1
|
Kannan G, Sujatha ER, Almajed A, Moghal AAB. Microbial-Derived Biopolymers: A Pathway to Sustainable Civil Engineering. Polymers (Basel) 2025; 17:172. [PMID: 39861245 PMCID: PMC11768209 DOI: 10.3390/polym17020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Modern innovations increasingly prioritize eco-friendliness, aiming to pave the way for a sustainable future. The field of civil engineering is no exception to this approach, and, in fact, it is associated with almost every sustainable development goal framed by the United Nations. Therefore, the sector has a pivotal role in achieving these goals. One such innovation is exploring the possibilities of using nature-friendly materials in different applications. Biopolymers are substances that are produced either by the chemical synthesis of natural materials or by the biosynthesizing activities of microorganisms. Microbial-derived biopolymers are known for their non-toxic and nature-friendly characteristics. However, their applications are mostly restricted to the field of biotechnology and not fully explored in civil engineering. This article reviews various microbial-derived biopolymers, focusing on the types available on the market, their source and properties, and more importantly, their wide range of applications in the civil engineering field. Additionally, the article explores the prospects for future research and the potential for the practical implementation of these techniques in the pursuit of a sustainable future.
Collapse
Affiliation(s)
- Govindarajan Kannan
- Department of Civil Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India;
| | - Evangelin Ramani Sujatha
- Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Abdullah Almajed
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Arif Ali Baig Moghal
- Department of Civil Engineering, National Institute of Technology, Warangal 506004, Telangana State, India
| |
Collapse
|
2
|
Kumar P, Kumar B, Gihar S, Kumar D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydr Res 2024; 538:109070. [PMID: 38460462 DOI: 10.1016/j.carres.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
This review explores the realm of structural modifications and broad spectrum of their potential applications, with a special focus on the synthesis of xanthan gum derivatives through graft copolymerization methods. It delves into the creation of these derivatives by attaching functional groups (-OH and -COOH) to xanthan gum, utilizing a variety of initiators for grafting, and examining their diverse applications, especially in the areas of food packaging, pharmaceuticals, wastewater treatment, and antimicrobial activities. Xanthan gum is a biocompatible, biodegradable, less toxic, bioactive, and cost-effective natural polymer derived from Xanthomonas species. The native properties of xanthan gum can be improved by cross-linking, grafting, curing, blending, and various modification techniques. Grafted xanthan gum has excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing ability. Owing to its remarkable properties, such as biocompatibility and its ability to form gels resembling the extracellular matrix of tissues, modified xanthan gum finds extensive utility across biomedicine, engineering, and the food industry. Furthermore, the review also covers various modified derivatives of xanthan gum that exhibit excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing abilities. These applications could serve as important resources for a wide range of industries in future product development.
Collapse
Affiliation(s)
- Pramendra Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India.
| | - Brijesh Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| | - Sachin Gihar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| | - Deepak Kumar
- Department of Applied Chemistry, M. J.P. Rohilkhand University, Bareilly, 243006, U.P, India
| |
Collapse
|
3
|
Christina K, Subbiah K, Arulraj P, Krishnan SK, Sathishkumar P. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose - A review. Int J Biol Macromol 2024; 257:128550. [PMID: 38056737 DOI: 10.1016/j.ijbiomac.2023.128550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Biopolymers are a naturally occurring alternative to synthetic polymers that are linked by covalent bonds, which includes cellular components such as proteins, nucleotides, lipids, and polysaccharides. Based on the extensive literature review it was found that chitosan, lignin, and cellulose were predominantly used in the energy and environmental sectors. Due to their vast array of qualities, including the adsorption, flocculation, anticoagulation, and furthermore, have made them useful for treating wastewater and pollutant removal. Chitosan and lignin have been used as a proton exchange membrane in the energy storage device of fuel cells. As these biopolymers develop strong coordination connections with metal surfaces, they act as an anticorrosive agent, which inhibiting the corrosion. Besides, there are a lot of recent developments in the application of biopolymers for energy and environmental fields. The present review provides a concise summary of recent developments in membrane-based biopolymers role in energy and environmental field. In addition, this review is drawn to a conclusion with a discussion of future trends in the real application of biopolymers in a variety of different industries, as well as the financial significance of these future trends.
Collapse
Affiliation(s)
- Karen Christina
- Division of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Kavitha Subbiah
- Division of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India.
| | - Prince Arulraj
- Division of Civil Engineering, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Suresh Kumar Krishnan
- Division of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
4
|
Raj V, Chun KS, Lee S. State-of-the-art advancement in tara gum polysaccharide (Caesalpinia spinosa) modifications and their potential applications for drug delivery and the food industry. Carbohydr Polym 2024; 323:121440. [PMID: 37940305 DOI: 10.1016/j.carbpol.2023.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
In preference to synthetic or petroleum-based materials, current research in food and pharmaceutical industries has focused on the development of biodegradable and sustainable materials due to their low toxicity, and biocompatibility. In particular, the natural water-soluble polysaccharide tara gum (Caesalpinia spinosa) has been widely used as a food-grade and drug-delivery agent due to its biodegradability, and biocompatibility. Moreover, owing to its easily modifiable hydroxy groups, tara gum, and its derivatives have been employed as food packaging films and pharmaceutical materials. In the present critical review, facile grafting methods of tara gum are reviewed, and an up-to-date comprehensive application of tara gum polysaccharides revealed their uses in pH-sensitive food packaging. In addition, modified tara gum materials exhibited improved drug delivery applications with biocompatible properties. The non-toxic nature and non-Newtonian, pseudoplastic rheological properties as well as the synergistic behavior of tara gum with other polysaccharides explore its further industrial applications in several fields. Additionally, several approaches for improving tara gum for use as a stabilizer and thickener for food items, and monitoring food spoilage, have provided notable customized characteristics. In brief, its many advantages make tara gum polysaccharide a promising material for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|