1
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Abrahams T, Davies B, Laksman Z, Sy RW, Postema PG, Wilde AAM, Krahn AD, Han HC. Provocation testing in congenital long QT syndrome: A practical guide. Heart Rhythm 2023; 20:1570-1582. [PMID: 37481219 DOI: 10.1016/j.hrthm.2023.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Congenital long QT syndrome (LQTS) is a hereditary cardiac channelopathy with an estimated prevalence of 1 in 2500. A prolonged resting QT interval corrected for heart rate (QTc interval) remains a key diagnostic component; however, the QTc value may be normal in up to 40% of patients with genotype-positive LQTS and borderline in a further 30%. Provocation of QTc prolongation and T-wave changes may be pivotal to unmasking the diagnosis and useful in predicting genotype. LQTS provocation testing involves assessment of repolarization during and after exercise, in response to changes in heart rate or autonomic tone, with patients with LQTS exhibiting a maladaptive repolarization response. We review the utility and strengths and limitations of 4 forms of provocation testing-stand-up test, exercise stress test, epinephrine challenge, and mental stress test-in diagnosing LQTS and provide some practical guidance for performing provocation testing. Ultimately, exercise testing, when feasible, is the most useful form of provocation testing when considering diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Timothy Abrahams
- Victorian Heart Institute & Monash Health Heart, Victorian Heart Hospital, Monash University, Melbourne, Victoria, Australia
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond W Sy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Academic Medical Center, Amsterdam, The Netherlands
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Victorian Heart Institute & Monash Health Heart, Victorian Heart Hospital, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Jowais JJ, Yazdi S, Golluscio A, Olivier-Meo V, Liin SI, Larsson HP. Mechanistic understanding of KCNQ1 activating polyunsaturated fatty acid analogs. J Gen Physiol 2023; 155:e202313339. [PMID: 37526928 PMCID: PMC10394376 DOI: 10.1085/jgp.202313339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
The KCNQ1 channel is important for the repolarization phase of the cardiac action potential. Loss of function mutations in KCNQ1 can cause long QT syndrome (LQTS), which can lead to cardiac arrythmia and even sudden cardiac death. We have previously shown that polyunsaturated fatty acids (PUFAs) and PUFA analogs can activate the cardiac KCNQ1 channel, making them potential therapeutics for the treatment of LQTS. PUFAs bind to KCNQ1 at two different binding sites: one at the voltage sensor (Site I) and one at the pore (Site II). PUFA interaction at Site I shifts the voltage dependence of the channel to the left, while interaction at Site II increases maximal conductance. The PUFA analogs, linoleic-glycine and linoleic-tyrosine, are more effective than linoleic acid at Site I, but less effective at Site II. Using both simulations and experiments, we find that the larger head groups of linoleic-glycine and linoleic-tyrosine interact with more residues than the smaller linoleic acid at Site I. We propose that this will stabilize the negatively charged PUFA head group in a position to better interact electrostatically with the positively charges in the voltage sensor. In contrast, the larger head groups of linoleic-glycine and linoleic-tyrosine compared with linoleic acid prevent a close fit of these PUFA analogs in Site II, which is more confined. In addition, we identify several KCNQ1 residues as critical PUFA-analog binding residues, thereby providing molecular models of specific interactions between PUFA analogs and KCNQ1. These interactions will aid in future drug development based on PUFA-KCNQ1 channel interactions.
Collapse
Affiliation(s)
- Jessica J. Jowais
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Samira Yazdi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessia Golluscio
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Vanessa Olivier-Meo
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - H. Peter Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Joglar JA, Kapa S, Saarel EV, Dubin AM, Gorenek B, Hameed AB, Lara de Melo S, Leal MA, Mondésert B, Pacheco LD, Robinson MR, Sarkozy A, Silversides CK, Spears D, Srinivas SK, Strasburger JF, Tedrow UB, Wright JM, Zelop CM, Zentner D. 2023 HRS expert consensus statement on the management of arrhythmias during pregnancy. Heart Rhythm 2023; 20:e175-e264. [PMID: 37211147 DOI: 10.1016/j.hrthm.2023.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
This international multidisciplinary expert consensus statement is intended to provide comprehensive guidance that can be referenced at the point of care to cardiac electrophysiologists, cardiologists, and other health care professionals, on the management of cardiac arrhythmias in pregnant patients and in fetuses. This document covers general concepts related to arrhythmias, including both brady- and tachyarrhythmias, in both the patient and the fetus during pregnancy. Recommendations are provided for optimal approaches to diagnosis and evaluation of arrhythmias; selection of invasive and noninvasive options for treatment of arrhythmias; and disease- and patient-specific considerations when risk stratifying, diagnosing, and treating arrhythmias in pregnant patients and fetuses. Gaps in knowledge and new directions for future research are also identified.
Collapse
Affiliation(s)
- José A Joglar
- The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth V Saarel
- St. Luke's Health System, Boise, Idaho, and Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | | - Luis D Pacheco
- The University of Texas Medical Branch at Galveston, Galveston, Texas
| | | | - Andrea Sarkozy
- University Hospital of Antwerp, University of Antwerp, Antwerp, Belgium
| | | | - Danna Spears
- University Health Network, Toronto, Ontario, Canada
| | - Sindhu K Srinivas
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | - Carolyn M Zelop
- The Valley Health System, Ridgewood, New Jersey; New York University Grossman School of Medicine, New York, New York
| | | |
Collapse
|
5
|
Lee S, Chung CTS, Radford D, Chou OHI, Lee TTL, Ng ZMW, Roever L, Rajan R, Bazoukis G, Letsas KP, Zeng S, Liu FZ, Wong WT, Liu T, Tse G. Secular trends of health care resource utilization and costs between Brugada syndrome and congenital long QT syndrome: A territory-wide study. Clin Cardiol 2023; 46:1194-1201. [PMID: 37489866 PMCID: PMC10577540 DOI: 10.1002/clc.24102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Health care resource utilization (HCRU) and costs are important metrics of health care burden, but they have rarely been explored in the setting of cardiac ion channelopathies. HYPOTHESIS This study tested the hypothesis that attendance-related HCRUs and costs differed between patients with Brugada syndrome (BrS) and congenital long QT syndrome (LQTS). METHODS This was a retrospective cohort study of consecutive BrS and LQTS patients at public hospitals or clinics in Hong Kong, China. HCRUs and costs (in USD) for Accident and Emergency (A&E), inpatient, general outpatient and specialist outpatient attendances were analyzed between 2001 and 2019 at the cohort level. Comparisons were made using incidence rate ratios (IRRs [95% confidence intervals]). RESULTS Over the 19-year period, 516 BrS (median age of initial presentation: 51 [interquartile range: 38-61] years, 92% male) and 134 LQTS (median age of initial presentation: 21 [9-44] years, 32% male) patients were included. Compared to LQTS patients, BrS patients had lower total costs (2 008 126 [2 007 622-2 008 629] vs. 2 343 864 [2 342 828-2 344 900]; IRR: 0.857 [0.855-0.858]), higher costs for A&E attendances (83 113 [83 048-83 177] vs. 70 604 [70 487-70 721]; IRR: 1.177 [1.165-1.189]) and general outpatient services (2,176 [2,166-2,187] vs. 921 [908-935]; IRR: 2.363 [2.187-2.552]), but lower costs for inpatient stay (1 391 624 [1 391 359-1 391 889] vs. 1 713 742 [1 713 166-1 714 319]; IRR: 0.812 [0.810-0.814]) and lower costs for specialist outpatient services (531 213 [531 049-531 376] vs. 558 597 [558268-558926]; IRR: 0.951 [0.947-0.9550]). CONCLUSIONS Overall, BrS patients consume 14% less health care resources compared to LQTS patients in terms of attendance costs. BrS patients require more A&E and general outpatient services, but less inpatient and specialist outpatient services than LQTS patients.
Collapse
Affiliation(s)
- Sharen Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Cheuk To Skylar Chung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Danny Radford
- Kent and Medway Medical SchoolUniversity of Kent and Canterbury Christ Church UniversityCanterburyKentUK
| | - Oscar Hou In Chou
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Teddy Tai Loy Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Zita Man Wai Ng
- Cardiac Electrophysiology Unit, Cardiovascular Analytics GroupPowerHealth LimitedHong KongChina
| | - Leonardo Roever
- Department of Clinical ResearchFederal University of UberlandiaUberlandiaBrazil
| | - Rajesh Rajan
- Department of CardiologySabah Al Ahmed Cardiac CentreKuwait CityKuwait
| | - George Bazoukis
- Second Department of CardiologyEvangelismos General Hospital of AthensAthensGreece
| | | | - Shaoying Zeng
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangzhouChina
| | - Fang Zhou Liu
- Department of Cardiology, Atrial Fibrillation Center, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology (CUHK), School of Life SciencesChinese University of Hong KongHong KongChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Division of Natural Sciences, Kent and Medway Medical SchoolUniversity of KentCanterburyKentUK
| |
Collapse
|
6
|
Oeffl N, Schober L, Faudon P, Schweintzger S, Manninger M, Köstenberger M, Sallmon H, Scherr D, Kurath-Koller S. Antiarrhythmic Drug Dosing in Children-Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050847. [PMID: 37238395 DOI: 10.3390/children10050847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Antiarrhythmic drugs represent a mainstay of pediatric arrhythmia treatment. However, official guidelines and consensus documents on this topic remain scarce. There are rather uniform recommendations for some medications (including adenosine, amiodarone, and esmolol), while there are only very broad dosage recommendations for others (such as sotalol or digoxin). To prevent potential uncertainties and even mistakes with regard to dosing, we summarized the published dosage recommendations for antiarrhythmic drugs in children. Because of the wide variations in availability, regulatory approval, and experience, we encourage centers to develop their own specific protocols for pediatric antiarrhythmic drug therapy.
Collapse
Affiliation(s)
- Nathalie Oeffl
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Lukas Schober
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Patrick Faudon
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Schweintzger
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin Köstenberger
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Hannes Sallmon
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Stefan Kurath-Koller
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
7
|
Teixeira RA, Fagundes AA, Baggio Junior JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, Teno LAC, Silva RT, Melo CSD, Elias Neto J, Moraes Júnior AV, Pedrosa AAA, Porto FM, Brito Júnior HLD, Souza TGSE, Mateos JCP, Moraes LGBD, Forno ARJD, D'Avila ALB, Cavaco DADM, Kuniyoshi RR, Pimentel M, Camanho LEM, Saad EB, Zimerman LI, Oliveira EB, Scanavacca MI, Martinelli Filho M, Lima CEBD, Peixoto GDL, Darrieux FCDC, Duarte JDOP, Galvão Filho SDS, Costa ERB, Mateo EIP, Melo SLD, Rodrigues TDR, Rocha EA, Hachul DT, Lorga Filho AM, Nishioka SAD, Gadelha EB, Costa R, Andrade VSD, Torres GG, Oliveira Neto NRD, Lucchese FA, Murad H, Wanderley Neto J, Brofman PRS, Almeida RMS, Leal JCF. Brazilian Guidelines for Cardiac Implantable Electronic Devices - 2023. Arq Bras Cardiol 2023; 120:e20220892. [PMID: 36700596 PMCID: PMC10389103 DOI: 10.36660/abc.20220892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Rodrigo Tavares Silva
- Universidade de Franca (UNIFRAN), Franca, SP - Brasil
- Centro Universitário Municipal de Franca (Uni-FACEF), Franca, SP - Brasil
| | | | - Jorge Elias Neto
- Universidade Federal do Espírito Santo (UFES), Vitória, ES - Brasil
| | - Antonio Vitor Moraes Júnior
- Santa Casa de Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Unimed de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | - Anisio Alexandre Andrade Pedrosa
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Luis Gustavo Belo de Moraes
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | - Mauricio Pimentel
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
| | | | | | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Batista de Lima
- Hospital Universitário da Universidade Federal do Piauí (UFPI), Teresina, PI - Brasil
- Empresa Brasileira de Serviços Hospitalares (EBSERH), Brasília, DF - Brasil
| | | | - Francisco Carlos da Costa Darrieux
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Sissy Lara De Melo
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Arrais Rocha
- Hospital Universitário Walter Cantídio, Universidade Federal do Ceará (UFC), Fortaleza, CE - Brasil
| | - Denise Tessariol Hachul
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Silvana Angelina D'Orio Nishioka
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Roberto Costa
- Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Gustavo Gomes Torres
- Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN - Brasil
| | | | | | - Henrique Murad
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | - Rui M S Almeida
- Centro Universitário Fundação Assis Gurgacz, Cascavel, PR - Brasil
| | | |
Collapse
|
8
|
Bohannon BM, Jowais JJ, Nyberg L, Liin SI, Larsson HP. Mechanistic insights into robust cardiac I Ks potassium channel activation by aromatic polyunsaturated fatty acid analogues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523777. [PMID: 36711783 PMCID: PMC9882137 DOI: 10.1101/2023.01.12.523777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Voltage-gated potassium (K V ) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K V channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore K V channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of K V channel activators with potential applications in the treatment of arrhythmogenic disorders such as Long QT Syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac I Ks channel - a tetrameric potassium channel complex formed by K V 7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac I Ks channel and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the I Ks channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the I Ks channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.
Collapse
Affiliation(s)
- Briana M. Bohannon
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jessica J. Jowais
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Leif Nyberg
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Tardo DT, Peck M, Subbiah R, Vandenberg JI, Hill AP. The diagnostic role of T wave morphology biomarkers in congenital and acquired long QT syndrome: A systematic review. Ann Noninvasive Electrocardiol 2023; 28:e13015. [PMID: 36345173 PMCID: PMC9833360 DOI: 10.1111/anec.13015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION QTc prolongation is key in diagnosing long QT syndrome (LQTS), however 25%-50% with congenital LQTS (cLQTS) demonstrate a normal resting QTc. T wave morphology (TWM) can distinguish cLQTS subtypes but its role in acquired LQTS (aLQTS) is unclear. METHODS Electronic databases were searched using the terms "LQTS," "long QT syndrome," "QTc prolongation," "prolonged QT," and "T wave," "T wave morphology," "T wave pattern," "T wave biomarkers." Whole text articles assessing TWM, independent of QTc, were included. RESULTS Seventeen studies met criteria. TWM measurements included T-wave amplitude, duration, magnitude, Tpeak-Tend, QTpeak, left and right slope, center of gravity (COG), sigmoidal and polynomial classifiers, repolarizing integral, morphology combination score (MCS) and principal component analysis (PCA); and vectorcardiographic biomarkers. cLQTS were distinguished from controls by sigmoidal and polynomial classifiers, MCS, QTpeak, Tpeak-Tend, left slope; and COG x axis. MCS detected aLQTS more significantly than QTc. Flatness, asymmetry and notching, J-Tpeak; and Tpeak-Tend correlated with QTc in aLQTS. Multichannel block in aLQTS was identified by early repolarization (ERD30% ) and late repolarization (LRD30% ), with ERD reflecting hERG-specific blockade. Cardiac events were predicted in cLQTS by T wave flatness, notching, and inversion in leads II and V5 , left slope in lead V6 ; and COG last 25% in lead I. T wave right slope in lead I and T-roundness achieved this in aLQTS. CONCLUSION Numerous TWM biomarkers which supplement QTc assessment were identified. Their diagnostic capabilities include differentiation of genotypes, identification of concealed LQTS, differentiating aLQTS from cLQTS; and determining multichannel versus hERG channel blockade.
Collapse
Affiliation(s)
- Daniel T. Tardo
- Cardiac Electrophysiology LaboratoryVictor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
- Department of CardiologySt. Vincent's HospitalDarlinghurstNew South WalesAustralia
- School of MedicineUniversity of Notre Dame AustraliaDarlinghurstNew South WalesAustralia
| | - Matthew Peck
- Cardiac Electrophysiology LaboratoryVictor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
| | - Rajesh N. Subbiah
- Cardiac Electrophysiology LaboratoryVictor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
- Department of CardiologySt. Vincent's HospitalDarlinghurstNew South WalesAustralia
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jamie I. Vandenberg
- Cardiac Electrophysiology LaboratoryVictor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Adam. P. Hill
- Cardiac Electrophysiology LaboratoryVictor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
10
|
Yazdanpanah MH, Naghizadeh MM, Sayyadipoor S, Farjam M. The best QT correction formula in a non-hospitalized population: the Fasa PERSIAN cohort study. BMC Cardiovasc Disord 2022; 22:52. [PMID: 35172723 PMCID: PMC8851728 DOI: 10.1186/s12872-022-02502-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/08/2022] [Indexed: 01/08/2023] Open
Abstract
Background QT interval as an indicator of ventricular repolarization is a clinically important parameter on an electrocardiogram (ECG). QT prolongation predisposes individuals to different ventricular arrhythmias and sudden cardiac death. The current study aimed to identify the best heart rate corrected QT interval for a non-hospitalized Iranian population based on cardiovascular mortality.
Methods Using Fasa PERSIAN cohort study data, this study enrolled 7071 subjects aged 35–70 years. Corrected QT intervals (QTc) were calculated by the QT interval measured by Cardiax® software from ECGs and 6 different correction formulas (Bazett, Fridericia, Dmitrienko, Framingham, Hodges, and Rautaharju). Mortality status was checked using an annual telephone-based follow-up and a minimum 3-year follow-up for each participant. Bland–Altman, QTc/RR regression, sensitivity analysis, and Cox regression were performed in IBM SPSS Statistics v23 to find the best QT. Also, for calculating the upper and lower limits of normal of different QT correction formulas, 3952 healthy subjects were selected. Results In this study, 56.4% of participants were female, and the mean age was 48.60 ± 9.35 years. Age, heart rate in females, and QT interval in males were significantly higher. The smallest slopes of QTc/RR analysis were related to Fridericia in males and Rautaharju followed by Fridericia in females. Thus, Fridericia’s formula was identified as the best mathematical formula and Bazett’s as the worst in males. In the sensitivity analysis, however, Bazett’s formula had the highest sensitivity (23.07%) among all others in cardiac mortality. Also, in the Cox regression analysis, Bazett’s formula was better than Fridericia’s and was identified as the best significant cardiac mortality predictor (Hazard ratio: 4.31, 95% CI 1.73–10.74, p value = 0.002). Conclusion Fridericia was the best correction formula based on mathematical methods. Bazett’s formula despite its poorest performance in mathematical methods, was the best one for cardiac mortality prediction. Practically, it is suggested that physicians use QTcB for a better evaluation of cardiac mortality risk. However, in population-based studies, QTcFri might be the one to be used by researchers. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02502-2.
Collapse
Affiliation(s)
- Mohammad Hosein Yazdanpanah
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Ibn-Sina Square, P.O. Box: 74616-86688, Fasa, Fars, Iran.,Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Naghizadeh
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Ibn-Sina Square, P.O. Box: 74616-86688, Fasa, Fars, Iran
| | | | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Ibn-Sina Square, P.O. Box: 74616-86688, Fasa, Fars, Iran.
| |
Collapse
|
11
|
Tiver KD, Dharmaprani D, Quah JX, Lahiri A, Waddell-Smith KE, Ganesan AN. Vomiting, electrolyte disturbance, and medications; the perfect storm for acquired long QT syndrome and cardiac arrest: a case report. J Med Case Rep 2022; 16:9. [PMID: 35012656 PMCID: PMC8751273 DOI: 10.1186/s13256-021-03204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Background Acquired long QT syndrome is an important and preventable cause of cardiac arrest. Certain medications and electrolyte disturbance are common contributors, and often coexist. In this case, we report five contributors to cardiac arrest. Case presentation This case is of a 51-year-old Caucasian female patient who presented with vomiting associated with hypokalemia and hypomagnesemia. She subsequently received ondansetron and metoclopramide, on the background of chronic treatment with fluoxetine. She then suffered an in-hospital monitored cardiac arrest, with features of long QT and torsades de pointes retrospectively noted on her prearrest electrocardiogram. She was diagnosed with acquired long QT syndrome, and her QT interval later normalized after removal of offending causes. Conclusions This case highlights the importance of proper consideration prior to prescribing QT prolonging medications, especially in patients who have other risk factors for prolonged QT, such as electrolyte disturbances and pretreatment with QT prolonging medications.
Collapse
Affiliation(s)
- K D Tiver
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - D Dharmaprani
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - J X Quah
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - A Lahiri
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - K E Waddell-Smith
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - A N Ganesan
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
12
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
13
|
Went TR, Sultan W, Sapkota A, Khurshid H, Qureshi IA, Jahan N, Tara A, Win M, Wiltshire DA, Kannan A, Ruo SW, Alfonso M. A Systematic Review on the Role of Βeta-Blockers in Reducing Cardiac Arrhythmias in Long QT Syndrome Subtypes 1-3. Cureus 2021; 13:e17632. [PMID: 34646680 PMCID: PMC8485362 DOI: 10.7759/cureus.17632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited cardiac channelopathies with a prevalence of 1:2000. The condition can be congenital or acquired with 15 recognized genotypes; the most common subtypes are LQTS 1, 2, and 3 making up to 85%-90% of the cases. LQTS is characterized by delayed ventricular cardiomyocyte repolarization manifesting on the surface electrocardiogram (EKG) by a prolonged corrected QT (QTc) interval. The mainstay of treatment for this condition involves in part or combination medical therapy via β-blockers as first-line (or other anti-arrhythmic), left cardiac sympathectomy, or implantable cardiac defibrillator placement. Given the high rate of adverse cardiac events (ACE) or sudden cardiac death (SCD) in this population of patients with this disease, this review seeks to highlight the genotype-specific treatment consensus in β-blocker therapy of the most common subtypes. A database search of PubMed, PMC, and Medline was conducted to ascertain the most recent data in the last five years on the management of LQTS types 1-3 and the role of β-blockers in reducing ACE in these types. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adhered to in the study selection, and selected studies focused on humans, written in the English Language, and within the last five years of LQTS subtypes 1, 2, and 3. Eleven relevant studies were selected after considering inclusion criteria, exclusion criteria, and quality appraisal within the last five years, focusing on β-blocker selection directed based on the subtypes of LQTS. Two meta-analyses, one cohort study, and eight reviews provided significant data that non-selective β-blockers unequivocally are of benefit in these LQTS types. Summary of findings suggested nadolol followed by propranolol yields the best results in LQTS 1, while nadolol would yield the best effect in LQTS 2 and 3.
Collapse
Affiliation(s)
- Terry R Went
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Waleed Sultan
- Medicine, Beni Suef University Faculty of Medicine, Beni Suef, EGY
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgery, Halifax Health Medical Center, Daytona Beach, USA
| | - Alisha Sapkota
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hajra Khurshid
- Medicine and Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Israa A Qureshi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nasrin Jahan
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anjli Tara
- General Medicine, General Surgery, and Emergency Department, Jinnah Postgraduate Medical Centre, Karachi, PAK
- Neurosurgery and General Surgery, Liaquat University of Medical and Health Sciences, Karachi, PAK
- Neurosurgery and General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Myat Win
- General Surgery, Nottingham University Hospitals NHS Trust, Nottingham, GBR
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dwayne A Wiltshire
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amudhan Kannan
- Neurological Surgery Research, Surgical Oncology Research, and General Surgery Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Surgical Pharmacology, General Surgery, and Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Sheila W Ruo
- General Surgery Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Alfonso
- Medicine, Universidad del Rosario, Bogota, COL
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Wong KC, Thiagalingam A, Kumar S, Marschner S, Kunwar R, Bailey J, Kok C, Usherwood T, Chow CK. User Perceptions and Experiences of a Handheld 12-Lead Electrocardiographic Device in a Clinical Setting: Usability Evaluation. JMIR Cardio 2021; 5:e21186. [PMID: 34435958 PMCID: PMC8430852 DOI: 10.2196/21186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 07/27/2021] [Indexed: 01/26/2023] Open
Abstract
Background Cardiac arrhythmias are a leading cause of death. The mainstay method for diagnosing arrhythmias (eg, atrial fibrillation) and cardiac conduction disorders (eg, prolonged corrected QT interval [QTc]) is by using 12-lead electrocardiography (ECG). Handheld 12-lead ECG devices are emerging in the market. In tandem with emerging technology options, evaluations of device usability should go beyond validation of the device in a controlled laboratory setting and assess user perceptions and experiences, which are crucial for successful implementation in clinical practice. Objective This study aimed to evaluate clinician and patient perceptions and experiences, regarding the usability of a handheld 12-lead ECG device compared to a conventional 12-lead ECG machine, and generalizability of this user-centered approach. Methods International Organization for Standardization Guidelines on Usability and the Technology Acceptance Model were integrated to form the framework for this study, which was conducted in outpatient clinics and cardiology wards at Westmead Hospital, New South Wales, Australia. Each patient underwent 2 ECGs (1 by each device) in 2 postures (supine and standing) acquired in random sequence. The times taken by clinicians to acquire the first ECG (efficiency) using the devices were analyzed using linear regression. Electrocardiographic parameters (QT interval, QTc interval, heart rate, PR interval, QRS interval) and participant satisfaction surveys were collected. Device reliability was assessed by evaluating the mean difference of QTc measurements within ±15 ms, intraclass correlation coefficient, and level of agreement of the devices in detecting atrial fibrillation and prolonged QTc. Clinicians’ perceptions and feedback were assessed with semistructured interviews based on the Technology Acceptance Model. Results A total of 100 patients (age: mean 57.9 years, SD 15.2; sex: male: n=64, female n=36) and 11 clinicians (experience acquiring ECGs daily or weekly 10/11, 91%) participated, and 783 ECGs were acquired. Mean differences in QTc measurements of both handheld and conventional devices were within ±15 ms with high intraclass correlation coefficients (range 0.90-0.96), and the devices had a good level of agreement in diagnosing atrial fibrillation and prolonged QTc (κ=0.68-0.93). Regardless of device, QTc measurements when patients were standing were longer duration than QTc measurements when patients were supine. Clinicians’ ECG acquisition times improved with usage (P<.001). Clinicians reported that device characteristics (small size, light weight, portability, and wireless ECG transmission) were highly desired features. Most clinicians agreed that the handheld device could be used for clinician-led mass screening with enhancement in efficiency by increasing user training. Regardless of device, patients reported that they felt comfortable when they were connected to the ECG devices. Conclusions Reliability and usability of the handheld 12-lead ECG device were comparable to those of a conventional ECG machine. The user-centered evaluation approach helped us identify remediable action to improve the efficiency in using the device and identified highly desirable device features that could potentially help mass screening and remote assessment of patients. The approach could be applied to evaluate and better understand the acceptability and usability of new medical devices.
Collapse
Affiliation(s)
- Kam Cheong Wong
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Bathurst Rural Clinical School, School of Medicine, Western Sydney University, Bathurst, Australia.,School of Rural Health, Faculty of Medicine and Health, The University of Sydney, Orange, Australia
| | - Aravinda Thiagalingam
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Department of Cardiology, Westmead Hospital, Westmead, Australia
| | - Saurabh Kumar
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Department of Cardiology, Westmead Hospital, Westmead, Australia
| | - Simone Marschner
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ritu Kunwar
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jannine Bailey
- Bathurst Rural Clinical School, School of Medicine, Western Sydney University, Bathurst, Australia
| | - Cindy Kok
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tim Usherwood
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,The George Institute for Global Health, Sydney, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Department of Cardiology, Westmead Hospital, Westmead, Australia.,The George Institute for Global Health, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Lankaputhra M, Voskoboinik A. Congenital Long QT Syndrome: A Clinician's Guide. Intern Med J 2021; 51:1999-2011. [PMID: 34151491 DOI: 10.1111/imj.15437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Congenital long QT syndrome (LQTS) is a familial cardiac ion channelopathy first described over sixty years ago. It is characterised by prolonged ventricular repolarization (long QT on ECG), ventricular arrhythmias and associated syncope or sudden cardiac death. As the most closely studied cardiac channelopathy, over the decades we have gained a deep appreciation of the complex genetic model of LQTS. Variability in genetic expression and incomplete penetrance leads to a heterogenous phenotype that can be challenging to clinically classify. In recent times, progress has been made in diagnostic method, risk stratification and treatment options. This review has been written as a guide for the general cardiologist to understand the basic pathophysiology, diagnosis, and management priorities for the most encountered LQTS subtypes: LQT1, LQT2 and LQT3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Aleksandr Voskoboinik
- Division of Cardiology, Alfred Health, Melbourne, Australia.,Division of Cardiology Western Health, Monash University & Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
16
|
Bohannon BM, Wu X, Wu X, Perez ME, Liin SI, Larsson HP. Polyunsaturated fatty acids produce a range of activators for heterogeneous IKs channel dysfunction. J Gen Physiol 2021; 152:133474. [PMID: 31865382 PMCID: PMC7062506 DOI: 10.1085/jgp.201912396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 01/28/2023] Open
Abstract
Repolarization and termination of the ventricular cardiac action potential is highly dependent on the activation of the slow delayed-rectifier potassium IKs channel. Disruption of the IKs current leads to the most common form of congenital long QT syndrome (LQTS), a disease that predisposes patients to ventricular arrhythmias and sudden cardiac death. We previously demonstrated that polyunsaturated fatty acid (PUFA) analogues increase outward K+ current in wild type and LQTS-causing mutant IKs channels. Our group has also demonstrated the necessity of a negatively charged PUFA head group for potent activation of the IKs channel through electrostatic interactions with the voltage-sensing and pore domains. Here, we test whether the efficacy of the PUFAs can be tuned by the presence of different functional groups in the PUFA head, thereby altering the electrostatic interactions of the PUFA head group with the voltage sensor or the pore. We show that PUFA analogues with taurine and cysteic head groups produced the most potent activation of IKs channels, largely by shifting the voltage dependence of activation. In comparison, the effect on voltage dependence of PUFA analogues with glycine and aspartate head groups was half that of the taurine and cysteic head groups, whereas the effect on maximal conductance was similar. Increasing the number of potentially negatively charged moieties did not enhance the effects of the PUFA on the IKs channel. Our results show that one can tune the efficacy of PUFAs on IKs channels by altering the pKa of the PUFA head group. Different PUFAs with different efficacy on IKs channels could be developed into more personalized treatments for LQTS patients with a varying degree of IKs channel dysfunction.
Collapse
Affiliation(s)
- Briana M Bohannon
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Marta E Perez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL
| | - Sara I Liin
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - H Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
17
|
Melgar Quicaño LA, Chipa Ccasani F. [Congenital long QT syndrome]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2021; 2:49-57. [PMID: 37727265 PMCID: PMC10506569 DOI: 10.47487/apcyccv.v2i1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 09/21/2023]
Abstract
Congenital long QT syndrome (LQTS) represents a group of heart diseases of genetic origin characterized by prolongation of the QT interval and an abnormal T wave on the electrocardiogram (ECG). They can have a dominant or recessive expression, the latter associated with sensorineural deafness. In both cases, its clinical presentation is associated with recurrent syncope and sudden death as a consequence of ventricular tachycardia, specifically Torsades de Pointes. Currently they are classified according to the specific genetic defect, being able to compromise around 16 genes and almost 2000 mutations. It should be suspected in individuals with related symptoms, electrocardiographic findings, and family history. Management is based on the reduction or elimination of symptoms, and concomitantly the prevention of sudden death (SD), in those children with congenital deafness, the management requires the application of the otolaryngologist specialist's own measures. The cardiovascular management implies the modification of lifestyles, mainly the prohibition of competitive sports, including swimming, avoiding exposure to loud sounds or triggers. The medications used include beta-blockers, and more rarely flecainide, ranozaline, and verapamil; invasive management consists of the implantation of a cardioverter defibrillator or even left sympathetic denervation, each with its own risks and benefits. In any of the cases, we must avoid the circumstances that increase the QT interval, as well as carry out the appropriate analysis of the benefits and risks of each possible invasive measure.
Collapse
Affiliation(s)
| | - Fredy Chipa Ccasani
- Instituto Nacional de Salud del Niño, San Borja. Lima, PerúInstituto Nacional de Salud del NiñoLimaPerú
| |
Collapse
|
18
|
Streeten EA, See VY, Jeng LBJ, Maloney KA, Lynch M, Glazer AM, Yang T, Roden D, Pollin TI, Daue M, Ryan KA, Van Hout C, Gosalia N, Gonzaga-Jauregui C, Economides A, Perry JA, O'Connell J, Beitelshees A, Palmer K, Mitchell BD, Shuldiner AR. KCNQ1 and Long QT Syndrome in 1/45 Amish: The Road From Identification to Implementation of Culturally Appropriate Precision Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e003133. [PMID: 33141630 PMCID: PMC7748050 DOI: 10.1161/circgen.120.003133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. In population-based research exome sequencing, the path from variant discovery to return of results is not well established. Variants discovered by research exome sequencing have the potential to improve population health.
Collapse
Affiliation(s)
- Elizabeth A Streeten
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Vincent Y See
- Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Linda B J Jeng
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kristin A Maloney
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Megan Lynch
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Andrew M Glazer
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Tao Yang
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology (T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Clinical Pharmacology, Department of Medicine (A.M.G., T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology (T.Y., D.R.), Vanderbilt University Medical Center, Nashville, TN.,Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Toni I Pollin
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Melanie Daue
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kathleen A Ryan
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Cristopher Van Hout
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | - Nehal Gosalia
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | | | - Aris Economides
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | - James A Perry
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Jeffrey O'Connell
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Amber Beitelshees
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine
| | - Kathleen Palmer
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Division of Cardiolovascular Medicine (V.Y.S., T.I.P., K.P.), University of Maryland School of Medicine
| | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine (E.A.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., K.P., B.D.M.), University of Maryland School of Medicine.,Department of Medicine (E.A.S., V.Y.S., L.B.J.J., K.A.M., M.L., T.I.P., M.D., K.A.R., J.A.P., J.O., A.B., B.D.M.), University of Maryland School of Medicine.,Baltimore Veterans Administration Medical Center Geriatrics Research and Education Clinical Center, Baltimore, MD (B.D.M.)
| | - Alan R Shuldiner
- Regeneron Genetics Center LLC, Tarrytown, NY (C.V.H., N.G., C.G.-J., A.E., A.R.S.)
| | | |
Collapse
|
19
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
20
|
Polyak ME, Shestak A, Podolyak D, Zaklyazminskaya E. Compound heterozygous mutations in KCNJ2 and KCNH2 in a patient with severe Andersen-Tawil syndrome. BMJ Case Rep 2020; 13:13/8/e235703. [PMID: 32843460 DOI: 10.1136/bcr-2020-235703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare channelopathy, sometimes referred to as long QT syndrome type 7. ATS is an autosomal dominant disease predominantly caused by mutations in the KCNJ2 gene. Patients with ATS present with episodes of muscle weakness, arrythmias, including prolonged QT intervals, and various skeletal abnormalities. Unlike other channelopathies, ATS has a relatively mild clinical course and low risk of sudden cardiac death. In this study, we describe a female patient with typical symptoms of ATS with the addition of unusually severe arrhythmias. Extensive DNA testing was performed to find the possible cause of this unique presentation. In addition to a known mutation in KCNJ2, the patient carried a variant in KCNH2 The combination of genetic variants may lead to the severe clinical manifestation of ATS. Additional genetic information allowed accurate genetic counselling to be provided to the patient.
Collapse
Affiliation(s)
- Margarita E Polyak
- Laboratory of Medical Genetics, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Anna Shestak
- Laboratory of Medical Genetics, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Dmitriy Podolyak
- Department of Surgical Treatment of Complex Arrhythmias and Pacing, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Elena Zaklyazminskaya
- Laboratory of Medical Genetics, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| |
Collapse
|
21
|
Rucinski C, Winbo A, Marcondes L, Earle N, Stiles M, Stiles R, Hooks D, Neas K, Hayes I, Crawford J, Martin A, Skinner JR. A Population-Based Registry of Patients With Inherited Cardiac Conditions and Resuscitated Cardiac Arrest. J Am Coll Cardiol 2020; 75:2698-2707. [DOI: 10.1016/j.jacc.2020.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/30/2023]
|
22
|
Wallis KA. Bad Gene Hunting—Sudden Unexplained Death and Familial Long QT Syndrome. JAMA Cardiol 2020; 5:375-376. [DOI: 10.1001/jamacardio.2020.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Katharine A. Wallis
- Department of General Practice and Primary Health Care, The University of Auckland, New Zealand
- Now with Primary Care Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Bohannon BM, de la Cruz A, Wu X, Jowais JJ, Perez ME, Dykxhoorn DM, Liin SI, Larsson HP. Polyunsaturated fatty acid analogues differentially affect cardiac Na V, Ca V, and K V channels through unique mechanisms. eLife 2020; 9:51453. [PMID: 32207683 PMCID: PMC7159882 DOI: 10.7554/elife.51453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
The cardiac ventricular action potential depends on several voltage-gated ion channels, including NaV, CaV, and KV channels. Mutations in these channels can cause Long QT Syndrome (LQTS) which increases the risk for ventricular fibrillation and sudden cardiac death. Polyunsaturated fatty acids (PUFAs) have emerged as potential therapeutics for LQTS because they are modulators of voltage-gated ion channels. Here we demonstrate that PUFA analogues vary in their selectivity for human voltage-gated ion channels involved in the ventricular action potential. The effects of specific PUFA analogues range from selective for a specific ion channel to broadly modulating cardiac ion channels from all three families (NaV, CaV, and KV). In addition, a PUFA analogue selective for the cardiac IKs channel (Kv7.1/KCNE1) is effective in shortening the cardiac action potential in human-induced pluripotent stem cell-derived cardiomyocytes. Our data suggest that PUFA analogues could potentially be developed as therapeutics for LQTS and cardiac arrhythmia.
Collapse
Affiliation(s)
- Briana M Bohannon
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Alicia de la Cruz
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Jessica J Jowais
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Marta E Perez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - H Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, United States
| |
Collapse
|
24
|
Catheter and Device Management of Inherited Cardiac Conditions. Heart Lung Circ 2020; 29:594-606. [PMID: 32014423 DOI: 10.1016/j.hlc.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/20/2022]
Abstract
This state-of-the art review discusses sudden cardiac death (SCD) risk stratification and prevention using implantable cardioverter defibrillator (ICD) therapy and the place of catheter ablation in the major inherited cardiomyopathies and primary arrhythmic syndromes. ICD therapy protects against SCD in many inherited cardiac conditions, particularly the cardiomyopathies in advanced stages, such as hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC). However, they are not usually indicated in most patients with cardiac ion channelopathies, particularly long QT syndrome, since medical management is safe and preferable for most cases. The general exception is the secondary prevention setting following a cardiac arrest, where guidelines mostly support ICD therapy. However, in the case of catecholaminergic polymorphic ventricular tachycardia (CPVT), ICD therapy is less clear, with some studies indicating increased mortality when an ICD is used following a cardiac arrest, compared to optimal medical therapy alone. When ICDs are placed, they are commonly associated with morbidity, and do not reduce the burden of ventricular arrhythmias (VA), such that multiple ICD shocks can ensue. Catheter ablation has been shown to reduce VA burden, VA related symptoms and ICD therapy in correctly identified patients in each condition. Its role is particularly important in cases where monomorphic ventricular tachycardia (VT) is prevalent, such as Lamin-related dilated cardiomyopathy (DCM) and ARVC. Evidence is growing to support the use of catheter ablation to treat premature ventricular contraction (PVC) induced VF in the setting of long and short QT syndromes, CPVT, idiopathic VF and early repolarisation syndromes. In Brugada syndrome, epicardial substrate ablation can even apparently eliminate the electrocardiographic (ECG) phenotype and reduce VA burden during follow-up.
Collapse
|
25
|
Waddell-Smith KE, Skinner JR, Bos JM. Pre-Test Probability and Genes and Variants of Uncertain Significance in Familial Long QT Syndrome. Heart Lung Circ 2020; 29:512-519. [PMID: 32044265 DOI: 10.1016/j.hlc.2019.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
The genetics underlying familial long QT syndrome (LQTS) are among the best characterised of all of the inherited heart conditions. Cohort and registry studies have demonstrated important genotype-phenotype correlations that are now essential in guiding clinical practice of patients with the most common three genotypes; KCNQ1 (LQT type 1), KCNH2 (LQT type 2) and SCN5A (LQT type 3). However, the growing number of genes-now more than 16-is confusing, and there is much doubt as to whether many actually cause LQTS at all. Furthermore, changes in sequencing techniques, evolving variant classification criteria and new scientific discoveries make all genes and variants subject to a continuous process of re-classification. This review discusses the nature of variant adjudication, the important concept of pre-test probability in interpreting a genetic result and how the nomenclature of LQTS is shifting in response to this new knowledge. It further discusses the role of deep phenotyping, the inclusion of evaluation of family members in interpreting a genetic test result, or even deciding if genetic testing should occur at all, and the role of specialist multidisciplinary teams to translate this continuously evolving knowledge into the best clinical advice, in partnership with referring cardiologists.
Collapse
Affiliation(s)
- Kathryn E Waddell-Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia.
| | - Jonathan R Skinner
- Green Lane Paediatric and Congenital Cardiac Service, Starship Children's Hospital, Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - J Martijn Bos
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Mesquita FCP, Arantes PC, Kasai-Brunswick TH, Araujo DS, Gubert F, Monnerat G, Silva Dos Santos D, Neiman G, Leitão IC, Barbosa RAQ, Coutinho JL, Vaz IM, Dos Santos MN, Borgonovo T, Cruz FES, Miriuka S, Medei EH, Campos de Carvalho AC, Carvalho AB. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep 2019; 9:19203. [PMID: 31844156 PMCID: PMC6915575 DOI: 10.1038/s41598-019-55837-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.
Collapse
Affiliation(s)
- Fernanda C P Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo C Arantes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Dayana S Araujo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco F, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gustavo Monnerat
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Danúbia Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriel Neiman
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Isabela C Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jorge L Coutinho
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Isadora M Vaz
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Marcus N Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tamara Borgonovo
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Fernando E S Cruz
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Santiago Miriuka
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Emiliano H Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
27
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
28
|
Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Heart Lung Circ 2019; 28:22-30. [DOI: 10.1016/j.hlc.2018.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
|
29
|
Ahluwalia N, Raju H. Assessment of the QT Interval in Athletes: Red Flags and Pitfalls. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:82. [PMID: 30146672 DOI: 10.1007/s11936-018-0678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Pre-participation athlete screening has led to the referral of asymptomatic athletes with a prolonged QT interval warranting their evaluation for long QT syndrome (LQTS). Establishing a diagnosis of LQTS can be difficult, particularly in asymptomatic athletes presenting with a prolonged QTc < 500 ms. This review examines the evaluatory pathway to ascertain the common pitfalls leading to mis- or overdiagnosis. We discuss the advanced ECG-based tools and consider their application in the diagnostic process. RECENT FINDINGS Critical analysis of the ECG, symptom, and pedigree analysis has established value but relies on experienced interpretation. Protocolisation of the former has effectively reduced error. Exercise recovery ECG testing has demonstrated diagnostic value and provocation testing, reliant on QT hysteresis in LQTS, have shown reasonable sensitivity. Although it is becoming more established in experienced centres, its diagnostic value relies on effective risk stratification and subject selection. LQTS is a rare condition and the precision of any available test is greatly diluted if pre-test probability is low. Clinical and familial evaluation and exercise ECG testing are the foundation of the evaluatory process following referral. Adjunctive tests may have high sensitivity for LQTS but rely on high pre-test probability. Several pitfalls have been identified that can lead to misdiagnosis and thus informed evaluation at an experienced specialist centre is appropriate.
Collapse
Affiliation(s)
| | - Hariharan Raju
- MQ Health Cardiology, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia.
| |
Collapse
|
30
|
Richards JR, Gould JB, Laurin EG, Albertson TE. Metoprolol treatment of dual cocaine and bupropion cardiovascular and central nervous system toxicity. Clin Exp Emerg Med 2018; 6:84-88. [PMID: 29381909 PMCID: PMC6453686 DOI: 10.15441/ceem.17.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular and central nervous system (CNS) toxicity, including tachydysrhythmia, agitation, and seizures, may arise from cocaine or bupropion use. We report acute toxicity from the concomitant use of cocaine and bupropion in a 25-year-old female. She arrived agitated and uncooperative, with a history of possible antecedent cocaine use. Her electrocardiogram demonstrated tachycardia at 130 beats/min, with a corrected QT interval of 579 ms. Two doses of 5 mg intravenous metoprolol were administered, which resolved the agitation, tachydysrhythmia, and corrected QT interval prolongation. Her comprehensive toxicology screen returned positive for both cocaine and bupropion. We believe clinicians should be aware of the potential for synergistic cardiovascular and CNS toxicity from concomitant cocaine and bupropion use. Metoprolol may represent an effective initial treatment. Unlike benzodiazepines, metoprolol directly counters the pharmacologic effects of stimulants without respiratory depression, sedation, or paradoxical agitation. A lipophilic beta-blocker, metoprolol has good penetration of the CNS and can counter stimulant-induced agitation.
Collapse
Affiliation(s)
- John R Richards
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jessica B Gould
- Department of Family & Community Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Erik G Laurin
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Timothy E Albertson
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
31
|
Antoniou CK, Dilaveris P, Manolakou P, Galanakos S, Magkas N, Gatzoulis K, Tousoulis D. QT Prolongation and Malignant Arrhythmia: How Serious a Problem? Eur Cardiol 2017; 12:112-120. [PMID: 30416582 PMCID: PMC6223357 DOI: 10.15420/ecr.2017:16:1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
QT prolongation constitutes one of the most frequently encountered electrical disorders of the myocardium. This is due not only to the presence of several associated congenital syndrome but also, and mainly, due to the QT-prolonging effects of several acquired conditions, such as ischaemia and heart failure, as well as multiple medications from widely different categories. Propensity of repolarization disturbances to arrhythmia appears to be inherent in the function of and electrophysiology of the myocardium. In the present review the issue of QT prolongation will be addressed in terms of pathophysiology, arrhythmogenesis, treatment and risk stratification approaches. Although already discussed in literature, it is hoped that the mechanistic approach of the present review will assist in improved understanding of the underlying changes in electrophysiology, as well as the rationale for current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Panagiota Manolakou
- First Department of Cardiology, Korgialenion–Benakion/Hellenic Red Cross HospitalAthens, Greece
| | - Spyridon Galanakos
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| | - Nikolaos Magkas
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| | | | - Dimitrios Tousoulis
- First University Department of Cardiology, Hippokration HospitalAthens, Greece
| |
Collapse
|
32
|
Waddell‐Smith K, Gow RM, Skinner JR. How to measure a QT interval. Med J Aust 2017; 207:107-110. [DOI: 10.5694/mja16.00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Robert M Gow
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
33
|
Furukawa T, Izumi G, Ohno S, Horie M. A Japanese Family with Long QT Syndrome: Distinct Genetic and Phenotypic Features in Children of Asymptomatic Parents with SCN5A and KCNQ1 Mutations. ACTA ACUST UNITED AC 2017. [DOI: 10.9794/jspccs.33.431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Gaku Izumi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| |
Collapse
|
34
|
Gregory AT, Denniss AR. Heart, Lung and Circulation Evolves: A Fond Farewell to Our 25th Anniversary Year and a Warm Welcome to New Initiatives. Heart Lung Circ 2016; 25:1145-1147. [DOI: 10.1016/j.hlc.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|