1
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
2
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
3
|
Bovari-Biri J, Abdelwahab EMM, Garai K, Pongracz JE. Prdx5 in the Regulation of Tuberous Sclerosis Complex Mutation-Induced Signaling Mechanisms. Cells 2023; 12:1713. [PMID: 37443747 PMCID: PMC10340296 DOI: 10.3390/cells12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Tuberous sclerosis complex (TSC) mutations directly affect mTORC activity and, as a result, protein synthesis. In several cancer types, TSC mutation is part of the driver mutation panel. TSC mutations have been associated with mitochondrial dysfunction, tolerance to reactive oxygen species due to increased thioredoxin reductase (TrxR) enzyme activity, tolerance to endoplasmic reticulum (ER) stress, and apoptosis. The FDA-approved drug rapamycin is frequently used in clinical applications to inhibit protein synthesis in cancers. Recently, TrxR inhibitor auranofin has also been involved in clinical trials to investigate the anticancer efficacy of the combination treatment with rapamycin. We aimed to investigate the molecular background of the efficacy of such drug combinations in treating neoplasia modulated by TSC mutations. (2) Methods: TSC2 mutant and TSC2 wild-type (WT) cell lines were exposed to rapamycin and auranofin in either mono- or combination treatment. Mitochondrial membrane potential, TrxR enzyme activity, stress protein array, mRNA and protein levels were investigated via cell proliferation assay, electron microscopy, etc. (3) Results: Auranofin and rapamycin normalized mitochondrial membrane potential and reduced proliferation capacity of TSC2 mutant cells. Database analysis identified peroxiredoxin 5 (Prdx5) as the joint target of auranofin and rapamycin. The auranofin and the combination of the two drugs reduced Prdx5 levels. The combination treatment increased the expression of heat shock protein 70, a cellular ER stress marker. (4) Conclusions: After extensive analyses, Prdx5 was identified as a shared target of the two drugs. The decreased Prdx5 protein level and the inhibition of both TrxR and mTOR by rapamycin and auranofin in the combination treatment made ER stress-induced cell death possible in TSC2 mutant cells.
Collapse
Affiliation(s)
| | | | | | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2. Rokus Str, H-7624 Pecs, Hungary
| |
Collapse
|
4
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cellular and Molecular Players in the Tumor Microenvironment of Renal Cell Carcinoma. J Clin Med 2023; 12:3888. [PMID: 37373581 DOI: 10.3390/jcm12123888] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Globally, clear-cell renal cell carcinoma (ccRCC) represents the most prevalent type of kidney cancer. Surgery plays a key role in the treatment of this cancer, although one third of patients are diagnosed with metastatic ccRCC and about 25% of patients will develop a recurrence after nephrectomy with curative intent. Molecular-target-based agents, such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), are recommended for advanced cancers. In addition to cancer cells, the tumor microenvironment (TME) includes non-malignant cell types embedded in an altered extracellular matrix (ECM). The evidence confirms that interactions among cancer cells and TME elements exist and are thought to play crucial roles in the development of cancer, making them promising therapeutic targets. In the TME, an unfavorable pH, waste product accumulation, and competition for nutrients between cancer and immune cells may be regarded as further possible mechanisms of immune escape. To enhance immunotherapies and reduce resistance, it is crucial first to understand how the immune cells work and interact with cancer and other cancer-associated cells in such a complex tumor microenvironment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
5
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Rebuzzi SE, Brunelli M, Galuppini F, Vellone VG, Signori A, Catalano F, Damassi A, Gaggero G, Rescigno P, Maruzzo M, Merler S, Vignani F, Cavo A, Basso U, Milella M, Panepinto O, Mencoboni M, Sbaraglia M, Dei Tos AP, Murianni V, Cremante M, Llaja Obispo MA, Maffezzoli M, Banna GL, Buti S, Fornarini G. Characterization of Tumor and Immune Tumor Microenvironment of Primary Tumors and Metastatic Sites in Advanced Renal Cell Carcinoma Patients Based on Response to Nivolumab Immunotherapy: Preliminary Results from the Meet-URO 18 Study. Cancers (Basel) 2023; 15:cancers15082394. [PMID: 37190322 DOI: 10.3390/cancers15082394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Prognostic and predictive factors for patients with metastatic renal cell carcinoma (mRCC) treated with immunotherapy are highly warranted, and the immune tumor microenvironment (I-TME) is under investigation. METHODS The Meet-URO 18 was a multicentric retrospective study assessing the I-TME in mRCC patients treated with ≥2nd-line nivolumab, dichotomized into responders and non-responders according to progression-free survival (≥12 months and ≤3 months, respectively). The primary objective was to identify differential immunohistochemical (IHC) patterns between the two groups. Lymphocyte infiltration and the expressions of different proteins on tumor cells (CD56, CD15, CD68, and ph-mTOR) were analyzed. The expression of PD-L1 was also assessed. RESULTS A total of 116 tumor tissue samples from 84 patients (59% were primary tumors and 41% were metastases) were evaluated. Samples from responders (N = 55) were significantly associated with lower expression of CD4+ T lymphocytes and higher levels of ph-mTOR and CD56+ compared with samples from non-responders (N = 61). Responders also showed a higher CD3+ expression (p = 0.059) and CD8+/CD4+ ratio (p = 0.084). Non-responders were significantly associated with a higher percentage of clear cell histology and grading. CONCLUSIONS Differential IHC patterns between the tumors in patients who were responders and non-responders to nivolumab were identified. Further investigation with genomic analyses is planned.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, 17100 Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy
| | - Matteo Brunelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37124 Verona, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | | | - Alessio Signori
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, 16132 Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Damassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Gaggero
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Rescigno
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Sara Merler
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | - Alessia Cavo
- Oncology Unit, Villa Scassi Hospital, 16149 Genoa, Italy
| | - Umberto Basso
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Olimpia Panepinto
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | | | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
7
|
Satta T, Li L, Chalasani SL, Hu X, Nkwocha J, Sharma K, Kmieciak M, Rahmani M, Zhou L, Grant S. Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax. Clin Cancer Res 2023; 29:1332-1343. [PMID: 36652560 PMCID: PMC10073266 DOI: 10.1158/1078-0432.ccr-22-2729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Acute myelogenous leukemia (AML) is an aggressive disease with a poor outcome. We investigated mechanisms by which the anti-AML activity of ABT-199 (venetoclax) could be potentiated by dual mTORC1/TORC2 inhibition. EXPERIMENTAL DESIGN Venetoclax/INK128 synergism was assessed in various AML cell lines and primary patient AML samples in vitro. AML cells overexpressing MCL-1, constitutively active AKT, BAK, and/or BAX knockout, and acquired venetoclax resistance were investigated to define mechanisms underlying interactions. The antileukemic efficacy of this regimen was also examined in xenograft and patient-derived xenograft (PDX) models. RESULTS Combination treatment with venetoclax and INK128 (but not the mTORC1 inhibitor rapamycin) dramatically enhanced cell death in AML cell lines. Synergism was associated with p-AKT and p-4EBP1 downregulation and dependent upon MCL-1 downregulation and BAK/BAX upregulation as MCL-1 overexpression and BAX/BAK knockout abrogated cell death. Constitutive AKT activation opposed synergism between venetoclax and PI3K or AKT inhibitors, but not INK128. Combination treatment also synergistically induced cell death in venetoclax-resistant AML cells. Similar events occurred in primary patient-derived leukemia samples but not normal CD34+ cells. Finally, venetoclax and INK128 co-treatment displayed increased antileukemia effects in in vivo xenograft and PDX models. CONCLUSIONS The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Laboratory Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Sri Lakshmi Chalasani
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamed Rahmani
- Department of Molecular Biology and Genetics, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
8
|
Fitzgerald KN, Motzer RJ, Lee CH. Adjuvant therapy options in renal cell carcinoma - targeting the metastatic cascade. Nat Rev Urol 2023; 20:179-193. [PMID: 36369389 PMCID: PMC10921989 DOI: 10.1038/s41585-022-00666-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
Localized renal cell carcinoma (RCC) is primarily managed with nephrectomy, which is performed with curative intent. However, disease recurs in ~20% of patients. Treatment with adjuvant therapies is used after surgery with the intention of curing additional patients by disrupting the establishment, maturation or survival of micrometastases, processes collectively referred to as the metastatic cascade. Immune checkpoint inhibitors and vascular endothelial growth factor receptor (VEGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown efficacy in the treatment of metastatic RCC, increasing the interest in the utility of these agents in the adjuvant setting. Pembrolizumab, an inhibitor of the immune checkpoint PD1, is now approved by the FDA and is under review by European regulatory agencies for the adjuvant treatment of patients with localized resected clear cell RCC based on the results of the KEYNOTE-564 trial. However, the optimal use of immunotherapy and VEGFR-targeting TKIs for adjuvant treatment of RCC is not completely understood. These agents disrupt the metastatic cascade at multiple steps, providing biological rationale for further investigating the applications of these therapeutics in the adjuvant setting. Clinical trials to evaluate adjuvant therapeutics in RCC are ongoing, and clinical considerations must guide the practical use of immunotherapy and TKI agents for the adjuvant treatment of localized resected RCC.
Collapse
Affiliation(s)
- Kelly N Fitzgerald
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Jeong SU, Hwang HS, Park JM, Yoon SY, Shin SJ, Go H, Lee JL, Jeong G, Cho YM. PD-L1 Upregulation by the mTOR Pathway in VEGFR-TKI-Resistant Metastatic Clear Cell Renal Cell Carcinoma. Cancer Res Treat 2023; 55:231-244. [PMID: 35240013 PMCID: PMC9873321 DOI: 10.4143/crt.2021.1526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) targeting vascular endothelial growth factor receptor (VEGFR) signaling pathways have been used for metastatic clear cell renal cell carcinoma (mCCRCC), but resistance to the drug develops in most patients. We aimed to explore the underlying mechanism of the TKI resistance with regard to programmed death-ligand 1 (PD-L1) and to investigate signaling pathway associated with the resistant mechanism. MATERIALS AND METHODS To determine the mechanism of resistance, 10 mCCRCC patients from whom tumor tissues were harvested at both the pretreatment and the TKI-resistant post-treatment period were included as the discovery cohort, and their global gene expression profiles were compared. A TKI-resistant renal cancer cell line was established by long-term treatment with sunitinib. RESULTS Among differentially expressed genes in the discovery cohort, increased PD-L1 expression in post-treatment tissues was noted in four patients. Pathway analysis showed that PD-L1 expression was positively correlated with the mammalian target of rapamycin (mTOR) signaling pathway. The TKI-resistant renal cancer cells showed increased expression of PD-L1 and mTOR signaling proteins and demonstrated aggressive tumoral behaviour. Treatment with mTOR inhibitors down-regulated PD-L1 expression and suppressed aggressive tumoral behaviour, which was reversed with stimulation of the mTOR pathway. CONCLUSION These results showed that PD-L1 expression may be increased in a subset of VEGFR-TKI-resistant mCCRCC patients via the mTOR pathway.
Collapse
Affiliation(s)
- Se Un Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Ja-Min Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sun Young Yoon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Gowun Jeong
- AI Recommendation, T3K, SK Telecom, Seoul,
Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
10
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
11
|
Rizzo M, Varnier L, Pezzicoli G, Pirovano M, Cosmai L, Porta C. IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma. Front Oncol 2022; 12:990568. [PMID: 36059687 PMCID: PMC9437355 DOI: 10.3389/fonc.2022.990568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The therapeutic armamentarium of metastatic Renal Cell Carcinoma (mRCC) has consistently expanded in recent years, with the introduction of VEGF/VEGFR (Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor) inhibitors, mTOR (mammalian Target Of Rapamycin) inhibitors and Immune Checkpoint (IC) inhibitors. Currently, for the first-tline treatment of mRCC it is possible to choose between a VEGFR-TKI (VEGFR-Tyrosine Kinase Inhibitor) monotherapy, an ICI-ICI (Immune Checkpoint Inhibitor) combination and an ICI-VEGFRTKI combination. However, a consistent part of patients does not derive benefit from first-line therapy with ICIs; moreover, the use of combination regimens exposes patients to significant toxicities. Therefore, there is a critical need to develop prognostic and predictive biomarkers of response to VEGFR-TKIs and ICIs, and measurement of serum IL-8 is emerging as a potential candidate in this field. Recent retrospective analyses of large phase II and phase III trials found that elevated baseline serum IL-8 correlated with higher levels of tumor and circulating immunosuppressive myeloid cells, decreased T cell activation and poor response to treatment. These findings must be confirmed in prospective clinical trials; however, they provide evidence for a potential use of serum IL-8 as biomarker of resistance to VEGFR-TKIs and ICIs. Considering the amount of new agents and treatment regimens which are transforming the management of metastatic renal cell carcinoma, serum IL-8 could become a precious resource in tailoring the best therapy for each individual patient with the disease.
Collapse
Affiliation(s)
- Mimma Rizzo
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- *Correspondence: Mimma Rizzo,
| | - Luca Varnier
- Department of Pediatrics, Meyer’ Childrens University Hospital, Florence, Italy
| | - Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Marta Pirovano
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Laura Cosmai
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Camillo Porta
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
12
|
Elgehama A. Selective obstruction of the mTORC2 complex by a naturally occurring cholestane saponin (OSW-1) for inhibiting prostate cancer cell growth. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:663-672. [PMID: 34292111 DOI: 10.1080/10286020.2021.1951255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Ornithogalum caudatum Ait (OCA) is a natural product used in Chinese traditional medicine. The cholestane saponin OSW-1 is isolated from plant OCA and has recently been shown to have potent cytotoxic effects against different types of cancers. The therapeutic efficacy of OSW-1 on prostate cancer and its underlying mechanism are yet to be established. OSW-1 inhibited the growth of prostate cancer cells by interrupting the interaction between mTOR and Rictor/mTORC2. This mechanism showed a better therapeutic outcome than that of the conventional inhibition of mTOR and provided a basis for as sisting modern prostate cancer treatment strategies.
Collapse
Affiliation(s)
- Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Nanjing Sky Technology Co. Ltd., Nanjing 210023, China
| |
Collapse
|
13
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
14
|
Wilson B, Dutta A. Function and Therapeutic Implications of tRNA Derived Small RNAs. Front Mol Biosci 2022; 9:888424. [PMID: 35495621 PMCID: PMC9043108 DOI: 10.3389/fmolb.2022.888424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA derived small RNAs are mainly composed of tRNA fragments (tRFs) and tRNA halves (tiRs). Several functions have been attributed to tRFs and tiRs since their initial characterizations, spanning all aspects of regulation of the Central Dogma: from nascent RNA silencing, to post-transcriptional gene silencing, and finally, to translational regulation. The length distribution, sequence diversity, and multifaceted functions of tRFs and tiRs positions them as attractive new models for small RNA therapeutics. In this review, we will discuss the principles of tRF biogenesis and function in order to highlight their therapeutic potential.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
15
|
Kasherman L, Siu DHW, Woodford R, Harris CA. Angiogenesis Inhibitors and Immunomodulation in Renal Cell Cancers: The Past, Present, and Future. Cancers (Basel) 2022; 14:1406. [PMID: 35326557 PMCID: PMC8946206 DOI: 10.3390/cancers14061406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis inhibitors have been adopted into the standard armamentarium of therapies for advanced-stage renal cell carcinomas (RCC), but more recently, combination regimens with immune checkpoint inhibitors have demonstrated better outcomes. Despite this, the majority of affected patients still eventually experience progressive disease due to therapeutic resistance mechanisms, and there remains a need to develop novel therapeutic strategies. This article will review the synergistic mechanisms behind angiogenesis and immunomodulation in the tumor microenvironment and discuss the pre-clinical and clinical evidence for both clear-cell and non-clear-cell RCC, exploring opportunities for future growth in this exciting area of drug development.
Collapse
Affiliation(s)
- Lawrence Kasherman
- Department of Medical Oncology, St. George Hospital, Kogarah, NSW 2217, Australia; (D.H.W.S.); (R.W.); (C.A.H.)
- St. George and Sutherland Clinical Schools, University of New South Wales, Sydney, NSW 2217, Australia
- Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong, NSW 2500, Australia
| | - Derrick Ho Wai Siu
- Department of Medical Oncology, St. George Hospital, Kogarah, NSW 2217, Australia; (D.H.W.S.); (R.W.); (C.A.H.)
- National Health Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Rachel Woodford
- Department of Medical Oncology, St. George Hospital, Kogarah, NSW 2217, Australia; (D.H.W.S.); (R.W.); (C.A.H.)
- Faculty of Medciine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Carole A. Harris
- Department of Medical Oncology, St. George Hospital, Kogarah, NSW 2217, Australia; (D.H.W.S.); (R.W.); (C.A.H.)
- St. George and Sutherland Clinical Schools, University of New South Wales, Sydney, NSW 2217, Australia
| |
Collapse
|
16
|
Lee HJ, Shin DH, Song JS, Park JY, Kim SY, Hwang CS, Na JY, Lee JH, Kim JY, Park SW, Sol MY. mTOR Inhibition Increases Transcription Factor E3 (TFE3) Activity and Modulates Programmed Death-Ligand 1 (PD-L1) Expression in Translocation Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1999-2008. [PMID: 34358517 DOI: 10.1016/j.ajpath.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
The efficacy of programmed cell death protein ligand (PD-L)-1/PD-1 checkpoint blockade in renal cell carcinoma (RCC) remains unknown. The effects of mTOR inhibitors are uncertain, and patients may develop resistance to them. The limited understanding of cancer cell-intrinsic mTOR-mediated pathways remains a challenge in developing effective treatments. Whether transcription factor (TF)-E3 regulates PD-L1 expression and the tumor microenvironment was investigated, and the effects of an mammalian target of rapamycin (mTOR) inhibitor on translocation RCC were explored. TFE3 was overexpressed in clear cell RCC cell lines, and PD-L1 expression was analyzed by Western blot analysis. PD-L1 activity in relation to TFE3 expression in translocation RCC was also analyzed, via TFE3 knockdown and treatment with an mTOR inhibitor. The results were correlated with the gene expression profile, evaluated using digital multiplex analysis. TFE3 and PD-L1 expression were positively correlated in RCC cells. TFE3 overexpression was associated with the expression of PD-L1 in RCC. Furthermore, mTOR inhibition was associated with enhanced PD-L1 expression via TFE3 activation in translocation RCC. These data support the feasibility of combination therapy based on mTOR inhibition and PD-L1 blockade as a novel strategy for the treatment of patients with translocation RCC.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Ji Sun Song
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Joon Young Park
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - So Young Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Chung Su Hwang
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ju-Young Na
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jung Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jee Yeon Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sung Woo Park
- Department of Urology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mee Young Sol
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
17
|
Pontes O, Oliveira-Pinto S, Baltazar F, Costa M. Renal cell carcinoma therapy: Current and new drug candidates. Drug Discov Today 2021; 27:304-314. [PMID: 34265458 DOI: 10.1016/j.drudis.2021.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the most common and lethal tumor of the urological system. Curative treatment of localized RCC includes nephrectomy, radio-ablation, and active surveillance, whereas metastatic RCC (mRCC) requires a combination of surgery and systemic therapy. Response to conventional therapy is limited but, recently, many novel therapies for mRCC have emerged, including targeted therapies and new immunotherapeutic agents. Nevertheless, development of resistance and limited durable responses demand new anticancer candidates with improved selectivity and efficacy. In this review, we summarize recent preclinical studies of novel natural and synthetic compounds to treat RCC, detailing their mechanisms of action and anticancer activities.
Collapse
Affiliation(s)
- Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sofia Oliveira-Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
18
|
Mishra S, Charan M, Verma AK, Ramaswamy B, Ahirwar DK, Ganju RK. Racially Disparate Expression of mTOR/ERK-1/2 Allied Proteins in Cancer. Front Cell Dev Biol 2021; 9:601929. [PMID: 33996789 PMCID: PMC8120233 DOI: 10.3389/fcell.2021.601929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that ethnic differences in mechanistic target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK-1/2) signaling pathways might be associated with the development and progression of different human malignancies. The African American (AA) population has an increased rate of cancer incidence and mortality compared to the Caucasian American (CA) population. Although the socioeconomic differences across different ethnic groups contribute to the disparity in developing different cancers, recent scientific evidence indicates the association of molecular and genetic variations in racial disparities of different human malignancies. The mTOR and ERK-1/2 signaling pathways are one of the well-known oncogenic signaling mechanisms that regulate diverse molecular and phenotypic aspects of normal as well as cancer cells in response to different external or internal stimuli. To date, very few studies have been carried out to explore the significance of racial disparity with abnormal mTOR and ERK-1/2 kinase signaling pathways, which may contribute to the development of aggressive human cancers. In this review, we discuss the differential regulation of mTOR and ERK-1/2 kinase signaling pathways across different ethnic groups, especially between AA and CA populations. Notably, we observed that key signaling proteins associated with mTOR and ERK-1/2 pathway including transforming growth factor-beta (TGF-β), Akt, and VEGFR showed racially disparate expression in cancer patients. Overall, this review article encompasses the significance of racially disparate signaling molecules related to mTOR/ERK1/2 and their potential in developing tailor-made anti-cancer therapies.
Collapse
Affiliation(s)
- Sanjay Mishra
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Manish Charan
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ajeet Kumar Verma
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Dinesh Kumar Ahirwar
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Huang JJ, Hsieh JJ. The Therapeutic Landscape of Renal Cell Carcinoma: From the Dark Age to the Golden Age. Semin Nephrol 2021; 40:28-41. [PMID: 32130964 DOI: 10.1016/j.semnephrol.2019.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oncologic treatments for renal cell carcinoma (RCC) have undergone a major revolution in the past 2 decades, moving away from the pre-2004 Dark Age during which interleukin 2 and interferon-α were the only therapeutic options and induced treatment responses in only 5% to 10% of patients with metastatic disease. The development of anti-angiogenic tyrosine kinase inhibitors against vascular endothelial growth factor receptor 2 and inhibitors of mammalian target of rapamycin complex 1 in 2005 introduced the Modern Age with better overall and progression-free survival and a greater number of patients (30%-40%) responding to and (∼80%) benefiting from these targeted therapeutic agents. The coming of age of the immuno-oncology era with the use of immune checkpoint inhibitors (ICIs) have ushered us into the Golden Age of metastatic RCC care, in which combined administrations of two ICIs (anti-programmed cell death protein 1/programmed death-ligand 1 and anti-cytotoxic T-lymphocyte-associated protein 4 or one tyrosine kinase inhibitor plus one ICI (anti-programmed cell death protein 1/programmed death-ligand 1) have recast the treatment landscape of clear cell RCC, the most common RCC subtype, with an approximately 60% response rate and an approximately 90% disease control rate that further improves metastatic RCC survival. Exciting clinical trials are in the pipeline investigating complementary/synergistic molecular mechanisms, based on studies investigating the biology, pathology, and genomics of renal carcinoma and the respective treatment outcome. This will enable us to enter the Diamond Age of precision medicine in which a specific treatment can be tailored to the specific biological and pathologic circumstance of an individual kidney tumor to offer more effective yet less toxic therapy.
Collapse
Affiliation(s)
- Jennifer J Huang
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, MO
| | - James J Hsieh
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, MO.
| |
Collapse
|
20
|
Bratslavsky G, Gleicher S, Jacob JM, Sanford TH, Shapiro O, Bourboulia D, Gay LM, Andrea Elvin J, Vergilio JA, Suh J, Ramkissoon S, Severson EA, Killian JK, Schrock AB, Chung JH, Miller VA, Mollapour M, Ross JS. Comprehensive genomic profiling of metastatic collecting duct carcinoma, renal medullary carcinoma, and clear cell renal cell carcinoma. Urol Oncol 2021; 39:367.e1-367.e5. [PMID: 33775530 DOI: 10.1016/j.urolonc.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION AND OBJECTIVE Unlike clear cell renal cell carcinoma (CCRCC), collecting duct carcinoma (CDC) and renal medullary carcinoma (RMC) are rare tumors that progress rapidly and appear resistant to current systemic therapies. We queried comprehensive genomic profiling to uncover opportunities for targeted therapy and immunotherapy. MATERIAL AND METHODS DNA was extracted from 40 microns of formalin-fixed, paraffin-embedded specimen from relapsed, mCDC (n = 46), mRMC (n = 24), and refractory and metastatic (m) mCCRCC (n = 626). Comprehensive genomic profiling was performed, and Tumor mutational burden (TMB) and microsatellite instability (MSI) were calculated. We analyzed all classes of genomic alterations. RESULTS mCDC had 1.7 versus 2.7 genomic alterations/tumor in mCCRCC ( = 0.04). Mutations in VHL (P < 0.0001) and TSC1 (P = 0.04) were more frequent in mCCRCC. SMARCB1 (P < 0.0001), NF2 (P = 0.0007), RB1 (P = 0.02) and RET (P = 0.0003) alterations were more frequent in mCDC versus mCCRCC. No VHL alterations in mRMC and mCDC were identified. SMARCB1 genomic alterations were significantly more frequent in mRMC than mCDC (P = 0.0002), but were the most common alterations in both subtypes. Mutations to EGFR, RET, NF2, and TSC2 were more frequently identified in mCDC versus mRMC. The median TMB and MSI-High status was low with <1% of mCCRC, mCDC, and mRMC having ≥ 20 mut/Mb. CONCLUSION Genomic alteration patterns in mCDC and mRMC differ significantly from mCCRCC. Targeted therapies for mCDC and mRMC appear limited with rare opportunities to target alterations in receptor tyrosine kinase and MTOR pathways. Similarly, TMB and absence of MSI-High status in mCDC and mRMC suggest resistance to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey S Ross
- Upstate Medical University, Syracuse NY; Foundation Medicine, Cambridge MA
| |
Collapse
|
21
|
Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, Liu J, Yu Y. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Front Immunol 2021; 12:653358. [PMID: 33746989 PMCID: PMC7970116 DOI: 10.3389/fimmu.2021.653358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Precision Medicine/methods
- Progression-Free Survival
- Randomized Controlled Trials as Topic
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
22
|
He YH, Tian G. Autophagy as a Vital Therapy Target for Renal Cell Carcinoma. Front Pharmacol 2021; 11:518225. [PMID: 33643028 PMCID: PMC7902926 DOI: 10.3389/fphar.2020.518225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process that degrades and recycles superfluous organelles or damaged cellular contents. It has been found to have dual functions in renal cell carcinoma (RCC). Many autophagy-related proteins are regarded as prognostic markers of RCC. Researchers have attempted to explore synthetic and phytochemical drugs for RCC therapy that target autophagy. In this review, we highlight the importance of autophagy in RCC and potential treatments related to autophagy.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo Tian
- Hepatobiliary and Pancreatic Intervention Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Schmidt AL, Bain PA, McGregor BA. Tissue Based Biomarkers for Metastatic Clear Cell Renal Carcinoma: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Treatments for metastatic clear cell renal carcinoma (mccRCC) are evolving with multiple targeted and immune therapy drugs currently approved by regulatory agencies as single agents or in combination. Developing predictive biomarkers to determine which patients derive a differential benefit from a particular treatment is an area of ongoing clinical research. Objective: We sought to systematically evaluate the role of tumour tissue-based biomarkers that assist in selection of therapy for mccRCC. Methods: Literature addressing the role of biomarkers in mccRCC was identified through a search of the electronic databases MEDLINE, Embase, and the Web of Science and a hand search of major conference abstracts (from Jan 2010 –Sep 2020). Abstracts were screened to identify papers meriting full-text review. Studies with a comparison arm were included to assess biomarker relevance. A narrative review of studies was performed. Results: The literature search yielded 6784 potentially relevant articles. 133 articles met criteria for full text review, and 10 articles were identified by scanning bibliographies of relevant studies. A total of 33 articles (involving 13 studies) were selected for data extraction and subsequent review. Conclusions: Predictive biomarkers for immediate use in the clinic are lacking, and embedding their evaluation and validation in future clinical trials is needed to refine practice and patient selection.
Collapse
Affiliation(s)
- Andrew L. Schmidt
- Lark Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul A. Bain
- Countway Library, Harvard Medical School, Boston, MA, USA
| | - Bradley A. McGregor
- Lark Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
24
|
Waxing and waning pattern of mTOR inhibitor-associated pneumonitis in renal cell carcinoma patients: A retrospective observational study. Clin Imaging 2020; 71:29-33. [PMID: 33171363 DOI: 10.1016/j.clinimag.2020.10.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE mTOR inhibitor-associated pneumonitis is common and often asymptomatic. We describe a waxing and waning pattern of pneumonitis observed on computed tomography (CT) scans of patients with renal cell carcinoma who were being treated with mTOR inhibitor molecular targeted therapy. MATERIALS AND METHODS In this HIPAA-compliant, IRB-approved retrospective single-institution study, 25 renal cell carcinoma patients were identified who received single-therapy temsirolimus or everolimus between January 2011 and June 2015 and who had chest CT scans available for review both before and after initiation of mTOR inhibitor treatment. A detailed review of the electronic medical record and serial chest CT examinations was performed. RESULTS Radiologic findings compatible with pneumonitis were identified in 13/25 (52%) patients on mTOR inhibitors in our study. Of the patients with CT findings of pneumonitis, 8/13 (62%) demonstrated a waxing and waning pattern; of whom 7 had clinical symptoms of pneumonitis. Of the 17 patients who received temsirolimus, 9/17 (53%) developed radiologic findings compatible with pneumonitis and 4/9 (44%) developed a waxing and waning pattern. Of the 8 patients who received everolimus, 4/8 (50%) had radiologic findings compatible with pneumonitis and 4/4 (100%) developed a waxing and waning pattern. CONCLUSION Waxing and waning is an unrecognized pattern of mTOR inhibitor-associated pneumonitis. Recognition of this pattern will promote clinical-radiologic concordance and may facilitate patient management.
Collapse
|
25
|
Zhu X, Xu A, Zhang Y, Huo N, Cong R, Ma L, Chu Z, Tang Z, Kang X, Xian S, Xu X. ITPKA1 Promotes Growth, Migration and Invasion of Renal Cell Carcinoma via Activation of mTOR Signaling Pathway. Onco Targets Ther 2020; 13:10515-10523. [PMID: 33116630 PMCID: PMC7573328 DOI: 10.2147/ott.s266095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. Materials and Methods Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. Results Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. Conclusion Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Infectious Disease, Army No.82 Group Military Hospital, Baoding, People's Republic of China.,Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - An Xu
- Department of Oncology, Second Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nan Huo
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Rui Cong
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Luyuan Ma
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhong Chu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhi Tang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiaofeng Kang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| |
Collapse
|
26
|
Chhabra R, Nanjundan M. Lysophosphatidic acid reverses Temsirolimus-induced changes in lipid droplets and mitochondrial networks in renal cancer cells. PLoS One 2020; 15:e0233887. [PMID: 32492043 PMCID: PMC7269261 DOI: 10.1371/journal.pone.0233887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Increased cytoplasmic lipid droplets (LDs) and elevated AKT/mTOR signaling are characteristics of clear cell renal cell carcinoma (ccRCC). Lysophosphatidic acid (LPA), a potent lipid mitogen generated via autotaxin (elevated in ccRCC), can modulate tumor progression but its role in altering chemotherapeutic sensitivity to mTOR inhibitors is unclear and thus is the focus of the studies presented herein. Using malignant (A-498, 769-P and 786-O) and normal immortalized kidney (HK-2) cell lines, we investigated their cellular responsiveness to Temsirolimus (TEMS, mTOR inhibitor) in the absence or presence of LPA by monitoring alterations in AKT/mTOR pathway mediators (via western blotting), LDs (using LipidTOX and real-time PCR to assess transcript changes in modulators of LD biogenesis/turnover), mitochondrial networks (via immunofluorescence staining for TOM20 and TOM70), as well as cellular viability. We identified that TEMS reduced cellular viability in all renal cell lines, with increased sensitivity in the presence of an autophagy inhibitor. TEMS also altered activation of AKT/mTOR pathway mediators, abundance of LDs, and fragmentation of mitochondrial networks. We observed that these effects were antagonized by LPA. In HK-2 cells, LPA markedly increased LD size and abundance, coinciding with phospho-MAPK and phospho-S6 activation, increased diacylglycerol O-acetyltransferase 2 (DGAT2) mRNA (which produces triacylglycerides), and survival. Inhibiting MAPK partially antagonized LPA-induced LD changes. Collectively, we have identified that LPA can reverse the effects of TEMS by increasing LDs in a MAPK-dependent manner; these results suggest that LPA may contribute to the pathogenesis and chemotherapeutic resistance of ccRCC.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tumkur Sitaram R, Landström M, Roos G, Ljungberg B. Significance of PI3K signalling pathway in clear cell renal cell carcinoma in relation to VHL and HIF status. J Clin Pathol 2020; 74:216-222. [PMID: 32467322 DOI: 10.1136/jclinpath-2020-206693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
Abstract
Renal cell carcinoma (RCC) includes diverse tumour types characterised by various genetic abnormalities. The genetic changes, like mutations, deletions and epigenetic alterations, play a crucial role in the modification of signalling networks, tumour pathogenesis and prognosis. The most prevalent RCC type, clear cell RCC (ccRCC), is asymptomatic in the early stages and has a poorer prognosis compared with the papillary and the chromophobe types RCCs. Generally, ccRCC is refractory to chemotherapy and radiation therapy. Loss of von Hippel-Lindau (VHL) gene and upregulation of hypoxia-inducible factors (HIF), the signature of most sporadic ccRCC, promote multiple growth factors. Hence, VHL/HIF and a variety of pathways, including phosphatase and TEnsin homolog on chromosome 10/phosphatidylinositol-3-kinase (PI3K)/AKT, are closely connected and contribute to the ontogeny of ccRCC. In the recent decade, multiple targeting agents have been developed based on blocking major signalling pathways directly or indirectly involved in ccRCC tumour progression, metastasis, angiogenesis and survival. However, most of these drugs have limitations; either metastatic ccRCC develops resistance to these agents, or despite blocking receptors, tumour cells use alternate signalling pathways. This review compiles the state of knowledge about the PI3K/AKT signalling pathway confined to ccRCC and its cross-talks with VHL/HIF pathway.
Collapse
Affiliation(s)
- Raviprakash Tumkur Sitaram
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Börje Ljungberg
- Department of Surgical and Preoperative Sciences, Urology and Andrology, Umeå Universitet, Umea, Västerbotten, Sweden
| |
Collapse
|
28
|
Wood A, George S, Adra N, Chintala S, Damayanti N, Pili R. Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma. Invest New Drugs 2019; 38:1108-1116. [PMID: 31654285 DOI: 10.1007/s10637-019-00864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Background Preclinical studies suggested synergistic anti-tumor activity when pairing mTOR inhibitors with histone deacetylase (HDAC) inhibitors. We completed a phase I, dose-finding trial for the mTOR inhibitor everolimus combined with the HDAC inhibitor panobinostat in advanced clear cell renal cell carcinoma (ccRCC) patients. We additionally investigated expression of microRNA 605 (miR-605) in serum samples obtained from trial participants. Patients and Methods Twenty-one patients completed our single institution, non-randomized, open-label, dose-escalation phase 1 trial. miR-605 levels were measured at cycle 1/day 1 (C1D1) and C2D1. Delta Ct method was utilized to evaluate miR-605 expression using U6B as an endogenous control. Results There were 3 dosing-limiting toxicities (DLTs): grade 4 thrombocytopenia (n = 1), grade 3 thrombocytopenia (n = 1), and grade 3 neutropenia (n = 1). Everolimus 5 mg PO daily and panobinostat 10 mg PO 3 times weekly (weeks 1 and 2) given in 21-day cycles was the recommended phase II dosing based on their maximum tolerated dose. The 6-month progression-free survival was 31% with a median of 4.1 months (95% confidence internal; 2.0-7.1). There was higher baseline expression of miR-605 in patients with progressive disease (PD) vs those with stable disease (SD) (p = 0.0112). PD patients' miR-605 levels decreased after the 1st cycle (p = 0.0245), whereas SD patients' miR-605 levels increased (p = 0.0179). Conclusion A safe and tolerable dosing regimen was established for combination everolimus/panobinostat therapy with myelosuppression as the major DLT. This therapeutic pairing did not appear to improve clinical outcomes in our group of patients with advanced ccRCC. There was differential expression of miR-605 that correlated with treatment response. Clinical trial information: NCT01582009.
Collapse
Affiliation(s)
- Anthony Wood
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Saby George
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Nabil Adra
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Sreenivasulu Chintala
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Nur Damayanti
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Zhang C, Duan Y, Xia M, Dong Y, Chen Y, Zheng L, Chai S, Zhang Q, Wei Z, Liu N, Wang J, Sun C, Tang Z, Cheng X, Wu J, Wang G, Zheng F, Laurence A, Li B, Yang XP. TFEB Mediates Immune Evasion and Resistance to mTOR Inhibition of Renal Cell Carcinoma via Induction of PD-L1. Clin Cancer Res 2019; 25:6827-6838. [PMID: 31383732 DOI: 10.1158/1078-0432.ccr-19-0733] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Cai Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yaqi Duan
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yuting Dong
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Yufei Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
| | - Shuaishuai Chai
- Department of Urology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhengping Wei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Na Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhaohui Tang
- Department of Surgery, Tongji Hospital, HUST, Wuhan, China
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, HUST, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Arian Laurence
- Department of Haematology, University College Hospital, London, England
| | - Bing Li
- Department of Urology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
30
|
Raczka AM, Reynolds PA. Glutaminase inhibition in renal cell carcinoma therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:356-364. [PMID: 35582719 PMCID: PMC8992627 DOI: 10.20517/cdr.2018.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/26/2022]
Abstract
Receptor tyrosine kinase inhibitors have been a standard first-line therapy for renal cell carcinoma (RCC) for over a decade. Although they stabilize the disease, they are unable to remove all tumor cells, leading to relapse. Moreover, both intrinsic and acquired resistance to therapy are a significant health burden. In order to overcome resistance, several combination therapies have been recently approved by the FDA. Another approach takes advantage of altered metabolism in tumor cells, which switch to alternative metabolic pathways to sustain their rapid growth and proliferation. CB-839 is a small molecule inhibitor of kidney type glutaminase (GLS). GLS is often upregulated in glutamine addicted cancers, enhancing glutamine metabolism for the production of energy and the biosynthesis of various cellular building blocks. CB-839 is currently in clinical trials for several tumors, including clear cell (cc)RCC, both as monotherapy and in combination with the approved therapeutic agents everolimus, cabozantinib and nivolumab. Early results of Phase 1/2 clinical trials look promising, especially for CB-839 plus cabozantinib, and all combinations seem to be well tolerated. However, cancer cells can activate compensatory pathways to overcome glutaminolysis inhibition. Therefore, genetic and metabolomic studies are crucial for the successful implementation of CB-839 alone or in combination in subgroups of ccRCC patients.
Collapse
Affiliation(s)
- Aleksandra M. Raczka
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
31
|
Xie F, Dai Q, Liu X, Wang J. Conditional Knockout of Raptor/mTORC1 Results in Dentin Malformation. Front Physiol 2019; 10:250. [PMID: 30984011 PMCID: PMC6449869 DOI: 10.3389/fphys.2019.00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
mTORC1 signaling plays an important role in extracellular and intracellular signals, including growth factors, nutrients, energy metabolism, and stress. However, the functional role of mTORC1 in dentinogenesis is unknown. To study the role of Raptor/mTORC1 in dentinogenesis, an Raptorfl/fl; Osx-Cre (Rap-Osx) mouse, in which Raptor was conditionally deleted in odontoblasts and dental mesenchymal cells, was generated, and postnatal tooth development was compared between Rap-Osx mice and control littermates. Rap-Osx mice presented a phenotype known as dentinogenesis imperfecta and had smaller tooth volume, a thinner dentin layer and a larger pulp chamber. The proliferation and differentiation of odontoblasts/preodontoblasts were attenuated in mutant mice, which was likely responsible for the defects in dentinogenesis. Raptor/mTORC1-pS6K1 signaling was inactivated during tooth development in Rap-Osx mice, whereas it was activated in control mice. These results indicate that Raptor/mTORC1 plays a critical role in dentinogenesis via promoting odontoblasts/preodontoblasts proliferation and differentiation. Raptor/mTORC1 might regulate tooth development through the pS6K1 signaling pathway.
Collapse
Affiliation(s)
- Furong Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qinggang Dai
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao Liu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
32
|
Valianou M, Filippidou N, Johnson DL, Vogel P, Zhang EY, Liu X, Lu Y, Yu JJ, Bissler JJ, Astrinidis A. Rapalog resistance is associated with mesenchymal-type changes in Tsc2-null cells. Sci Rep 2019; 9:3015. [PMID: 30816188 PMCID: PMC6395747 DOI: 10.1038/s41598-019-39418-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 01/26/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) are caused by inactivating mutations in TSC1 or TSC2, leading to mTORC1 hyperactivation. The mTORC1 inhibitors rapamycin and analogs (rapalogs) are approved for treating of TSC and LAM. Due to their cytostatic and not cytocidal action, discontinuation of treatment leads to tumor regrowth and decline in pulmonary function. Therefore, life-long rapalog treatment is proposed for the control of TSC and LAM lesions, which increases the chances for the development of acquired drug resistance. Understanding the signaling perturbations leading to rapalog resistance is critical for the development of better therapeutic strategies. We developed the first Tsc2-null rapamycin-resistant cell line, ELT3-245, which is highly tumorigenic in mice, and refractory to rapamycin treatment. In vitro ELT3-245 cells exhibit enhanced anchorage-independent cell survival, resistance to anoikis, and loss of epithelial markers. A key alteration in ELT3-245 is increased β-catenin signaling. We propose that a subset of cells in TSC and LAM lesions have additional signaling aberrations, thus possess the potential to become resistant to rapalogs. Alternatively, when challenged with rapalogs TSC-null cells are reprogrammed to express mesenchymal-like markers. These signaling changes could be further exploited to induce clinically-relevant long-term remissions.
Collapse
Affiliation(s)
- Matthildi Valianou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Natalia Filippidou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Daniel L Johnson
- Office of Research Molecular Bioinformatics Core, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Erik Y Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Xiaolei Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yiyang Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jane J Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John J Bissler
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA.,Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aristotelis Astrinidis
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA. .,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA. .,Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
33
|
Grünwald V, Hornig M. Systemic and Sequential Therapy in Advanced Renal Cell Carcinoma. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ilic BB, Antic JA, Bankovic JZ, Milicevic IT, Rodic GS, Ilic DS, Tulic CD, Todorovic VN, Damjanovic SS. VHL Dependent Expression of REDD1 and PDK3 Proteins in Clear-cell Renal Cell Carcinoma. J Med Biochem 2018; 37:31-38. [PMID: 30581339 PMCID: PMC6294108 DOI: 10.1515/jomb-2017-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background Sporadic clear-cell renal cell carcinoma (ccRCC) is associated with mutations in the VHL gene, upregulated mammalian target of rapamycin (mTOR) activity and glycolytic metabolism. Here, we analyze the effect of VHL mutational status on the expression level of mTOR, eIF4E-BP1, AMPK, REDD1, and PDK3 proteins. Methods Total proteins were isolated from 21 tumorous samples with biallelic inactivation, 10 with monoallelic inactivation and 6 tumors with a wild-type VHL (wtVHL) gene obtained from patients who underwent total nephrectomy. The expressions of target proteins were assessed using Western blot. Results Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. Tumors with monoallelic inactivation of VHL underexpressed REDD1 in comparison to wtVHL tumors (P = 0.042), tumors with biallelic VHL inactivation (P < 0.005) and control tissue (P = 0.004). Additionally, REDD1 expression was higher in tumors with VHL biallelic inactivation than in control tissue (P = 0.008). Only in wt tumor samples PDK3 was overexpressed in comparison to tumors with biallelic inactivation of VHL gene (P = 0.012) and controls (P = 0.016). In wtVHL ccRCC, multivariate linear regression analysis revealed that 97.4% of variability in PDK3 expression can be explained by variations in AMPK amount. Conclusion Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. We have shown for the first time VHL dependent expression of PDK3 and we provide additional evidence that VHL mutational status affects REDD1 expression in sporadic ccRCC.
Collapse
Affiliation(s)
- Bojana B Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Jadranka A Antic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Jovana Z Bankovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Ivana T Milicevic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Gordana S Rodic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Dusan S Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| | - Cane D Tulic
- Clinic for Urology, Medical School, University of Belgrade, Belgrade, Serbia
| | - Vera N Todorovic
- Institute for Histology and Embryology, School of Medicine of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Svetozar S Damjanovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical School, University of Belgrade, Department of Neuroendocrine Tumors and Hereditary Cancer Syndromes, Belgrade, Serbia
| |
Collapse
|
35
|
Holst F, Werner HMJ, Mjøs S, Hoivik EA, Kusonmano K, Wik E, Berg A, Birkeland E, Gibson WJ, Halle MK, Trovik J, Cherniack AD, Kalland KH, Mills GB, Singer CF, Krakstad C, Beroukhim R, Salvesen HB. PIK3CA Amplification Associates with Aggressive Phenotype but Not Markers of AKT-MTOR Signaling in Endometrial Carcinoma. Clin Cancer Res 2018; 25:334-345. [PMID: 30442683 DOI: 10.1158/1078-0432.ccr-18-0452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Amplification of PIK3CA, encoding the PI3K catalytic subunit alpha, is common in uterine corpus endometrial carcinoma (UCEC) and linked to an aggressive phenotype. However, it is unclear whether PIK3CA amplification acts via PI3K activation. We investigated the association between PIK3CA amplification, markers of PI3K activity, and prognosis in a large cohort of UCEC specimens. EXPERIMENTAL DESIGN UCECs from 591 clinically annotated patients including 83 tumors with matching metastasis (n = 188) were analyzed by FISH to determine PIK3CA copy-number status. These data were integrated with mRNA and protein expression and clinicopathologic data. Results were verified in The Cancer Genome Atlas dataset. RESULTS PIK3CA amplifications were associated with disease-specific mortality and with other markers of aggressive disease. PIK3CA amplifications were also associated with other amplifications characteristic of the serous-like somatic copy-number alteration (SCNA)-high subgroup of UCEC. Tumors with PIK3CA amplification also demonstrated an increase in phospho-p70S6K but had decreased levels of activated phospho-AKT1-3 as assessed by Reverse Phase Protein Arrays and an mRNA signature of MTOR inhibition. CONCLUSIONS PIK3CA amplification is a strong prognostic marker and a potential marker for the aggressive SCNA-high subgroup of UCEC. Although PIK3CA amplification associates with some surrogate measures of increased PI3K activity, markers for AKT1-3 and MTOR signaling are decreased, suggesting that this signaling is not a predominant pathway to promote cancer growth of aggressive serous-like UCEC. Moreover, these associations may reflect features of the SCNA-high subgroup of UCEC rather than effects of PIK3CA amplification itself.
Collapse
Affiliation(s)
- Frederik Holst
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Henrica M J Werner
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Siv Mjøs
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Kanthida Kusonmano
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Elisabeth Wik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anna Berg
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - William J Gibson
- Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mari K Halle
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | - Karl-Henning Kalland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Gordon B Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Camilla Krakstad
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Rameen Beroukhim
- Department of Cancer Biology and Department of Medical Oncology, Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Helga B Salvesen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
36
|
Alsaab HO, Sau S, Alzhrani RM, Cheriyan VT, Polin LA, Vaishampayan U, Rishi AK, Iyer AK. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 2018; 183:280-294. [PMID: 30179778 PMCID: PMC6414719 DOI: 10.1016/j.biomaterials.2018.08.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the significant clinical burden in renal cell carcinoma (RCC). The development of drug resistance is attributed to many factors, including impairment of apoptosis, elevation of carbonic anhydrase IX (CA IX, a marker of tumor hypoxia), and infiltration of tumorigenic immune cells. To alleviate the drug resistance, we have used Sorafenib (Sor) in combination with tumor hypoxia directed nanoparticle (NP) loaded with a new class of apoptosis inducer, CFM 4.16 (C4.16), namely CA IX-C4.16. The NP is designed to selectively deliver the payload to the hypoxic tumor (core), provoke superior cell death in parental (WT) and Everolimus-resistant (Evr-res) RCC and selectively downmodulate tumorigenic M2-macrophage. Copper-free 'click' chemistry was utilized for conjugating SMA-TPGS with Acetazolamide (ATZ, a CA IX-specific targeting ligand). The NP was further tagged with a clinically approved NIR dye (S0456) for evaluating hypoxic tumor core penetration and organ distribution. Imaging of tumor spheroid treated with NIR dye-labeled CA IX-SMA-TPGS revealed remarkable tumor core penetration that was modulated by CA IX-mediated targeting in hypoxic-A498 RCC cells. The significant cell killing effect with synergistic combination index (CI) of CA IX-C4.16 and Sor treatment suggests efficient reversal of Evr-resistance in A498 cells. The CA IX directed nanoplatform in combination with Sor has shown multiple benefits in overcoming drug resistance through (i) inhibition of p-AKT, (ii) upregulation of tumoricidal M1 macrophages resulting in induction of caspase 3/7 mediated apoptosis of Evr-res A498 cells in macrophage-RCC co-culturing condition, (iii) significant in vitro and in vivo Evr-res A498 tumor growth inhibition as compared to individual therapy, and (iv) untraceable liver and kidney toxicity in mice. Near-infrared (NIR) imaging of CA IX-SMA-TPGS-S0456 in Evr-res A498 RCC model exhibited significant accumulation of CA IX-oligomer in tumor core with >3-fold higher tumor uptake as compared to control. In conclusion, this proof-of-concept study demonstrates versatile tumor hypoxia directed nanoplatform that can work in synergy with existing drugs for reversing drug-resistance in RCC accompanied with re-education of tumor-associated macrophages, that could be applied universally for several hypoxic tumors.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Rami M Alzhrani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | | | - Lisa A Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Ulka Vaishampayan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
37
|
Tsiakanikas P, Giaginis C, Kontos CK, Scorilas A. Clinical utility of microRNAs in renal cell carcinoma: current evidence and future perspectives. Expert Rev Mol Diagn 2018; 18:981-991. [DOI: 10.1080/14737159.2018.1539668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nustrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Voss MH, Chen D, Reising A, Marker M, Shi J, Xu J, Ostrovnaya I, Seshan VE, Redzematovic A, Chen YB, Patel P, Han X, Hsieh JJ, Hakimi AA, Motzer RJ. PTEN Expression, Not Mutation Status in TSC1, TSC2, or mTOR, Correlates with the Outcome on Everolimus in Patients with Renal Cell Carcinoma Treated on the Randomized RECORD-3 Trial. Clin Cancer Res 2018; 25:506-514. [PMID: 30327302 DOI: 10.1158/1078-0432.ccr-18-1833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Genomic alterations in key components of PI3K/mTOR pathway have been proposed as candidate predictive markers for rapalog therapy in renal cell carcinoma (RCC). We tested this hypothesis in patients from a randomized phase II trial of everolimus versus sunitinib. PATIENTS AND METHODS Archival specimens collected at baseline were analyzed with targeted next-generation sequencing (NGS). Focus of interest were alterations in key PI3K pathway components. PTEN expression was assessed by IHC. Association between molecular findings and treatment outcomes was investigated; same associations were tested for 2 everolimus-treated trial cohorts in gastric and hepatocellular carcinoma (HCC). RESULTS Among 184 everolimus-treated patients with RCC with NGS data, mutation rates in genes of interest were 6% (TSC1), 4.4% (TSC2), and 8.2% (mTOR); 44% harbored alterations in ≥1 PI3K pathway component. For subjects with presence versus absence of mutations in TSC1, TSC2, or mTOR progression-free survival (PFS) neither differed on univariate analysis (HR, 1.0; P = 0.895) nor on multivariate testing stratified by MSKCC risk group and other established prognostic factors (HR, 1.1; P = 0.806). Everolimus-treated patients with retained (n = 50) versus lost (n = 50) PTEN IHC expression had median PFS of 5.3 months versus 10.5 months (HR, 2.5; P < 0.001). Such differences were not seen with sunitinib (10.9 months vs. 10.3 months; HR, 0.8; P = 0.475). Molecular findings did not correlate with outcomes in gastric and HCC cohorts. CONCLUSIONS Association between mutation status for TSC1/TSC2/mTOR and therapeutic outcome on everolimus was not confirmed. Clinically meaningful differences in PFS were seen based on PTEN expression by IHC, lost in >50% of patients.
Collapse
Affiliation(s)
- Martin H Voss
- Memorial Sloan Kettering Cancer Center, New York City, New York.
| | - David Chen
- Novartis Oncology, East Hanover, New Jersey
| | | | | | - Jiayuan Shi
- Bristol-Myers Squibb Company, Hopewell township, New Jersey
| | - Jianning Xu
- Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | | | | | - Ying-Bei Chen
- Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | - Xia Han
- Novartis Oncology, East Hanover, New Jersey
| | | | - A Ari Hakimi
- Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Robert J Motzer
- Memorial Sloan Kettering Cancer Center, New York City, New York
| |
Collapse
|
39
|
Coutinho J, de Sa J, Teixeira FC, Santos CR, Chorão RS, Filipe RA, Rocha EF. Renal transplantation in Birt-Hogg-Dubé syndrome: should we? BMC Nephrol 2018; 19:267. [PMID: 30326848 PMCID: PMC6192299 DOI: 10.1186/s12882-018-1064-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Birt-Hogg-Dubé (BHD) Syndrome is a rare genodermatosis caused by a mutation on folliculin gene, with a strong link to renal cancer. To date few patients with such condition have reached dialysis stage, as nephron-sparing surgery is usually possible at the time of diagnosis. To our best knowledge no patient with BHD syndrome has been submitted to renal transplantation. Case presentation We report the case of a woman diagnosed with multifocal bilateral renal cell carcinoma that underwent bilateral radical nephrectomy and was started on a regular hemodialysis program at the age of 29. While on hemodialysis program she was diagnosed clinically with BHD syndrome and molecular testing confirmed an heterozygous mutation on FLCN gene. The patient has been kept on surveillance program for 2 years with no clinical complications from the genetic syndrome and in complete remission from renal cancer. Though there has not been any report of a patient with BHD being transplanted, risks and benefits for this patient were weighted. She has been considered apt by the transplant team and is currently waitlisted for cadaveric renal transplantation. Discussion It is a matter of discussion which should be cancer-free period for anephric patients with an inherited cancer syndrome to be candidates for renal transplant. So far BHD syndrome has not been causally associated with any other neoplastic disorder elsewhere. Accepting cancer biology is very complex and knowledge of the behaviour of this genetic syndrome is limited to a few cases reported worldwide, the authors believe that renal transplantation is the best treatment option for this young patient. The choice of post transplantation immunosuppression is debatable, but considering experience in other inherited cancer syndromes a maintenance scheme with mTOR inhibitor will be favoured.
Collapse
Affiliation(s)
- Joana Coutinho
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal.
| | - Joaquim de Sa
- Centro Hospitalar Universitario de Coimbra, Coimbra, Portugal
| | - Filipe Castro Teixeira
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal
| | - Catarina Reis Santos
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal
| | - Raquel Sa Chorão
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal
| | - Rui Alves Filipe
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal
| | - Ernesto Fernandes Rocha
- Hospital Amato Lusitano, Rua Professora Maria Amalia Fevereiro Lote A 105, 4°direito, 6000-472, Castelo Branco, Portugal
| |
Collapse
|
40
|
Hagiwara N, Watanabe M, Iizuka-Ohashi M, Yokota I, Toriyama S, Sukeno M, Tomosugi M, Sowa Y, Hongo F, Mikami K, Soh J, Fujito A, Miyashita H, Morioka Y, Miki T, Ukimura O, Sakai T. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett 2018; 431:182-189. [PMID: 29778569 DOI: 10.1016/j.canlet.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is the most common malignancy of kidney and remains largely intractable once it recurs after resection. mTOR inhibitors have been one of the mainstays used against recurrent RCC; however, there has been a major problem of the resistance to mTOR inhibitors, and thus new combination treatments with mTOR inhibitors are required. We here retrospectively showed that regular use of antilipidemic drug statins could provide a longer progression free survival (PFS) in RCC patients prescribed with an mTOR inhibitor everolimus than without statins (median PFS, 7.5 months vs. 3.2 months, respectively; hazard ratio, 0.52; 95% CI, 0.22-1.11). In order to give a rationale for this finding, we used RCC cell lines and showed the combinatorial effects of an mTOR inhibitor with statins induced a robust activation of retinoblastoma protein, whose mechanisms were involved in statins-mediated hindrance of KRAS or Rac1 protein prenylation. Finally, statins treatment also enhanced the efficacy of an mTOR inhibitor in RCC xenograft models. Thus, we provide molecular and (pre)clinical data showing that statins use could be a drug repositioning for RCC patients to enhance the efficacy of mTOR inhibitors.
Collapse
Affiliation(s)
- Nobuhisa Hagiwara
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Motoki Watanabe
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Mahiro Iizuka-Ohashi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Japan
| | - Isao Yokota
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Japan
| | - Seijiro Toriyama
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Mamiko Sukeno
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuhiro Tomosugi
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshihiro Sowa
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Fumiya Hongo
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Kazuya Mikami
- Department of Urology, Japanese Red Cross Kyoto Daiichi Hospital, Honmachi, Higashiyama-ku, Kyoto, 605-0981, Japan
| | - Jintetsu Soh
- Department of Urology, Japanese Red Cross Kyoto Daini Hospital, Kamannza-marutamachi, Kamigyo-ku, Kyoto, 602-8026, Japan
| | - Akira Fujito
- Department of Urology, Saiseikai Suita Hospital, Kawazonocho, Suita, Osaka, 564-0013, Japan
| | - Hiroaki Miyashita
- Department of Urology, Omihachiman City Hospital, Tsuchida-cho, Omihachiman, Shiga, 523-0082, Japan
| | - Yukako Morioka
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Tsuneharu Miki
- Department of Urology, Saiseikai Shigaken Hospital, Ohashi, Ritto, Shiga, 520-3046, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, Japan
| | - Toshiyuki Sakai
- Department of Molecular-targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
41
|
Engl T, Rutz J, Maxeiner S, Fanguen S, Juengel E, Koschade S, Roos F, Khoder W, Tsaur I, Blaheta RA. Acquired resistance to temsirolimus is associated with integrin α7 driven chemotactic activity of renal cell carcinoma in vitro. Oncotarget 2018; 9:18747-18759. [PMID: 29721158 PMCID: PMC5922352 DOI: 10.18632/oncotarget.24650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
The mechanistic target of the rapamycin (mTOR) inhibitor, temsirolimus, has significantly improved the outcome of patients with renal cell carcinoma (RCC). However, development of temsirolimus-resistance limits its effect and metastatic progression subsequently recurs. Since integrin α7 (ITGA7) is speculated to promote metastasis, this investigation was designed to investigate whether temsirolimus-resistance is associated with altered ITGA7 expression in RCC cell lines and modified tumor cell adhesion and invasion. Caki-1, KTCTL-26, and A498 RCC cell lines were driven to temsirolimus-resistance by exposing them to temsirolimus over a period of 12 months. Subsequently, adhesion to human umbilical vein endothelial cells, to immobilized fibronectin, or collagen was investigated. Chemotaxis was evaluated with a modified Boyden chamber assay and ITGA7 expression by flow cytometry and western blotting. Chemotaxis significantly decreased in temsirolimus-sensitive cell lines upon exposure to low-dosed temsirolimus, but increased in temsirolimus-resistant tumor cells upon reexposure to the same temsirolimus dose. The increase in chemotaxis was accompanied by elevated ITGA7 at the cell surface membrane with simultaneous reduction of intracellular ITGA7. ITGA7 knock-down significantly diminished motility of temsirolimous-sensitive cells but elevated chemotactic activity of temsirolimus-resistant Caki-1 and KTCTL-26 cells. Therefore, ITGA7 appears closely linked to adhesion and migration regulation in RCC cells. It is postulated that temsirolimus-resistance is associated with translocation of ITGA7 from inside the cell to the outer surface. This switch forces RCC migration forward. Whether ITGA7 can serve as an important target in combatting RCC requires further investigation.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | | | - Sorel Fanguen
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Eva Juengel
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Koschade
- Department of Medicine II, Hematology and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Frederik Roos
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Wael Khoder
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Hickman LA, Sawinski D, Guzzo T, Locke JE. Urologic malignancies in kidney transplantation. Am J Transplant 2018; 18:13-22. [PMID: 28985026 DOI: 10.1111/ajt.14533] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
Abstract
With advances in immunosuppression, graft and patient outcomes after kidney transplantation have improved considerably. As a result, long-term complications of transplantation, such as urologic malignancies, have become increasingly important. Kidney transplant recipients, for example, have a 7-fold risk of renal cell carcinoma (RCC) and 3-fold risk of urothelial carcinoma (UC) compared with the general population. While extrapolation of data from the general population suggest that routine cancer screening in transplant recipients would allow for earlier diagnosis and management of these potentially lethal malignancies, currently there is no consensus for posttransplantation RCC or UC screening as supporting data are limited. Further understanding of risk factors, presentation, optimal management of, and screening for urologic malignancies in kidney transplant patients is warranted, and as such, this review will focus on the incidence, surveillance, and treatment of urologic malignancies in kidney transplant recipients.
Collapse
Affiliation(s)
- Laura A Hickman
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Deirdre Sawinski
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas Guzzo
- Department of Urology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayme E Locke
- Department of Surgery, Division of Transplantation, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
43
|
Stelloo S, Sanders J, Nevedomskaya E, de Jong J, Peters D, van Leenders GJLH, Jenster G, Bergman AM, Zwart W. mTOR pathway activation is a favorable prognostic factor in human prostate adenocarcinoma. Oncotarget 2017; 7:32916-24. [PMID: 27096957 PMCID: PMC5078062 DOI: 10.18632/oncotarget.8767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/28/2016] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer patients with localized disease are treated with curative intent. However, the disease will recur in approximately 30% of patients with a high incidence of morbidity and mortality. Prognostic biomarkers are needed to identify patients with high risk of relapse. mTOR pathway activation is reported in prostate cancer, but clinical trials testing efficacy of mTOR inhibitors were unsuccessful. To explain this clinical observation, we studied the expression and prognostic impact of mTOR-S2448 phosphorylation in localized prostate carcinomas. mTOR-S2448 phosphorylation is indicative for an activated mTOR pathway in prostate cancer. Surprisingly, the mTOR signaling pathway is activated specifically in prostate cancer patients with a favorable outcome. Since tumors from poor-outcome patients have low levels of mTOR-S2448 phosphorylation, this may explain why mTOR inhibitors proved unsuccessful in prostate cancer trials.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dennis Peters
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M, Stiegelbauer V. MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18112495. [PMID: 29165391 PMCID: PMC5713461 DOI: 10.3390/ijms18112495] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) are the most common renal neoplasia and can be divided into three main histologic subtypes, among which clear cell RCC is by far the most common form of kidney cancer. Despite substantial advances over the last decade in the understanding of RCC biology, surgical treatments, and targeted and immuno-therapies in the metastatic setting, the prognosis for advanced RCC patients remains poor. One of the major problems with RCC treatment strategies is inherent or acquired resistance towards therapeutic agents over time. The discovery of microRNAs (miRNAs), a class of small, non-coding, single-stranded RNAs that play a crucial role in post-transcriptional regulation, has added new dimensions to the development of novel diagnostic and treatment tools. Because of an association between Von Hippel–Lindau (VHL) genes with chromosomal loss in 3p25-26 and clear cell RCC, miRNAs have attracted considerable scientific interest over the last years. The loss of VHL function leads to constitutional activation of the hypoxia inducible factor (HIF) pathway and to consequent expression of numerous angiogenic and carcinogenic factors. Since miRNAs represent key players of carcinogenesis, tumor cell invasion, angiogenesis, as well as in development of metastases in RCC, they might serve as potential therapeutic targets. Several miRNAs are already known to be dysregulated in RCC and have been linked to biological processes involved in tumor angiogenesis and response to anti-cancer therapies. This review summarizes the role of different miRNAs in RCC angiogenesis and their association with the VHL gene, highlighting their potential role as novel drug targets.
Collapse
Affiliation(s)
- Lisa-Maria Schanza
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Johannes Fosselteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Verena Stiegelbauer
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| |
Collapse
|
45
|
Nishikawa M, Miyake H, Gleave M, Fujisawa M. Effect of Targeting Clusterin Using OGX-011 on Antitumor Activity of Temsirolimus in a Human Renal Cell Carcinoma Model. Target Oncol 2017; 12:69-79. [PMID: 27526062 DOI: 10.1007/s11523-016-0448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND It has not been well documented that the modulation of stress response mediates the efficacy of the mammalian target of rapamycin (mTOR) inhibitor in renal cell carcinoma (RCC). OBJECTIVE The objective of this study was to investigate whether the activity of the mTOR inhibitor temsirolimus against RCC could be enhanced by OGX-011, an antisense oligodeoxynucleotide (ODN) targeting the stress-activated chaperone clusterin. METHODS We investigated the efficacy of combined treatment with temsirolimus plus OGX-011 in a human RCC Caki-1 model focusing on the effects on apoptotic and autophagic pathways. RESULTS Although clusterin expression was increased by temsirolims, additional treatment of Caki-1 with OGX-011 significantly inhibited clusterin upregulation (p < 0.05). Combined treatment of temsirolimus and OGX-011 synergistically enhanced the sensitivity of Caki-1 to temsirolimus (p < 0.01), reducing the IC50 by approximately 50 %. Apoptotic changes were marked in Caki-1 following combined treatment with a sublethal dose of temsirolimus and OGX-011, accompanying the significant downregulation of Mcl-1 (p < 0.05), but not with either agent alone. Furthermore, this combined treatment markedly blocked the temsirolimus-induced activation of autophagy in Caki-1 (p < 0.01). In-vivo systemic administration of temsirolimus plus OGX-011 significantly inhibited the growth of Caki-1 tumors compared with that of temsirolimus plus control ODN (p < 0.05). CONCLUSIONS Silencing of clusterin using OGX-011 resulted in the further enhancement of proapoptotic activity as well as the marked attenuation of the autophagic pathway induced by temsirolimus in a human RCC model. Thus, the combined use of OGX-011 could be a promising strategy through the enhanced cytotoxic activity of temsirolimus against RCC.
Collapse
Affiliation(s)
- Masatomo Nishikawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Martin Gleave
- Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
46
|
Wong SC, Cheng W, Hamilton H, Nicholas AL, Wakefield DH, Almeida A, Blokhin AV, Carlson J, Neal ZC, Subbotin V, Zhang G, Hegge J, Bertin S, Trubetskoy VS, Rozema DB, Lewis DL, Kanner SB. HIF2α-Targeted RNAi Therapeutic Inhibits Clear Cell Renal Cell Carcinoma. Mol Cancer Ther 2017; 17:140-149. [DOI: 10.1158/1535-7163.mct-17-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
|
47
|
Worst TS, Waldbillig F, Abdelhadi A, Weis CA, Gottschalt M, Steidler A, von Hardenberg J, Michel MS, Erben P. The EEF1A2 gene expression as risk predictor in localized prostate cancer. BMC Urol 2017; 17:86. [PMID: 28923030 PMCID: PMC5604352 DOI: 10.1186/s12894-017-0278-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Besides clinical stage and Gleason score, risk-stratification of prostate cancer in the pretherapeutic setting mainly relies on the serum PSA level. Yet, this is associated with many uncertainties. With regard to therapy decision-making, additional markers are needed to allow an exact risk prediction. Eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) was previously suggested as driver of tumor progression and potential biomarker. In the present study its functional and prognostic relevance in prostate cancer was investigated. Methods EEF1A2 expression was analyzed in two cohorts of patients (n = 40 and n = 59) with localized PCa. Additionally data from two large expression dataset (MSKCC, Cell, 2010 with n = 131 localized, n = 19 metastatic PCa and TCGA provisional data, n = 499) of PCa patients were reanalyzed. The expression of EEF1A2 was correlated with histopathology features and biochemical recurrence (BCR). To evaluate the influence of EEF1A2 on proliferation and migration of metastatic PC3 cells, siRNA interference was used. Statistical significance was tested with t-test, Mann-Whitney-test, Pearson correlation and log-rank test. Results qRT-PCR revealed EEF1A2 to be significantly overexpressed in PCa tissue, with an increase according to tumor stage in one cohort (p = 0.0443). In silico analyses in the MSKCC cohort confirmed the overexpression of EEF1A2 in localized PCa with high Gleason score (p = 0.0142) and in metastatic lesions (p = 0.0038). Patients with EEF1A2 overexpression had a significantly shorter BCR-free survival (p = 0.0028). EEF1A2 expression was not correlated with serum PSA levels. Similar results were seen in the TCGA cohort, where EEF1A2 overexpression only occurred in tumors with Gleason 7 or higher. Patients with elevated EEF1A2 expression had a significantly shorter BCR-free survival (p = 0.043). EEF1A2 knockdown significantly impaired the migration, but not the proliferation of metastatic PC3 cells. Conclusion The overexpression of EEF1A2 is a frequent event in localized PCa and is associated with histopathology features and a shorter biochemical recurrence-free survival. Due to its independence from serum PSA levels, EEF1A2 could serve as valuable biomarker in risk-stratification of localized PCa.
Collapse
Affiliation(s)
- Thomas Stefan Worst
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany. .,Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Frank Waldbillig
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Abdallah Abdelhadi
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Maria Gottschalt
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Annette Steidler
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jost von Hardenberg
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Maurice Stephan Michel
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Philipp Erben
- Department of Urology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
48
|
Cheriyan VT, Alsaab HO, Sekhar S, Stieber C, Kesharwani P, Sau S, Muthu M, Polin LA, Levi E, Iyer AK, Rishi AK. A CARP-1 functional mimetic loaded vitamin E-TPGS micellar nano-formulation for inhibition of renal cell carcinoma. Oncotarget 2017; 8:104928-104945. [PMID: 29285223 PMCID: PMC5739610 DOI: 10.18632/oncotarget.20650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Current treatments for Renal Cell Carcinoma (RCC) include a combination of surgery, targeted therapy, and immunotherapy. Emergence of resistant RCCs contributes to failure of drugs and poor prognosis, and thus warrants development of new and improved treatment options for RCCs. Here we generated and characterized RCC cells that are resistant to Everolimus, a frontline mToR-targeted therapy, and tested whether our novel class of CARP-1 functional mimetic (CFM) compounds inhibit parental and Everolimus-resistant RCC cells. CFMs inhibited RCC cell viability in a dose-dependent manner that was comparable to Everolimus treatments. The GI50 dose of Everolimus for parental A498 cells was ∼1.2μM while it was <0.02μM for the parental UOK262 and UOK268 cells. The GI50 dose for Everolimus-resistant A498, UOK262, and UOK268 cells were ≥10.0μM, 1.8-7.0μM, and 7.0-≥10.0μM, respectively. CFM-4 and its novel analog CFM-4.16 inhibited viabilities of Everolimus resistant RCC cells albeit CFM-4.16 was more effective than CFM-4. CFM-dependent loss of RCC cell viabilities was due in part to reduced cyclin B1 levels, activation of pro-apoptotic, stress-activated protein kinases (SAPKs), and apoptosis. CFM-4.16 suppressed growth of resistant RCC cells in three-dimensional suspension cultures. However, CFMs are hydrophobic and their intravenous administration and dose escalation for in-vivo studies remain challenging. In this study, we encapsulated CFM-4.16 in Vitamin-E TPGS-based- nanomicelles that resulted in its water-soluble formulation with higher CFM-4.16 loading (30% w/w). This CFM-4.16 formulation inhibited viability of parental and Everolimus-resistant RCC cells in vitro, and suppressed growth of parental A498 RCC-cell-derived xenografts in part by stimulating apoptosis. These findings portent promising therapeutic potential of CFM-4.16 for treatment of RCCs.
Collapse
Affiliation(s)
- Vino T Cheriyan
- John D. Dingell VA Medical Center, Detroit, Michigan, 48201, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 26571, Saudi Arabia
| | - Sreeja Sekhar
- John D. Dingell VA Medical Center, Detroit, Michigan, 48201, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Caitlin Stieber
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Present address: Cornell College, Mount Vernon, Iowa, 52314, USA
| | - Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.,Present address: Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Magesh Muthu
- John D. Dingell VA Medical Center, Detroit, Michigan, 48201, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Present Address: Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa A Polin
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Edi Levi
- John D. Dingell VA Medical Center, Detroit, Michigan, 48201, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Arun K Iyer
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Detroit, Michigan, 48201, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| |
Collapse
|
49
|
Shinagare AB, Krajewski KM, Braschi-Amirfarzan M, Ramaiya NH. Advanced Renal Cell Carcinoma: Role of the Radiologist in the Era of Precision Medicine. Radiology 2017; 284:333-351. [DOI: 10.1148/radiol.2017160343] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Atul B. Shinagare
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Katherine M. Krajewski
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Marta Braschi-Amirfarzan
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Nikhil H. Ramaiya
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| |
Collapse
|
50
|
Singla M, Bhattacharyya S. Autophagy as a potential therapeutic target during epithelial to mesenchymal transition in renal cell carcinoma: An in vitro study. Biomed Pharmacother 2017; 94:332-340. [PMID: 28772211 DOI: 10.1016/j.biopha.2017.07.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer progression toward invasive and metastatic disease is aided by reactivation of epithelial-mesenchymal transition (EMT), involving transdifferentiation of epithelial cells into mesenchymal phenotype. This leads to increased migratory and stem cell-like features in the cells. These EMT cells are more resistant to chemotherapy and it is hypothesized that the phenomenon of autophagy induces resistance, providing a survival strategy for cells. In the present study, we induced EMT-like phenotype in renal carcinoma cells and identified corresponding higher autophagy flux in these cells. The EMT transformed cells may be a representative of the resistant cancer stem cell(CSC)-like phenotype. Autophagy was identified as a potential mechanism of cell survival in these cells thus implying that autophagy inhibition can lead to enhanced cell death. We also observed that tumor cells especially EMT transformed cells, have been 'primed' to undergo autophagy by mTOR inhibition. We observed that combined use of autophagy inhibitor and temsirolimus (TEM) improved antitumor activity against RCC in EMT transformed metastatic cells. One of the approaches for inhibiting autophagy was the use of lysosomotropic anti-malarial drug, chloroquine (CQ) and we explored the therapeutic potential of combination of CQ and the mTOR inhibitor, TEM. EMT transformed cells showed increased cell cytotoxicity when autophagy was impaired by addition CQ with TEM. This led us to conclude that inhibition of autophagy with the current therapeutic regimen could be useful in targeting the EMT transformed cells along with the bulk tumor cells in RCC.
Collapse
Affiliation(s)
- Mamta Singla
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|