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118881-118896. [PMID: 37922074 DOI: 10.1007/s11356-023-30652-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023]
Abstract
Many industries are known to use heavy metals like chromium (Cr) to fix dyes in the fabrication processes and malachite green (MG) as colorant. Alkalinity, elevated temperature, or salinity of the industrial effluents makes conventional physicochemical removal of MG and hexavalent chromium [Cr(VI)] more difficult to apply and demands to perceive potential cost-effective and environment-friendly treatment methods to eliminate or convert them into less toxic compounds. Here, we report simultaneous removal and bioconversion of MG and Cr(VI) by a halophilic biofilm-forming bacterium Halomonas xianhensis SUR308. It can efficiently produce exopolysaccharides as extracellular polymeric substances (EPS) and form biofilm under oxygen limiting condition. The reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] is about 100%, and 95% after 84 h of growth in shaken and stagnant culture, respectively. The strain completely decolorizes MG after 48 h of growth in shaken culture. Furthermore, we found that strain SUR308 can efficiently detoxify chromium by reduction and degrades MG via producing various intermediate products simultaneously. Most interestingly, such conversions can also take place in alkaline environment and in environment where substantial amount of salt is present. These unique features of strain SUR308 make it suitable for the simultaneous remediation of toxic heavy metals and hazardous dye even from the environment having higher pH and salinity. The detail molecular mechanism of the bioconversion with its application in open environment would be the future research focus for bioprospecting strain SUR308.
Collapse
Affiliation(s)
- Jhuma Biswas
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Amal Kanti Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
21
|
do Nascimento CPG, Costa MSMA, Freire JMA, da Silva LTV, Coutinho LP, Monteiro NKV, Zampieri DDS, Oliveira JT, do Nascimento RF, de Carvalho IMM, Becker H, Longhinotti E. Degradation of xanthene-based dyes by photoactivated persulfate: experimental and computational studies. Photochem Photobiol Sci 2023:10.1007/s43630-023-00480-8. [PMID: 37740886 DOI: 10.1007/s43630-023-00480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
Dyes are naked-eye detectable even at low concentration levels and can cause environmental damage when released into aquatic effluents; therefore, methods for removing the residual color from the aquatic media are always a current issue. In this paper, degradation of three xanthene dyes, Rhodamine B, Eosin Y, and Sodium Fluorescein, using photoactivated persulfate was evaluated at pH 3.0 and 11.0. The dyes' degradation followed a pseudo-first-order reaction. Although the solution is completely decolorized in 40 min at pH 3.0, achieving 75% mineralization requires a longer reaction time of 180 min. Furthermore, GC-MS analyses indicate that degradation products are mainly low-molecular weight acids, CO2 and H2O. Experiments carried out in dark and under UV irradiation showed substantial contribution of radical (SO4•- and HO•) and non-radical pathways to dye degradation in both pH. Additionally, to get more insights into the degradation pathways, HOMO-LUMO energy gaps of the dyes were calculated by DFT using MPW1PW91/MidiXo level of theory and, in general, the lower the bandgap, the faster the degradation. Fukui functions revealed that the preferential sites to radical attack were the xanthene or the benzoate portion depending on the pH, wherein attack to the xanthene ring provided better kinetic and mineralization results.
Collapse
Affiliation(s)
- Carlos Pedro G do Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Mateus S M A Costa
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Jessica M A Freire
- Seara da Ciência, Universidade Federal do Ceará, Fortaleza, CE, 60455-320, Brazil
| | - Luiz Thiago V da Silva
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Lucas P Coutinho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Norberto K V Monteiro
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil.
| | - Dávila de S Zampieri
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Juliene T Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Ronaldo F do Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Idalina M M de Carvalho
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Helena Becker
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, 60455-900, Brazil.
| |
Collapse
|
22
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
23
|
Al-Wasidi AS, Abdelrahman EA. Significant photocatalytic decomposition of malachite green dye in aqueous solutions utilizing facilely synthesized barium titanate nanoparticles. DISCOVER NANO 2023; 18:97. [PMID: 37507521 PMCID: PMC10382382 DOI: 10.1186/s11671-023-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
The release of malachite green dye into water sources has detrimental effects on the liver, kidneys, and respiratory system. Additionally, this dye can impede photosynthesis and disrupt the growth and development of plants. As a result, in this study, barium titanate nanoparticles (BaTiO3) were facilely synthesized using the Pechini sol-gel method at 600 °C (abbreviated as EA600) and 800 °C (abbreviated as EA800) for the efficient removal of malachite green dye from aqueous media. The Pechini sol-gel method plays a crucial role in the production of barium titanate nanoparticles due to its simplicity and ability to precisely control the crystallite size. The synthesized barium titanate nanoparticles were characterized by several instruments, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy, and a diffuse reflectance spectrophotometer. The XRD analysis confirmed that the mean crystallite size of the EA600 and EA800 samples is 14.83 and 22.27 nm, respectively. Furthermore, the HR-TEM images confirmed that the EA600 and EA800 samples exhibit irregular and polyhedral structures, with mean diameters of 45.19 and 72.83 nm, respectively. Additionally, the synthesized barium titanate nanoparticles were utilized as catalysts for the effective photocatalytic decomposition of malachite green dye in aqueous media. About 99.27 and 93.94% of 100 mL of 25 mg/L malachite green dye solution were decomposed using 0.05 g of the EA600 and EA800 nanoparticles within 80 min, respectively. The effectiveness of synthesized BaTiO3 nanoparticles as catalysts stems from their unique characteristics, including small crystallite sizes, a low rate of hole/electron recombination owing to ferroelectric properties, high chemical stability, and the ability to be regenerated and reused multiple times without any loss in efficiency.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| |
Collapse
|
24
|
Reghioua A, Jawad AH, Selvasembian R, ALOthman ZA, Wilson LD. Box-Behnken design with desirability function for methylene blue dye adsorption by microporous activated carbon from pomegranate peel using microwave assisted K 2CO 3 activation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1988-2000. [PMID: 37291893 DOI: 10.1080/15226514.2023.2216304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.
Collapse
Affiliation(s)
- Abdallah Reghioua
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Jeyaraja S, Palanivel S, Sathyanathan S, Munusamy C. Photocatalytic degradation of reactive dyes using natural photo-smart pigment-A novel approach for waste water re-usability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69639-69650. [PMID: 37140866 DOI: 10.1007/s11356-023-27360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The present study is aimed at an efficient photocatalytic degradation of industrially important reactive dyes using phycocyanin extract as a photocatalyst. The percentage of dye degradation was evidenced by a UV-visible spectrophotometer and FT-IR analysis. The degraded water was checked for its complete degradation by varying pH from 3 to 12. Furthermore, the degraded water was also analyzed for water quality parameters and was found to meet industrial wastewater standards. The calculated irrigation parameters like magnesium hazard ratio, soluble sodium percentage, and Kelly's ratio of degraded water were within the permissible limits, which enables its reusability in irrigation, aquaculture, as industrial coolants, and domestic applications. The calculated correlation matrix shows that the metal influences various macro-, micro-, and non-essential elements. These results suggest that the non-essential element lead can be effectively reduced by increasing all the other micronutrients and macronutrients under study except sodium metal.
Collapse
Affiliation(s)
- Sharmila Jeyaraja
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Saravanan Palanivel
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Suresh Sathyanathan
- Department of Physics, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Chamundeeswari Munusamy
- Department of Biotechnology, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India.
| |
Collapse
|
26
|
Belli TJ, Bassin JP, de Sousa Vidal CM, Hassemer MEN, Rodrigues C, Lapolli FR. Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58412-58427. [PMID: 36991202 DOI: 10.1007/s11356-023-26593-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, Ibirama, SC, ZIP 89140-000, Brazil.
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Carlos Magno de Sousa Vidal
- Environmental and Sanitary Engineering Department, State University of Centro-Oeste (UNICENTRO), PR 153, Km 07, Riozinho, P.O. Box 21, Irati, PR, Brazil
| | - Maria Eliza Nagel Hassemer
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Caroline Rodrigues
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| |
Collapse
|
27
|
Xu N, Bian S, Ding X, Shi D, Dong C. Rapid Adsorption Methylene Blue from Aqueous Solution using Manganese Dioxide Nanowires: Facile Synthesis, Characterization, Kinetics, Thermodynamics and Mechanism Analysis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Naicai Xu
- School of Chemistry and Chemical Engineering Qinghai Normal University Xining 810008 China
- Academy of Plateau Science and Sustainability People's Government of Qinghai Province & Beijing Normal University Xining 810016 China
| | - ShaoJu Bian
- School of Chemistry and Chemical Engineering Qinghai Normal University Xining 810008 China
- Academy of Plateau Science and Sustainability People's Government of Qinghai Province & Beijing Normal University Xining 810016 China
| | - Xiuping Ding
- Qinghai Institute of Salt Lakes Department Chinese Academy of Sciences Institution Xining 810008 China
| | - Dandan Shi
- Institute Co. LTD of Science and Technology Information of Qinghai Province Xining 810008 China
| | - Chengjun Dong
- School of Chemistry and Chemical Engineering Qinghai Normal University Xining 810008 China
| |
Collapse
|
28
|
Efficient complex extraction of Telon yellow 4R from dye wastewater and its optimization using the response surface methodology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|