1
|
Wang S, Han H, Dong J, Li M, Wang Q, Wang L, Wu X, Cui H, Tian Y, Han C. A novel GH11 β-1,4-xylanase from Fusarium verticillioides: Its eukaryotic expression, biochemical characterization and synergistic effect with cellulase on lignocellulosic biomass degradation. Int J Biol Macromol 2025; 305:141169. [PMID: 39965678 DOI: 10.1016/j.ijbiomac.2025.141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
A recently discovered GH11 β-xylanase, FvXynA, from the phytopathogenic fungus Fusarium verticillioides was overexpressed in Pichia pastoris and displayed the highest activity toward beechwood xylan (1258.7 IU/mg) under the optimum reaction conditions of 50 °C and pH 5.0. FvXynA exhibited remarkable thermo-acid/alkali stability and showed good tolerance to various chemical reagents. The presence of 10 mM Ca2+ and Ni2 significantly stimulated, whereas that of Zn2+, Mn2+, Co2+ and Fe3+ negatively affected, FvXynA activity. TLC analysis demonstrated that FvXynA promoted the continuous saccharification of xylan into xylooligosaccharides, mainly xylobiose to xylopentose. Furthermore, FvXynA exerted a marked synergistic effect with the commercial cellulase in the degradation of sodium hydroxide-pretreated agricultural biomass materials, including corn stover, rice straw and wheat straw. Additionally, many valuable oligosaccharides were generated by the effective saccharification of these pretreated biomasses with this enzymatic cocktail. This discovery paves the way for identifying usable xylanases derived from plant pathogenic fungi and suggests a promising biocatalyst for biomass conversion in industrial practices.
Collapse
Affiliation(s)
- Shengnan Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Huimin Han
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Jiatong Dong
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Meiqi Li
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Qunqing Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haitao Cui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Yanping Tian
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China
| | - Chao Han
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Sharma V, Wang JX, Tsai ML, Yadav A, Dong CD, Nargotra P, Sun PP. Bioprocessing of pineapple leaf waste biomass using an integrated ultrasound-deep eutectic solvent pretreatment approach for improved bioethanol production. J Biotechnol 2025; 404:S0168-1656(25)00098-7. [PMID: 40252732 DOI: 10.1016/j.jbiotec.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Biorefineries play a crucial role in advancing the circular bioeconomy by integrating the environmental and socio-economic dimensions of the industrial sector. This study investigated the potential of integrated ultrasound (UL)-deep eutectic solvent (DES, choline chloride/glycerol) pretreatment of pineapple leaf (PL) waste for efficient bioethanol production, emphasizing its sustainability and environmental benefits. The pretreatment conditions were optimized using response surface methodology, with variables including ultrasound amplitude (45%), time (30min), and solid loading (10%, w/w). The solid PL biomass was physico-chemically characterized, revealing prominent variations in functional groups, surface morphology, crystallinity, and surface area across samples subjected to individual and integrated pretreatment approaches. A high reducing sugar yield of 324.41mg/g PL biomass was recovered after enzymatic hydrolysis of integrated UL-ChCl/glycerol pretreated PL samples under optimized conditions. The fermentation of the sugar hydrolysate yielded a 121.36mg/g ethanol with 89.61% fermentation efficiency. Notably, DES recyclability experiments indicated significant performance up to the third cycle, after which activity marginally declined in correlation with sugar yield. The synergistic UL-ChCl/glycerol pretreatment process supports circular bioeconomy by promoting sustainable biomass conversion and offering a promising approach to reducing environmental impacts by utilizing agricultural waste for renewable energy production.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; School of Biotechnology, University of Jammu, Jammu, India
| | - Jia Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; School of Biotechnology, University of Jammu, Jammu, India
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
3
|
Puja BK, Mallick S, Dey T, Chanda S, Ghosh S. Xylooligosaccharide recovery from sugarcane bagasse using β-xylosidase-less xylanase, BsXln1, produced by Bacillus stercoris DWS1: Characterization, antioxidant potential and influence on probiotics growth under anaerobic conditions. Int J Biol Macromol 2024; 285:138307. [PMID: 39631576 DOI: 10.1016/j.ijbiomac.2024.138307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Xylooligosaccharides (XOS) are excellent prebiotic which improve health through selective modulation of beneficial gut microbiome. Its production from agroresidues using microbial xylanase is considered as sustainable and economic approach. In this study a xylanase producing bacterium isolated from decaying wood soil was phylogenetically identified and designated as Bacillus stercoris DWS1. Xylanase (BsXln1) purified from the bacterium had pH and temperature optima of 7 and 37-60 °C, respectively, and it retained 85 % activity upon preincubation at 60 °C for 40 min. Indicating its moderate thermostability. Zymogram analysis of partially purified BsXln1 revealed its molecular weight of ~35 kDa. B. stercoris DWS1 produced 200 U mL-1 of BsXln1 in presence of 1.5 % sugarcane bagasse (SCB) as carbon source; which was enhanced to 591 U mL-1 through optimization of cultural conditions. Xylan extracted from SCB was morphologically and structurally characterized, and then depolymerized by BsXln1 to yield XOS (400 mg g-1). Analysis of purified XOS by TLC, followed by ESI-MS showed predominance of xylobiose and xylotriose. XOS exhibited in vitro antioxidant activities against DPPH and ABTS free radicals, however, it had limited prebiotic activity on Lactobacillus plantarum and Lactobacillus fermentum under anaerobic condition. In conclusion, the xylanase, BsXln1, produced by B. stercoris DWS1 can be used in food industries for efficient production of bioactive XOS from agroresidues.
Collapse
Affiliation(s)
- B K Puja
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Satarupa Mallick
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Taniya Dey
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Subhasmita Chanda
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
4
|
Pinela J, Añibarro-Ortega M, Barros L. Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities. Foods 2024; 13:3389. [PMID: 39517174 PMCID: PMC11545483 DOI: 10.3390/foods13213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
In today's global context, challenges persist in preventing agri-food waste due to factors like limited consumer awareness and improper food-handling practices throughout the entire farm-to-fork continuum. Introducing a forward-thinking solution, the upcycling of renewable feedstock materials (i.e., agri-food waste and by-products) into value-added ingredients presents an opportunity for a more sustainable and circular food value chain. While multi-product cascade biorefining schemes show promise due to their greater techno-economic viability, several biotechnological hurdles remain to be overcome at many levels. This mini-review provides a succinct overview of the biotechnological and societal challenges requiring attention while highlighting valuable food-grade compounds derived from biotransformation processes. These bio-based ingredients include organic acids, phenolic compounds, bioactive peptides, and sugars and offer diverse applications as antioxidants, preservatives, flavorings, sweeteners, or prebiotics in foodstuffs and other consumer goods. Therefore, these upcycled products emerge as a sustainable alternative to certain potentially harmful artificial food additives that are still in use or have already been banned from the industry.
Collapse
Affiliation(s)
- José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Nguyen TTH, Vuong TQ, Han HL, Kim SG. Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov., marine anaerobic laminarin and xylan degraders in the phylum Bacteroidota. Sci Rep 2024; 14:24329. [PMID: 39414901 PMCID: PMC11484911 DOI: 10.1038/s41598-024-74787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The bacterial group of the phylum Bacteroidota greatly contributes to the global carbon cycle in marine ecosystems through its specialized ability to degrade marine polysaccharides. In this study, it is proposed that two novel facultative anaerobic strains, DS1-an-13321T and DS1-an-2312T, which were isolated from a sea squirt, represent a novel genus, Halosquirtibacter, with two novel species in the family Prolixibacteraceae. The 16S rRNA sequence similarities of these two strains were 91.26% and 91.37%, respectively, against Puteibacter caeruleilacunae JC036T, which is the closest recognized neighbor. The complete genomes of strains DS1-an-13321T and DS1-an-2312T each consisted of a single circular chromosome with a size of 4.47 and 5.19 Mb, respectively. The average amino acid identity and the percentage of conserved proteins against the type species of the genera in the family Prolixibacteraceae ranged from 48.33 to 52.35% and 28.34-37.37%, respectively, which are lower than the threshold for genus demarcation. Strains DS1-an-13321T and DS1-an-2312T could grow on galactose, glucose, maltose, lactose, sucrose, laminarin, and starch, and only DS1-an-2312T could grow on xylose and xylan under fermentation conditions. These strains produced acetic acid and propionic acid as the major fermentation products. Genome mining of the genomes of the two strains revealed 27 and 34 polysaccharide utilization loci, which included 155 and 249 carbohydrate-active enzymes (CAZymes), covering 57 and 65 CAZymes families, respectively. The laminarin-degrading enzymes in both strains were cell-associated, and showed exo-hydrolytic activity releasing glucose as a major product. The xylan-degrading enzymes of strain DS1-an-2312T was also cell-associated, and had endo-hydrolytic activities, releasing xylotriose and xylotetraose as major products. The evidence from phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of a novel genus with two novel species in the family Prolixibacteraceae, for which the names Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov. are proposed. The type strain of Halosquirtibacter laminarini is DS1-an-13321T (= KCTC 25031T = DSM 115329T) and the type strain of Halosquirtibacter xylanolyticus is DS1-an-2312T (= KCTC 25032T = DSM 115328T).
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Phacogen Institute of Technology, B4 building, Pham Ngoc Thach street, Kim Lien, Dong Da district, Hanoi, 10700, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Yadav A, Sharma V, Tsai ML, Sharma D, Nargotra P, Chen CW, Sun PP, Dong CD. Synergistic microwave and acidic deep eutectic solvent-based pretreatment of Theobroma cacao pod husk biomass for xylooligosaccharides production. BIORESOURCE TECHNOLOGY 2024; 400:130702. [PMID: 38615968 DOI: 10.1016/j.biortech.2024.130702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
8
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
9
|
Dhaver P, Pletschke B, Sithole B, Govinden R. Optimization of Xylooligosaccharides Production by Native and Recombinant Xylanase Hydrolysis of Chicken Feed Substrates. Int J Mol Sci 2023; 24:17110. [PMID: 38069432 PMCID: PMC10707560 DOI: 10.3390/ijms242317110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Poultry production faces several challenges, with feed efficiency being the main factor that can be influenced through the use of different nutritional strategies. Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest due to their excellent ability to modulate the composition of the gut microbiota. The aim of the study was to apply crude and purified fungal xylanases, from Trichoderma harzianum, as well as a recombinant glycoside hydrolase family 10 xylanase, derived from Geobacillus stearothermophilus T6, as additives to locally produced chicken feeds. A Box-Behnken Design (BBD) was used to optimize the reducing sugar yield. Response surface methodology (RSM) revealed that reducing sugars were higher (8.05 mg/mL, 2.81 mg/mL and 2.98 mg/mL) for the starter feed treated with each of the three enzymes compared to the treatment with grower feed (3.11 mg/mL, 2.41 mg/mL and 2.62 mg/mL). The hydrolysis products were analysed by thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) analysis and showed that the enzymes hydrolysed the chicken feeds, producing a range of monosaccharides (arabinose, mannose, glucose, and galactose) and XOS, with xylobiose being the predominant XOS. These results show promising data for future applications as additives to poultry feeds.
Collapse
Affiliation(s)
- Priyashini Dhaver
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Brett Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa;
| | - Bruce Sithole
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4000, South Africa;
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
10
|
Sharma V, Sharma D, Tsai ML, Ortizo RGG, Yadav A, Nargotra P, Chen CW, Sun PP, Dong CD. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. BIORESOURCE TECHNOLOGY 2023; 390:129829. [PMID: 37839650 DOI: 10.1016/j.biortech.2023.129829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Rhessa Grace Guanga Ortizo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|