1
|
Cree BAC, Berger JR, Greenberg B. The Evolution of Anti-CD20 Treatment for Multiple Sclerosis: Optimization of Antibody Characteristics and Function. CNS Drugs 2025; 39:545-564. [PMID: 40180777 PMCID: PMC12058931 DOI: 10.1007/s40263-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
B-cell depletion with CD20-targeted agents is commonly used for treatment of multiple sclerosis (MS), other autoimmune diseases, and certain hematologic malignancies. Initial apparent success with rituximab in MS and neuromyelitis optica spurred development of the anti-CD20 monoclonal antibody (mAb) therapies ocrelizumab, ofatumumab, and ublituximab as well as the anti-CD19 mAb inebilizumab. While each are effective at targeting and depleting B cells, structural differences translate into different mechanisms of action affecting maintenance of B-cell depletion and safety and tolerability. Although the anti-CD20 mAbs differ in degree of human versus mouse sequences as well as target CD20 epitope, these properties do not appear to substantially affect activity or tolerability. In contrast, an antibody-dependent cell-mediated cytotoxicity (ADCC) versus a complement-dependent cytotoxicity mechanism of action as well as subcutaneous versus intravenous administration may provide improved tolerability. Glycoengineering of the mAbs ublituximab and inebilizumab enhances ADCC and can overcome the reduced responses to mAb-mediated B-cell depletion associated with certain genetic polymorphisms. Other strategies for therapeutic targeting of CD20, including brain shuttle antibodies (e.g., RO7121932), bispecific antibodies, chimeric antigen receptor T-cell therapies, and antibody-drug conjugates, are in active clinical development and may be future treatment approaches in MS and other B-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, 675 Nelson Rising Lane, #221C, San Francisco, CA, 94158, USA.
| | - Joseph R Berger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Greenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Protić-Rosić I, Sehgal ANA, Wrighton S, Heller B, Pickl WF. Chimeric Autoantibody Receptor- and/or Peptide-MHC-Based CAR Therapies for Targeted Elimination of Antigen-Specific B or T Cells in Hypersensitivity Disorders Such as Allergies and Autoimmune Diseases. Cells 2025; 14:753. [PMID: 40422256 DOI: 10.3390/cells14100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Hypersensitivity reactions are dysregulated and potentially devastating immune responses, characterized by a tendency to become chronic. They target either self-proteins or harmless foreign proteins and are driven by both T and B cells. Although numerous symptomatic treatment options for hypersensitivity reactions have been established over recent decades, only a few antigen-specific, causal approaches capable of specifically targeting the pathogenic autoreactive T and/or B cells have been developed. Among these are cell-based treatment modalities involving chimeric antigen receptor (CAR)- or chimeric autoantibody-receptor (CAAR)-expressing cells. These therapies utilize B- or T-cell antigens, presented as B-cell epitopes or peptide-major histocompatibility complexes (pMHCs) to serve as bait. The latter are coupled to potent activation domains derived from the TCR/CD3 complex itself, such as the zeta or CD3 chains, as well as domains from bona fide co-stimulatory molecules (e.g., CD28, 4-1BB). Recent in vitro and in vivo studies have demonstrated the therapeutic potential of these ATMP-based strategies in eliminating autoreactive lymphocytes and alleviating hypersensitivity reactions. This systematic review provides a comprehensive overview of the current status of antigen-specific CAR and CAAR T-cell therapies, highlighting novel directions as well as the ongoing challenges within this promising research field.
Collapse
Affiliation(s)
- Isidora Protić-Rosić
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Al Nasar Ahmed Sehgal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Wrighton
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Heller
- University Library, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
3
|
Dang S, Zhang X, Zhang Y, Zhang H. New thoughts on the intestinal microbiome-B cell-IgA axis and therapies in IgA nephropathy. Autoimmun Rev 2025; 24:103835. [PMID: 40360014 DOI: 10.1016/j.autrev.2025.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
IgA nephropathy (IgAN), as the most common chronic glomerulonephritis worldwide, is often triggered by mucosal infections and follows a chronic progression, with the majority of patients ultimately progressing to end-stage renal disease (ESRD) during their lifetimes. Since the mystery of its complete pathogenesis has not been fully solved, the resulting lack of effective early diagnosis and treatment greatly affects the prognosis of patients. Given the well-defined pathological feature of IgA deposition in the mesangial region, the source and role of pathogenic IgA has been focused on. Starting from the microbiology and immunity of the gut, we systematically review both the physiological and the pathological process of microbiome-B cell-IgA axis, from microbial-induced IgA production to the role of IgA in the intestinal immune milieu, and ultimately end up with the various aspects of microbiome-B cell-IgA axis in the pathogenesis of IgAN as well as the corresponding therapeutic initiatives available. Our retrospective review helps researchers to systematically understand the complex role between intestinal flora dysbiosis and pathogenic IgA in IgAN. This understanding provides a foundation for in-depth explorations to uncover more detailed pathogenic mechanisms and to develop more precise and effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shaoqing Dang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyu Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Mougiakakos D, Meyer EH, Schett G. CAR T cells in autoimmunity: game changer or stepping stone? Blood 2025; 145:1841-1849. [PMID: 39700499 DOI: 10.1182/blood.2024025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR) T cells has revolutionized the treatment landscape for hematologic malignancies, and emerging evidence suggests their potential in autoimmune diseases (AIDs). This article evaluates the early successes and future implications of B-cell-targeting CAR T-cell therapy in AIDs. Initial applications, particularly in refractory systemic lupus erythematosus, have demonstrated significant and durable clinical remissions, with accompanying evaluation of the immune system suggesting a so-called "reset" of innate inflammation and adaptive autoimmunity. This has generated widespread interest in expanding this therapeutic approach. CAR T cells offer unique advantages over other treatment modalities, including very deep B-cell depletion and unique therapeutic activity within inflamed tissues and associated lymphoid structures. However, the field must address key concerns, including long-term toxicity, particularly the risk of secondary malignancies, and future accessibility given the higher prevalence of AIDs compared with malignancies. Technological advances in cell therapy, such as next-generation CAR T cells, allogeneic off-the-shelf products, and alternative cell types, such as regulatory CAR T cells, are being explored in AIDs to improve efficacy and safety. In addition, bispecific antibodies are emerging as potential alternatives or complements to CAR T cells, potentially offering comparable efficacy without the need for complex logistics, lymphodepletion, and the risk of insertional mutagenesis. As the field evolves, cellular therapists will play a critical role in the multidisciplinary teams managing these complex cases. The transformative potential of CAR T cells in AIDs is undeniable, but careful consideration of safety, efficacy, and implementation is essential as this novel therapeutic approach moves forward.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto von Guericke University, Magdeburg, Germany
| | - Everett H Meyer
- Cellular Immune Tolerance Program, Blood and Marrow Transplantation and Cellular Therapy Division, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University, Erlangen, Germany
| |
Collapse
|
5
|
Segovia MF, Landoni D, Defranchi Y, Calderón Jofré R, Flores Olivares CA, Keppeke GD. A new therapeutic pathway in autoimmune diseases: chimeric antigen receptor T cells (CAR-T) targeting specific cell subtypes or antigen-specific B lymphocytes—a brief review. EXPLORATION OF IMMUNOLOGY 2025; 5. [DOI: 10.37349/ei.2025.1003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 05/04/2025]
Abstract
In hematological malignancies, autologous immunotherapy with T lymphocytes expressing a chimeric antigen receptor (CAR-T) has been successfully applied. CAR enhances the immuno-cellular effector system directly against cells expressing target antigens. The objective here was to discuss the prospects of applying CAR-T and its variants in autoimmune diseases (AIDs) to deplete pathogenic autoantibodies by eliminating B lymphocytes and plasma cells. B cells play a crucial role in the pathogenesis of AID through the production of autoantibodies, cytokine dysregulation, antigen presentation, and regulatory dysfunction. In AID with numerous autoreactive clones against various autoantigens, such as systemic lupus erythematosus, rheumatoid arthritis, vasculitis, myositis, and systemic sclerosis, CAR-T targeting CD19/CD20 and B-cell maturation antigen (BCMA) have shown success in preclinical and clinical studies, representing an innovative option for refractory patients when standard treatments fail. The suppression of B lymphocytes reactive against specific antigens using cytolytic T cells carrying a chimeric autoantibody receptor (CAAR-T) offers a promising approach for managing various AIDs, especially those with characterized pathogenic autoantibodies, such as pemphigus vulgaris, myasthenia gravis, and anti-NMDAR autoimmune encephalitis. CAAR-T allows the elimination of autoreactive B lymphocytes without compromising the general functionality of the immune system, minimizing common side effects in general immunosuppressive therapies, including immunobiologicals and CAR-T. In vitro, preclinical, and clinical (phase 1) studies have demonstrated the efficacy and specificity of CAR-T and CAAR-T in several AIDs; however, extensive clinical trials (phase 3) are required to assess their safety and clinical applicability. These advances promise to enhance precision medicine in the management of AIDs, offering personalized treatments for individual patients.
Collapse
Affiliation(s)
- María Fernanda Segovia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Diana Landoni
- Escuela de Graduados, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay; Laboratorio de Análisis Clínicos (LAC), Montevideo 11600, Uruguay; Disciplina de Reumatologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Yohana Defranchi
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Laboratorio de Biología Molecular y Celular del Cáncer (CáncerLab), Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Rodrigo Calderón Jofré
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Carlos A. Flores Olivares
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Facultad de Medicina Veterinaria, Universidad del Alba, La Serena 1700000, Chile
| | - Gerson D. Keppeke
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Disciplina de Reumatologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
6
|
Berry CT, Frazee CS, Herman PJ, Chen S, Chen A, Kuo Y, Ellebrecht CT. Current advancements in cellular immunotherapy for autoimmune disease. Semin Immunopathol 2025; 47:7. [PMID: 39821376 PMCID: PMC11739237 DOI: 10.1007/s00281-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs). We review recent preclinical studies and results from clinical trials that demonstrate the potential for these therapies to either deplete autoreactive cells or promote immune tolerance through broad or selective targeting of immune cell populations. Key challenges such as ensuring specificity, preventing off-target effects, and improving the longevity of therapeutic effects are discussed. The evolving landscape of cellular immunotherapies holds promise for more durable treatment responses and increased specificity for autoimmune disease treatment.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin S Frazee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Kuo
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Papadaki GF, Li Y, Monos DS, Bhoj VG. Cars pick up another passenger: Organ transplantation. Hum Immunol 2025; 86:111180. [PMID: 39591915 DOI: 10.1016/j.humimm.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
With over 30,000 patients having received CAR T cells as a treatment for malignancy, our experience in oncology has facilitated numerous efforts to adapt the CAR therapeutic platform for diseases and conditions beyond cancer. Recognition of their efficacy, where traditional small molecule or biologic therapies fail, has spurred multiple efforts leveraging CAR T cells for immune modulation in the setting of organ/tissue transplantation. In the present review, we discuss CAR T cell approaches that are currently under development, to target both humoral and cellular alloimmunity. These include CAR T platforms repurposed from oncology and autoimmune diseases, as well as ones designed specifically to target alloimmunity in transplant. We also present important challenges and application considerations that will need to be addressed before we can expect successful clinical translation. Finally, we highlight a few of the exciting advances currently in development that are likely to pave a smoother path to translating CAR T cell therapies into transplant patients.
Collapse
MESH Headings
- Humans
- Organ Transplantation
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Animals
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Georgia F Papadaki
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Li
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri S Monos
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vijay G Bhoj
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Arana C, Garcia-Busquets A, Nicoli M, Betriu S, Gille I, Heemskerk MHM, Heidt S, Palou E, Rovira J, Diekmann F. Chimeric HLA antibody receptor T cell therapy for humoral transplant rejection. Nephrol Dial Transplant 2024; 40:19-26. [PMID: 39025810 DOI: 10.1093/ndt/gfae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
Antibody-mediated rejection (ABMR) is a significant obstacle to achieving optimal long-term outcomes after solid organ transplantation. The presence of donor-specific antibodies (DSAs), particularly against human leucocyte antigen (HLA), increases the risk of allograft rejection and subsequent graft loss. No effective treatment for ABMR currently exists, warranting novel approaches to target the HLA-specific humoral alloimmune response. Cellular therapies may hold promise to this end. According to publicly available sources as of now, three independent laboratories have genetically engineered a chimeric HLA antibody receptor (CHAR) and transduced it into human T cells, based on the demonstrated efficacy of chimeric antigen receptor T cell therapies in malignancies. These CHAR-T cells are designed to exclusively eliminate B cells that produce donor-specific HLA antibodies, which form the cornerstone of ABMR. CHAR technology generates potent and functional human cytotoxic T cells to target alloreactive HLA-specific B cells, sparing B cells with other specificities. Thus CHAR technology may be used as a selective desensitization protocol and to treat ABMR after solid organ transplantation.
Collapse
Affiliation(s)
- Carolt Arana
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ainhoa Garcia-Busquets
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Nicoli
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Betriu
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eduard Palou
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Nephrology and Kidney Transplantation. Institut Clínic de Nefrologia i Urologia (ICNU), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Zhou J, Lei B, Shi F, Luo X, Wu K, Xu Y, Zhang Y, Liu R, Wang H, Zhou J, He X. CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives. Front Immunol 2024; 15:1476859. [PMID: 39749335 PMCID: PMC11694027 DOI: 10.3389/fimmu.2024.1476859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE. In this paper, we aim to provide an in-depth analysis of the advancements in CAR-T therapy for SLE, focusing on its potential to revolutionize treatment for this complex disease. We explore the fundamental mechanisms of CAR-T cell action, the rationale for its application in SLE, and the immunological underpinnings of the disease. We also summarize clinical data on the safety and efficacy of anti-CD19 and anti-B cell maturation antigen (BCMA) CAR-T cells in targeting B-cells in SLE. We discuss the clinical implications of these findings and the potential for CAR-T therapy to improve outcomes in severe or refractory SLE cases. The integration of CAR-T therapy into the SLE treatment paradigm presents a new horizon in autoimmunity research and clinical practice. This review underscores the need for continued exploration and optimization of CAR-T strategies to address the unmet needs of SLE patients.
Collapse
Affiliation(s)
- Jincai Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | | | | | | | | | | | | | | | | | - Joy Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | - Xiaowen He
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| |
Collapse
|
10
|
Newman DK, Newman PJ. Antigen-specific immunotherapy for platelet alloimmune disorders. Hum Immunol 2024; 85:111172. [PMID: 39520801 PMCID: PMC11637901 DOI: 10.1016/j.humimm.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Fetal/Neonatal Alloimmune Thrombocytopenia (FNAIT) is a significant hematologic disorder arising from maternal immune responses to fetal platelet alloantigens, predominantly Human Platelet Antigen (HPA)-1a. This review first describes the pathogenesis of FNAIT, highlighting the roles of HPA-specific antibodies, particularly HPA-1a, in causing severe thrombocytopenia and intracranial hemorrhage in affected neonates. Current management strategies, including intravenous immunoglobulin and investigational therapies like Nipocalimab, are evaluated for their efficacy and limitations. The review also discusses promising antigen-specific therapies, such as effector-silent monoclonal antibodies and innovative approaches targeting alloantibody-producing B cells. Additionally, the potential of Chimeric Autoantibody Receptor (CAAR) T cell therapy for selective elimination of pathogenic B cells is examined. The necessity for a prophylactic strategy similar to RhD immunoprophylaxis in preventing FNAIT is emphasized, along with the importance of identifying at-risk pregnancies. The development of renewable monoclonal antibodies and suitable animal models are critical steps toward effective prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Debra K Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Peter J Newman
- Versiti Blood Research Institute, Milwaukee, WI, United States; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
11
|
Zareei S, Khorsand B, Dantism A, Zareei N, Asgharzadeh F, Zahraee SS, Mashreghi Kashan S, Hekmatirad S, Amini S, Ghasemi F, Moradnia M, Vaghf A, Hemmatpour A, Hourfar H, Niknia S, Johari A, Salimi F, Fariborzi N, Shojaei Z, Asiaei E, Shabani H. PeptiHub: a curated repository of precisely annotated cancer-related peptides with advanced utilities for peptide exploration and discovery. Database (Oxford) 2024; 2024:baae092. [PMID: 39308247 PMCID: PMC11417155 DOI: 10.1093/database/baae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Peptihub (https://bioinformaticscollege.ir/peptihub/) is a meticulously curated repository of cancer-related peptides (CRPs) that have been documented in scientific literature. A diverse collection of CRPs is included in the PeptiHub, showcasing a spectrum of effects and activities. While some peptides demonstrated significant anticancer efficacy, others exhibited no discernible impact, and some even possessed alternative non-drug functionalities, including drug carrier or carcinogenic attributes. Presently, Peptihub houses 874 CRPs, subjected to evaluation across 10 distinct organism categories, 26 organs, and 438 cell lines. Each entry in the database is accompanied by easily accessible 3D conformations, obtained either experimentally or through predictive methodology. Users are provided with three search frameworks offering basic, advanced, and BLAST sequence search options. Furthermore, precise annotations of peptides enable users to explore CRPs based on their specific activities (anticancer, no effect, insignificant effect, carcinogen, and others) and their effectiveness (rate and IC50) under cancer conditions, specifically within individual organs. This unique property facilitates the construction of robust training and testing datasets. Additionally, PeptiHub offers 1141 features with the convenience of selecting the most pertinent features to address their specific research questions. Features include aaindex1 (in six main subcategories: alpha propensities, beta propensity, composition indices, hydrophobicity, physicochemical properties, and other properties), amino acid composition (Amino acid Composition and Dipeptide Composition), and Grouped Amino Acid Composition (Grouped amino acid composition, Grouped dipeptide composition, and Conjoint triad) categories. These utilities not only speed up machine learning-based peptide design but also facilitate peptide classification. Database URL: https://bioinformaticscollege.ir/peptihub/.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, 200 S. Manchester Ave., Suite 206 Orange, Irvine, CA 92868-4280, USA
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Alireza Dantism
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AlAhmad HWY, Tehran 14115-111, Iran
| | - Neda Zareei
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Str, Shiraz 7193711351, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Mashhad 9177948564, Iran
| | - Shadi Shams Zahraee
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Dr. Shahriari Sq., Tehran 1983969411, Iran
| | - Samane Mashreghi Kashan
- Department of Medicinal Biotechnology, Faculty of Advanced Technology in Medicine, Golestan University of Medical Sciences, Shast Kola Road, Gorgan 4918936316, Iran
| | - Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar Ave, Tehran 1416753955, Iran
| | - Shila Amini
- Department of Genetics, Faculty of Advanced Science and Technology, Medical Sciences Branch, Islamic Azad University, Shariati St., Tehran 19395/1495, Iran
| | - Fatemeh Ghasemi
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Maryam Moradnia
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund BOX 117,221 00, Sweden
| | - Atena Vaghf
- Department of Medical Biotechnology, Faculty of Advanced Technologies, Shahrekord University of Medical Science, Kashani BLVD., Shahrekord 8815713471, Iran
| | - Anahid Hemmatpour
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Aalam Sq., Yazd 8915173149, Iran
| | - Hamdam Hourfar
- Bioprocess Engineering Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY, Tehran 14965/161, Iran
| | - Soudabeh Niknia
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Ali Johari
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Fatemeh Salimi
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Taq-e Bostan, Kermanshah 6714414971, Iran
| | - Neda Fariborzi
- Department of Biology and Biotechnology, Faculty of Molecular Biology and Genetics, University of Pavia, S.da Nuova, Pavia 65, 27100, Italy
| | - Zohreh Shojaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Elaheh Asiaei
- Systems Biotechnology Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY., Tehran 14965/161, Iran
| | - Hossein Shabani
- Department of Biology, Faculty of Biosciences, Tehran North Branch, Islamic Azad University, Vafadar Blv., Tehran 1651153311, Iran
| |
Collapse
|
12
|
Irankhah L, Khorsand B, Naghibzadeh M, Savadi A. Analyzing the performance of short-read classification tools on metagenomic samples toward proper diagnosis of diseases. J Bioinform Comput Biol 2024:2450012. [PMID: 39287058 DOI: 10.1142/s0219720024500124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Accurate knowledge of the genome, virus and bacteria that have invaded our bodies is crucial for diagnosing many human diseases. The field of bioinformatics encompasses the complex computational methods required for this purpose. Metagenomics employs next-generation sequencing (NGS) technology to study and identify microbial communities in environmental samples. This technique allows for the measurement of the relative abundance of different microbes. Various tools are available for detecting bacterial species in sequenced metagenomic samples. In this study, we focus on well-known taxonomic classification tools such as MetaPhlAn4, Centrifuge, Kraken2, and Bracken, and evaluate their performance at the species level using synthetic and real datasets. The results indicate that MetaPhlAn4 exhibited high precision in identifying species in the simulated dataset, while Kraken2 had the best area under the precision-recall curve (AUPR) performance. Centrifuge, Kraken2, and Bracken showed accurate estimation of species abundances, unlike MetaPhlAn4, which had a higher L2 distance. In the real dataset analysis with samples from an inflammatory bowel disease (IBD) research, MetaPhlAn4, and Kraken2 had faster execution times, with differences in performance at family and species levels among the tools. Enterobacteriaceae and Pasteurellaceae were highlighted as the most abundant families by Centrifuge, Kraken2, and MetaPhlAn4, with variations in abundance among ulcerative colitis (UC), Crohn's disease (CD), and control non-IBD (CN) groups. Escherichia coli (E. coli) has the highest abundance among Enterobacteriaceae species in the CD and UC groups in comparison with the CN group. Bracken overestimated E. coli abundance, emphasizing result interpretation caution. The findings of this research can assist in selecting the appropriate short-read classifier, thereby aiding in the diagnosis of target diseases.
Collapse
Affiliation(s)
- Leili Irankhah
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Babak Khorsand
- Department of Neurology, University of California Irvine, CA, USA
| | - Mahmoud Naghibzadeh
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdorreza Savadi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Li YR, Lyu Z, Chen Y, Fang Y, Yang L. Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci 2024; 45:839-857. [PMID: 39147651 DOI: 10.1016/j.tips.2024.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has demonstrated significant success in treating cancers. The potential of CAR-T cells is now being explored in the context of autoimmune diseases. Recent clinical trials have shown sustained and profound elimination of autoreactive B cells by CAR-T cells, leading to promising autoimmune disease control with minimal safety concerns. These encouraging results have inspired further investigation into CAR-T cell applications for a broader range of autoimmune diseases and the development of advanced cell products with improved efficacy and safety. In this review, we discuss the mechanisms by which CAR-T cells target autoimmune conditions, summarize current preclinical models, and highlight ongoing clinical trials, including CAR-T therapy design, clinical outcomes, and challenges. Additionally, we discuss the limitations and future directions of CAR-T therapy in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Weijler AM, Prickler L, Kainz V, Bergmann E, Bohle B, Regele H, Valenta R, Linhart B, Wekerle T. Adoptive Cell Therapy in Mice Sensitized to a Grass Pollen Allergen. Antibodies (Basel) 2024; 13:48. [PMID: 38920972 PMCID: PMC11200577 DOI: 10.3390/antib13020048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The proportion of patients with type I allergy in the world population has been increasing and with it the number of people suffering from allergic symptoms. Recently we showed that prophylactic cell therapy employing allergen-expressing bone marrow (BM) cells or splenic B cells induced allergen-specific tolerance in naïve mice. Here we investigated if cell therapy can modulate an established secondary allergen-specific immune response in pre-immunized mice. We sensitized mice against the grass pollen allergen Phl p 5 and an unrelated control allergen, Bet v 1, from birch pollen before the transfer of Phl p 5-expressing BM cells. Mice were conditioned with several combinations of low-dose irradiation, costimulation blockade, rapamycin and T cell-depleting anti-thymocyte globulin (ATG). Levels of allergen-specific IgE and IgG1 in serum after cell transfer were measured via ELISA and alterations in cellular responses were measured via an in vitro proliferation assay and transplantation of Phl p 5+ skin grafts. None of the tested treatment protocols impacted Phl p 5-specific antibody levels. Transient low-level chimerism of Phl p 5+ leukocytes as well as a markedly prolonged skin graft survival were observed in mice conditioned with high numbers of Phl p 5+ BMC or no sensitization events between the day of cell therapy and skin grafting. The data presented herein demonstrate that a pre-existing secondary allergen-specific immune response poses a substantial hurdle opposing tolerization through cell therapy and underscore the importance of prophylactic approaches for the prevention of IgE-mediated allergy.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.W.); (L.P.); (V.K.); (E.B.)
| | - Lisa Prickler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.W.); (L.P.); (V.K.); (E.B.)
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.W.); (L.P.); (V.K.); (E.B.)
| | - Eva Bergmann
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.W.); (L.P.); (V.K.); (E.B.)
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (B.B.); (R.V.)
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (B.B.); (R.V.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, National Research Center (NRC), 119435 Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (B.B.); (R.V.)
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.W.); (L.P.); (V.K.); (E.B.)
| |
Collapse
|
15
|
Solé C, Royo M, Sandoval S, Moliné T, Gabaldón A, Cortés-Hernández J. Precise Targeting of Autoantigen-Specific B Cells in Lupus Nephritis with Chimeric Autoantibody Receptor T Cells. Int J Mol Sci 2024; 25:4226. [PMID: 38673811 PMCID: PMC11050013 DOI: 10.3390/ijms25084226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite conventional therapy, lupus nephritis (LN) remains a significant contributor to short- and long-term morbidity and mortality. B cell abnormalities and the production of autoantibodies against nuclear complexes like anti-dsDNA are recognised as key players in the pathogenesis of LN. To address the challenges of chronic immunosuppression associated with current therapies, we have engineered T cells to express chimeric autoantibody receptors (DNA-CAART) for the precise targeting of B cells expressing anti-dsDNA autoantibodies. T cells from LN patients were transduced using six different CAAR vectors based on their antigen specificity, including alpha-actinin, histone-1, heparan sulphate, or C1q. The cytotoxicity, cytokine production, and cell-cell contact of DNA-CAART were thoroughly investigated in co-culture experiments with B cells isolated from patients, both with and without anti-dsDNA positivity. The therapeutic effects were further evaluated using an in vitro immune kidney LN organoid. Among the six proposed DNA-CAART, DNA4 and DNA6 demonstrated superior selectively cytotoxic activity against anti-dsDNA+ B cells. Notably, DNA4-CAART exhibited improvements in organoid morphology, apoptosis, and the inflammatory process in the presence of IFNα-stimulated anti-dsDNA+ B cells. Based on these findings, DNA4-CAART emerge as promising candidates for modulating autoimmunity and represent a novel approach for the treatment of LN.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Sebastian Sandoval
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Alejandra Gabaldón
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (A.G.)
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| |
Collapse
|
16
|
Razavi SA, Khorsand B, Salehipour P, Hedayati M. Metabolite signature of human malignant thyroid tissue: A systematic review and meta-analysis. Cancer Med 2024; 13:e7184. [PMID: 38646957 PMCID: PMC11033922 DOI: 10.1002/cam4.7184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the predominant malignancy within the endocrine system. However, the standard method for TC diagnosis lacks the capability to identify the pathological condition of all thyroid lesions. The metabolomics approach has the potential to manage this problem by identifying differential metabolites. AIMS This study conducted a systematic review and meta-analysis of the NMR-based metabolomics studies in order to identify significant altered metabolites associated with TC. METHODS A systematic search of published literature in any language in three databases including Embase, PubMed, and Scopus was conducted. Out of 353 primary articles, 12 studies met the criteria for inclusion in the systematic review. Among these, five reports belonging to three articles were eligible for meta-analysis. The correlation coefficient of the orthogonal partial least squares discriminant analysis, a popular model in the multivariate statistical analysis of metabolomic data, was chosen for meta-analysis. The altered metabolites were chosen based on the fact that they had been found in at least three studies. RESULTS In total, 49 compounds were identified, 40 of which were metabolites. The increased metabolites in thyroid lesions compared normal samples included lactate, taurine, alanine, glutamic acid, glutamine, leucine, lysine, phenylalanine, serine, tyrosine, valine, choline, glycine, and isoleucine. Lipids were the decreased compounds in thyroid lesions. Lactate and alanine were increased in malignant versus benign thyroid lesions, while, myo-inositol, scyllo-inositol, citrate, choline, and phosphocholine were found to be decreased. The meta-analysis yielded significant results for three metabolites of lactate, alanine, and citrate in malignant versus benign specimens. DISCUSSION In this study, we provided a concise summary of 12 included metabolomic studies, making it easier for future researchers to compare their results with the prior findings. CONCLUSION It appears that the field of TC metabolomics will experience notable advancement, leading to the discovery of trustworthy diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Babak Khorsand
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
| | - Pouya Salehipour
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Kale B, Khosravi-Maharlooei M, Perna F. Shifting gears with CAR T cells for autoimmune diseases. Mol Ther 2024; 32:261-263. [PMID: 38244538 PMCID: PMC10862003 DOI: 10.1016/j.ymthe.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Affiliation(s)
- Brandon Kale
- Department of Bone Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Fabiana Perna
- Department of Bone Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
18
|
Suliman BA. Potential clinical implications of molecular mimicry-induced autoimmunity. Immun Inflamm Dis 2024; 12:e1178. [PMID: 38415936 PMCID: PMC10832321 DOI: 10.1002/iid3.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Molecular mimicry is hypothesized to be a mechanism by which autoimmune diseases are triggered. It refers to sequence or structural homology between foreign antigens and self-antigens, which can activate cross-reactive lymphocytes that attack host tissues. Elucidating the role of molecular mimicry in human autoimmunity could have important clinical implications. OBJECTIVE To review evidence for the role of molecular mimicry in major autoimmune diseases and discuss potential clinical implications. METHODS Comprehensive literature review of clinical trials, observational studies, animal models, and immunology studies on molecular mimicry in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, lupus, Guillain-Barre syndrome, autoimmune myocarditis, and primary biliary cirrhosis published from 2000-2023. RESULTS Substantial indirect evidence supports molecular mimicry as a contributor to loss of self-tolerance in several autoimmune conditions. Proposed microbial triggers include Epstein-Barr virus, coxsackievirus, Campylobacter jejuni, and bacterial commensals. Key mechanisms involve cross-reactive T cells and autoantibodies induced by epitope homology between microbial and self-antigens. Perpetuation of autoimmunity involves epitope spreading, inflammatory mediators, and genetic factors. CONCLUSIONS Molecular mimicry plausibly explains initial stages of autoimmune pathogenesis induced by infection or microbiota disturbances. Understanding mimicry antigens and pathways could enable improved prediction, monitoring, and antigen-specific immunotherapy for autoimmune disorders. However, definitive proof of causation in humans remains limited. Further research should focus on establishing clinical evidence and utility.
Collapse
Affiliation(s)
- Bandar A Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityMadinahSaudi Arabia
| |
Collapse
|