1
|
Han Y, Zhang X, Wang Q, Cui X, Wang H, Zhang X, Wang Q, Ji J, Wang Y, Wang S, Zhang X, Xu H, Qiao M, Wu Z. IL-27p28 specifically regulates MHC II expression in macrophages through CIITA. Immunobiology 2023; 228:152757. [PMID: 37944428 DOI: 10.1016/j.imbio.2023.152757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Antigen-presenting cells (APCs) constantly express major histocompatibility complex II (MHC II), including macrophages and dendritic cells (DCs) which deliver antigens to CD4+ T cells and play an important role in adaptive immunity. The expression of MHC II is controlled by the transcriptional coactivator CIITA. Interleukin-27 (IL-27), a newly discovered IL-12 family cytokine, is composed of p28 and EBI3 subunits. In this study, we used IL-27p28 conditional knock-out mice to investigate the regulatory effects of IL-27p28 on macrophage polarization and the expression of MHC II in macrophages. We found that MHC II expression was upregulated in the bone marrow-derived and peritoneal exudate macrophages (BMDMs; PEMs) from IL-27p28-deficient mice, with their inflammation regulating function unaffected. We also demonstrated that in the APCs, IL-27p28 selectively regulated MHC II expression in macrophages but not in dendritic cells. During Pseudomonas aeruginosa (P. aeruginosa) reinfection, higher survival rate, bacterial clearance, and ratio of CD4+/CD8+ T cells in the spleen during the specific immune phase were observed in IL-27p28 defect mice, as well as an increased MHC II expression in alveolar macrophages (AMs). But these did not occur in the first infection. For the first time we discovered that IL-27p28 specifically regulates the expression of MHC II in macrophages by regulating CIITA, while its absence enhances antigen presentation and adaptive immunity against P. aeruginosa.
Collapse
Affiliation(s)
- Yu Han
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyue Cui
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hesuiyuan Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiang Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jianbin Ji
- First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shusen Wang
- Tianjin First Central Hospital, Tianjin, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Diegelmann J, Brand S. Identification of IL-27 as a novel regulator of major histocompatibility complex class I and class II expression, antigen presentation, and processing in intestinal epithelial cells. Front Immunol 2023; 14:1226809. [PMID: 37818353 PMCID: PMC10561092 DOI: 10.3389/fimmu.2023.1226809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Antigen presentation via major histocompatibility complex (MHC) class I and class II receptors plays a fundamental role in T cell-mediated adaptive immunity. A dysregulation of this fine-tuned recognition might result in the development of autoimmune diseases such as inflammatory bowel diseases that are characterized by chronic relapsing inflammation of the intestinal tract and a damaged intestinal epithelial barrier. While MHCII receptors are usually expressed by professional antigen presenting cells (APC) only, there is increasing evidence that non-immune cells such as intestinal epithelial cells (IEC) might express MHCII upon stimulation with IFN-γ and thus act as non-professional APC. However, little is known about other factors regulating intestinal epithelial MHC expression. Here, we identify IL-27 as an inducer of different MHCI and MHCII receptor subtypes and the invariant chain (CD74/li) in IEC via the STAT1/IRF1/CIITA axis. CIITA, MHCII, and CD74 expression was significantly increased in IEC from Crohn's disease (CD) patients with active disease compared to controls or CD patients in remission. IEC phagocytosed and digested external antigens and apoptotic cells. IL-27 strongly stimulated antigen processing via the immunoproteasome in a IRF1-dependent manner. In co-culture experiments, antigen-primed IEC strongly enhanced lymphocyte proliferation and IL-2 secretion, dependent on direct cell-cell contact. IL-27 pretreatment of IEC significantly increased CD4+ T cell proliferation and reduced IL-2 levels in lymphocytes in coculture. In summary, we identified IL-27 as a novel regulator of IEC antigen processing and presentation via MHCI and MHCII receptors, underscoring the importance of IEC as non-professional APC.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
3
|
Heuberger C, Pott J, Maloy KJ. Why do intestinal epithelial cells express MHC class II? Immunology 2021; 162:357-367. [PMID: 32966619 PMCID: PMC7968399 DOI: 10.1111/imm.13270] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
Intestinal epithelial cells (IECs) constitute the border between the vast antigen load present in the intestinal lumen and the mucosal immune compartment. Their ability to express antigen processing and presentation machinery evokes the question whether IECs function as non-conventional antigen-presenting cells. Major histocompatibility complex (MHC) class II expression by non-haematopoietic cells, such as IECs, is tightly regulated by the class II transactivator (CIITA) and is classically induced by IFN-γ. As MHC class II expression by IECs is upregulated under inflammatory conditions, it has been proposed to activate effector CD4+ T (Teff) cells. However, other studies have reported contradictory results and instead suggested a suppressive role of antigen presentation by IECs, through regulatory T (Treg)-cell activation. Recent studies investigating the role of MHC class II + exosomes released by IECs also reported conflicting findings of either immune enhancing or immunosuppressive activities. Moreover, in addition to modulating inflammatory responses, recent findings suggest that MHC class II expression by intestinal stem cells may elicit crosstalk that promotes epithelial renewal. A more complete understanding of the different consequences of IEC MHC class II antigen presentation will guide future efforts to modulate this pathway to selectively invoke protective immunity while maintaining tolerance to beneficial antigens.
Collapse
Affiliation(s)
- Cornelia Heuberger
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Johanna Pott
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Hubrecht Organoid TechnologyUtrechtNetherlands
| | - Kevin Joseph Maloy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Truong AD, Hong Y, Ly VD, Nguyen HT, Nguyen CT, Vu HT, Chu NT, Van Hoang T, Thanh Tran HT, Dang HV, Hong YH. Interleukin-dependent modulation of the expression of MHC class I and MHC class II genes in chicken HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103729. [PMID: 32387556 DOI: 10.1016/j.dci.2020.103729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Interleukins (ILs) regulate cell surface antigens known as activation markers, which have distinct functional roles. However, the regulation of major histocompatibility complex (MHC) class I, MHC class II, and related genes by cytokines in chickens is not well understood. In the present study, we evaluated the influence of certain recently discovered chicken interleukins-i.e., IL-11, IL-12B, IL-17A, IL-17B, IL-26, and IL-34-on the expression and regulation of genes related to MHC class I, MHC class II, and the associated proteins in an HD11 chicken macrophage cell line. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunocytochemical, and flow cytometric analyses to assess dose- and time-dependent expression in the HD11 cell line and found that the ILs induced MHC class I, MHC class II, and associated protein. As NF-κB is actively involved in cell activation and is constitutively activated in many immune cells, we also determined whether NF-κB regulates MHC class I, MHC class II, and related gene expression in the HD11 cell line. The NF-κB inhibitor sulfasalazine (Sz) dose-dependently inhibited MHC class I and MHC class II in the HD11 cell line. Sz also downregulated the expression of MHC class I, MHC class II, and the associated proteins in the IL-induced HD11 cell line. The expression of MHC class I, MHC class II, and associated genes was accompanied by the Sz-sensitive degradation of the p65 (RelA) and p50 subunits of NF-κB and IκBα. Our results indicate that the different effects of each IL on the expression of genes related to MHC class I, MHC class II, and the associated proteins are involved with the regulation of the dose and duration of antigenic peptide presentation and, thus, also influence Th1, Th2, and Th17 production.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hao Thi Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Abstract
IL-27 is a pleiotropic cytokine capable of influencing both innate and adaptive immune responses. With anti- and pro-inflammatory activity, IL-27 exerts its opposing effects in a cell-dependent and infectious context-specific manner. Upon pathogenic stimuli, IL-27 regulates innate immune cells, such as monocytes, dendritic cells, macrophages and neutrophils. Immune responses involving these innate cells that are negatively regulated by IL-27 signaling include inflammatory cytokine production, phagolysosomal acidification following phagocytosis, oxidative burst and autophagy. IL-27 signaling is crucial in maintaining the subtle balance between Th1 and Th2 immunity, in which protective inflammation is upregulated within the early stages of infection and subsequently downregulated once microbial growth is controlled. The immunomodulatory effects of IL-27 provide promising therapeutic targets for multiple disease types. A primary role of IL-27 is to communicate between various immune cells to initiate different immune responses. Among these responses are those involved with destroying and eliminating microbial pathogens and then turning off inflammatory responses when the infectious threat has been resolved. IL-27 possesses both anti- and pro-inflammatory activity that varies with context, immune cell and pathogen stimulus. Depending on the precise formula of these details, there are important implications for IL-27 in disease outcomes. As such, harnessing or opposing IL-27 activity may have the potential to treat a variety of infectious diseases.
Collapse
Affiliation(s)
- Jessica M Povroznik
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Cory M Robinson
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Elevated Levels of Interleukin-27 in Early Life Compromise Protective Immunity in a Mouse Model of Gram-Negative Neonatal Sepsis. Infect Immun 2020; 88:IAI.00828-19. [PMID: 31818960 PMCID: PMC7035946 DOI: 10.1128/iai.00828-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Neonates are at increased risk for bacterial sepsis. We established that the immune-suppressive cytokine interleukin-27 (IL-27) is elevated in neonatal mice. Similarly, human cord blood-derived macrophages express IL-27 genes and secrete more cytokine than macrophages from adults. In the present work, we hypothesized that increased levels of IL-27 predispose neonatal mice to more severe infection during Gram-negative sepsis. Serum IL-27 levels continued to rise during infection. Neonates are at increased risk for bacterial sepsis. We established that the immune-suppressive cytokine interleukin-27 (IL-27) is elevated in neonatal mice. Similarly, human cord blood-derived macrophages express IL-27 genes and secrete more cytokine than macrophages from adults. In the present work, we hypothesized that increased levels of IL-27 predispose neonatal mice to more severe infection during Gram-negative sepsis. Serum IL-27 levels continued to rise during infection. Peripheral tissue analysis revealed systemic IL-27 expression, while myeloid cell profiling identified Gr-1- and F4/80-expressing cells as the most abundant producers of IL-27 during infection. Increased IL-27 levels were consistent with increased mortality that was improved in IL-27 receptor α (IL-27Rα)−/− mice that lack a functional IL-27 receptor. Infected IL-27Rα−/− pups also exhibited improved weight gain and reduced morbidity. This was consistent with reduced bacterial burdens and more efficient bacterial killing by Ly6B.2+ myeloid cells and macrophages compared to WT neonates. Live animal imaging further supported a more severe and disseminated infection in WT neonates. This is the first report to describe the impact of elevated early-life IL-27 on the host response in a neonatal infection model while also defining the cell and tissue sources of cytokine. IL-27 is frequently associated with suppressed inflammation. In contrast, our findings demonstrate that IL-27 indirectly promotes an inflammatory cytokine response during neonatal sepsis by directly compromising control of bacteria that drive the inflammatory response. Collectively, our results suggest that IL-27 represents a therapeutic target to limit susceptibility and improve infectious outcomes in neonatal sepsis.
Collapse
|
7
|
Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front Oncol 2019; 9:969. [PMID: 31681561 PMCID: PMC6797860 DOI: 10.3389/fonc.2019.00969] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the immune system in anti-tumor immunity cannot be overstated, as it holds the potential to promote tumor eradication or prevent tumor cell escape. Cytokines are critical to influencing the immune responses and interactions with non-immune cells. Recently, the IL-12 and IL-6 family of cytokines have accumulated newly defined members each with specific immune functions related to various cancers and tumorigenesis. There is a need to better understand how cytokines like IL-27, IL-30, and IL-35 interact with one another, and how a developing tumor can exploit these interactions to enhance immune suppression. Current cytokine-based immunotherapies are associated with cytotoxic side effects which limits the success of treatment. In addition to this toxicity, understanding the complex interactions between immune and cancer cells may be one of the greatest challenges to developing a successful immunotherapy. In this review, we bring forth IL-27, IL-30, and IL-35, “sister cytokines,” along with more recent additions to the IL-12 family, which serve distinct purposes despite sharing structural similarities. We highlight how these cytokines function in the tumor microenvironment by examining their direct effects on cancer cells as well their indirect actions via regulatory functions of immune cells that act to either instigate or inhibit tumor progression. Understanding the context dependent immunomodulatory outcomes of these sister cytokines, as well as their regulation within the tumor microenvironment, may shed light onto novel cancer therapeutic treatments or targets.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts. Front Immunol 2018; 9:2144. [PMID: 30319613 PMCID: PMC6167424 DOI: 10.3389/fimmu.2018.02144] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
As the primary barrier between an organism and its environment, epithelial cells are well-positioned to regulate tolerance while preserving immunity against pathogens. Class II major histocompatibility complex molecules (MHC class II) are highly expressed on the surface of epithelial cells (ECs) in both the lung and intestine, although the functional consequences of this expression are not fully understood. Here, we summarize current information regarding the interactions that regulate the expression of EC MHC class II in health and disease. We then evaluate the potential role of EC as non-professional antigen presenting cells. Finally, we explore future areas of study and the potential contribution of epithelial surfaces to gut-lung crosstalk.
Collapse
Affiliation(s)
- Jonathan E Wosen
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Dhriti Mukhopadhyay
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Claudia Macaubas
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Elizabeth D Mellins
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Dondero A, Casu B, Bellora F, Vacca A, De Luisi A, Frassanito MA, Cantoni C, Gaggero S, Olive D, Moretta A, Bottino C, Castriconi R. NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget 2018; 8:35088-35102. [PMID: 28456791 PMCID: PMC5471037 DOI: 10.18632/oncotarget.17070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis represents a hallmark of tumor progression in Multiple Myeloma (MM), a still incurable malignancy. Here we analyzed the activity of cytokine-stimulated NK cells against tumor-associated endothelial cells isolated from bone marrow aspirates of MM patients with active disease (MMECs). We show that NK cells activated with optimal doses of IL-15 killed MMECs thanks to the concerted action of multiple activating receptors. In particular, according to the high expression of PVR and Nectin-2 on MMECs, DNAM-1 actively participated in target recognition. Interestingly, in MMECs the surface density of PVR was significantly higher than that detected in endothelium from patients with MM in complete remission or with monoclonal gammopathy of undetermined significance (MGUS). Importantly, IL-27, which unlike IL-15 does not display pro-angiogenic properties, maintained or increased the NK cell functions induced by suboptimal concentrations of IL-15. NK cell properties included killing of MMECs, IFN-γ production as well as a peculiar increase of NKp46 expression on NK cell surface. Finally, IL-27 showed a striking capability of up-regulating the expression of PD-L2 and HLA-I on tumor endothelium, whereas it did not modify that of PD-L1 and HLA-II. Our results suggest that cytokine-activated endogenous or adoptively transferred NK cells might support conventional therapies improving the outcome of MM patients.
Collapse
Affiliation(s)
- Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Beatrice Casu
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Francesca Bellora
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | | | - Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Silvia Gaggero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniel Olive
- U1068, CRCM, Immunity and Cancer, INSERM, 13009 Marseille, France
| | - Alessandro Moretta
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| |
Collapse
|
10
|
Dixon KO, O'Flynn J, Klar-Mohamad N, Daha MR, van Kooten C. Properdin and factor H production by human dendritic cells modulates their T-cell stimulatory capacity and is regulated by IFN-γ. Eur J Immunol 2017; 47:470-480. [PMID: 28105653 PMCID: PMC5363362 DOI: 10.1002/eji.201646703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T-cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN-γ both cells increased fH production, while simultaneously decreasing production of fP. IL-27, a member of the IL-12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T-cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.
Collapse
Affiliation(s)
- Karen O Dixon
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Evergrande Center for Immunologic Diseases at Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph O'Flynn
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ngaisah Klar-Mohamad
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
12
|
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J, Arbour N. Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia 2015; 64:553-69. [PMID: 26649511 DOI: 10.1002/glia.22948] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
The mechanisms whereby human glial cells modulate local immune responses are not fully understood. Interleukin-27 (IL-27), a pleiotropic cytokine, has been shown to dampen the severity of experimental autoimmune encephalomyelitis, but it is still unresolved whether IL-27 plays a role in the human disease multiple sclerosis (MS). IL-27 contribution to local modulation of immune responses in the brain of MS patients was investigated. The expression of IL-27 subunits (EBI3 and p28) and its cognate receptor IL-27R (the gp130 and TCCR chains) was elevated within post-mortem MS brain lesions compared with normal control brains. Moreover, astrocytes (GFAP(+) cells) as well as microglia and macrophages (Iba1(+) cells) were important sources of IL-27. Brain-infiltrating CD4 and CD8 T lymphocytes expressed the IL-27R specific chain (TCCR) implying that these cells could respond to local IL-27 sources. In primary cultures of human astrocytes inflammatory cytokines increased IL-27 production, whereas myeloid cell inflammatory M1 polarization and inflammatory cytokines enhanced IL-27 expression in microglia and macrophages. Astrocytes in postmortem tissues and in vitro expressed IL-27R. Moreover, IL-27 triggered the phosphorylation of the transcription regulator STAT1, but not STAT3 in human astrocytes; indeed IL-27 up-regulated MHC class I expression on astrocytes in a STAT1-dependent manner. These findings demonstrated that IL-27 and its receptor were elevated in MS lesions and that local IL-27 can modulate immune properties of astrocytes and infiltrating immune cells. Thus, therapeutic strategies targeting IL-27 may influence not only peripheral but also local inflammatory responses within the brain of MS patients.
Collapse
Affiliation(s)
- Vincent Sénécal
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Gabrielle Deblois
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Diane Beauseigle
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Raphael Schneider
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jonas Brandenburg
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, WC1N 1PJ, England
| | - Craig S Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexandre Prat
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Nathalie Arbour
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| |
Collapse
|
13
|
Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells. Mediators Inflamm 2015; 2015:737310. [PMID: 26663990 PMCID: PMC4664814 DOI: 10.1155/2015/737310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023] Open
Abstract
An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP) calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions.
Collapse
|
14
|
Wynick C, Petes C, Gee K. Interleukin-27 Mediates Inflammation During Chronic Disease. J Interferon Cytokine Res 2014; 34:741-9. [DOI: 10.1089/jir.2013.0154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Christopher Wynick
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
15
|
Tang YJ, Wang JL, Nong LG, Lan CG, Zha ZG, Liao PH. Associations of IL-27 polymorphisms and serum IL-27p28 levels with osteosarcoma risk. Medicine (Baltimore) 2014; 93:e56. [PMID: 25170932 PMCID: PMC4616331 DOI: 10.1097/md.0000000000000056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interleukin (IL)-27 is a novel cytokine secreted by stimulation of antigen-presenting cells. No previous studies currently reported the role of IL-27 in the carcinogenesis of osteosarcoma. We aimed to investigate the association of IL-27 polymorphisms and serum IL-27p28 with osteosarcoma risk in a Chinese population.One hundred and sixty osteosarcoma patients and 250 health controls were selected. IL-27 gene -964 A/G, 2905 T/G, and 4730 T/C polymorphisms were determined by using polymerase chain reaction-restriction fragment length polymorphism. Enzyme-linked immunosorbent assay were used to detect serum IL-27p28 levels.The serum IL-27p28 levels were significantly lower in osteosarcoma patients compared with those in controls (P < 0.01). Serum IL-27p28 levels in stages III-IV were lower than those in stages I-II of osteosarcoma (P < 0.05); similar results were also found in patients with metastasis, that is, patients with metastasis have higher IL-27p28 levels than those without metastasis (P < 0.05). There were no associations between genotype and allele frequencies of IL-27 -964 A/G, 2905 T/G, 4730 T/C, and the risk of osteosarcoma (P > 0.05). Stratification analysis also failed to show the associations between -964 A/G, 2905 T/G, and 4730 T/C polymorphisms and the clinical stage and metastasis of osteosarcoma (P > 0.05). Three possible haplotypes (ATT, GTT, and GGC) were identified, but no associations were found between them and the osteosarcoma risk (P > 0.05).This study indicates that the lower serum IL-27p28 levels may be associated with development and progression of osteosarcoma, but IL-27 gene -964 A/G, 2905 T/G, and 4730 T/C polymorphisms and their haplotypes are not associated with osteosarcoma risk.
Collapse
Affiliation(s)
- Yu-Jin Tang
- First Affiliated Hospital of Jinan University, Guangzhou (Y-JT, Z-GZ, P-HL); Center of Clinical Laboratory (Y-JT, C-GL, P-HL); and Affiliated Hospital of Youjiang Medical College for Nationalities (J-LW, L-GN), Baise, Guangxi, China
| | | | | | | | | | | |
Collapse
|
16
|
Nielsen SR, Hammer T, Gibson J, Pepper MS, Nisato RE, Dissing S, Tritsaris K. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression. Microcirculation 2014; 20:555-64. [PMID: 23452095 DOI: 10.1111/micc.12055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the interplay between the immune system and development of the lymphatic system. METHODS IL-27-stimulated signal transduction in human dermal lymphatic endothelial cells was measured by western blotting and synthesis of CXCL10 and CXCL11 by use of RT-PCR and ELISA. Proliferation was measured using MTT and BrdU kits and the role of STAT1 and chemokines was determined by use of siRNA and recombinant proteins. RESULTS Stimulation of lymphatic endothelial cell cultures with IL-27 induced JAK dependent phosphorylation of STAT1 and STAT3 and inhibited lymphatic endothelial cell proliferation and migration. Expression of CXCL10 and CXCL11, both STAT1 target genes, was profoundly up-regulated upon IL-27 stimulation, and recombinant CXCL10 and CXCL11 inhibited FGF-2-induced proliferation in vitro. siRNA targeting of STAT1 almost completely abrogated CXCL10 and CXCL11 expression as well as the proliferative effect of IL-27. CONCLUSIONS IL-27 function as an anti-lymphangiogenic regulator in vitro by up-regulating chemokines and interfering with the mitogenic effect of growth factors through STAT1 activation.
Collapse
Affiliation(s)
- Sebastian Rune Nielsen
- Faculty of Health Sciences, Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Zolochevska O, Ellis J, Parelkar S, Chan-Seng D, Emrick T, Wei J, Patrikeev I, Motamedi M, Figueiredo ML. Interleukin-27 gene delivery for modifying malignant interactions between prostate tumor and bone. Hum Gene Ther 2013; 24:970-81. [PMID: 24028178 DOI: 10.1089/hum.2013.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have examined the role of a novel cytokine, interleukin-27 (IL-27), in mediating interactions between prostate cancer and bone. IL-27 is the most recently characterized member of the family of heterodimeric IL-12-related cytokines and has shown promise in halting tumor growth and mediating tumor regression in several cancer models, including prostate cancer. Prostate cancer is frequently associated with metastases to the bone, where the tumor induces a vicious cycle of communication with osteoblasts and osteoclasts to induce bone lesions, which are a significant cause of pain and skeletal-related events for patients, including a high fracture risk. We describe our findings in the effects of IL-27 gene delivery on prostate cancer cells, osteoblasts, and osteoclasts at different stages of differentiation. We applied the IL-27 gene delivery protocol in vivo utilizing sonoporation (sonodelivery) with the goal of treating and reducing the growth of prostate cancer at a bone metastatic site in vivo. We used a new model of immune-competent prostate adenocarcinoma and characterized the tumor growth reduction, gene expression, and effector cellular profiles. Our results suggest that IL-27 can be effective in reducing tumor growth, can help normalize bone structure, and can promote enhanced accumulation of effector cells in prostate tumors. These results are promising, because they are relevant to developing a novel IL-27-based strategy that can treat both the tumor and the bone, by using this simple and effective sonodelivery method for treating prostate tumor bone metastases.
Collapse
Affiliation(s)
- Olga Zolochevska
- 1 Department of Pharmacology and Toxicology, The University of Texas Medical Branch , Galveston, TX 77555
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pérez C, Pascual M, Martín-Subero JI, Bellosillo B, Segura V, Delabesse E, Álvarez S, Larrayoz MJ, Rifón J, Cigudosa JC, Besses C, Calasanz MJ, Cross NCP, Prósper F, Agirre X. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica 2013; 98:1414-20. [PMID: 23716560 DOI: 10.3324/haematol.2013.084160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most DNA methylation studies in classic Philadelphia-negative myeloproliferative neoplasms have been performed on a gene-by-gene basis. Therefore, a more comprehensive methylation profiling is needed to study the implications of this epigenetic marker in myeloproliferative neoplasms. Here, we have analyzed 71 chronic (24 polycythemia vera, 23 essential thrombocythemia and 24 primary myelofibrosis) and 13 transformed myeloproliferative neoplasms using genome-wide DNA methylation arrays. The three types of chronic Philadelphia-negative myeloproliferative neoplasms showed a similar aberrant DNA methylation pattern when compared to control samples. Differentially methylated regions were enriched in a gene network centered on the NF-κB pathway, indicating that they may be involved in the pathogenesis of these diseases. In the case of transformed myeloproliferative neoplasms, we detected an increased number of differentially methylated regions with respect to chronic myeloproliferative neoplasms. Interestingly, these genes were enriched in a list of differentially methylated regions in primary acute myeloid leukemia and in a gene network centered around the IFN pathway. Our results suggest that alterations in the DNA methylation landscape play an important role in the pathogenesis and leukemic transformation of myeloproliferative neoplasms. The therapeutic modulation of epigenetically-deregulated pathways may allow us to design targeted therapies for these patients.
Collapse
Affiliation(s)
- Cristina Pérez
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zolochevska O, Diaz-Quiñones AO, Ellis J, Figueiredo ML. Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro. J Cell Physiol 2013; 228:1127-36. [PMID: 23086758 DOI: 10.1002/jcp.24265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Abstract
Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin-27 (IL-27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL-27 on prostate cancer cell gene expression, as well as the effect of paracrine IL-27 on gene expression in bone and T cells. In prostate tumor cells, IL-27 upregulated genes related to its signaling pathway while downregulating malignancy-related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL-27 modulated upregulation of genes related to its own signaling pathway as well as pro-osteogenic genes. In osteoclasts, IL-27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis-related genes. Furthermore, an osteogenesis-focused real-time PCR array revealed a more extensive profile of pro-osteogenic gene changes in both osteoblasts and osteoclasts. In T-lymphocyte cells, IL-27 upregulated several activation-related genes and also genes related to the IL-27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL-27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
20
|
Murugaiyan G, Saha B. IL-27 in tumor immunity and immunotherapy. Trends Mol Med 2013; 19:108-16. [DOI: 10.1016/j.molmed.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/23/2023]
|
21
|
Püntener U, Booth SG, Perry VH, Teeling JL. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 2012; 9:146. [PMID: 22738332 PMCID: PMC3439352 DOI: 10.1186/1742-2094-9-146] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022] Open
Abstract
Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.
Collapse
Affiliation(s)
- Ursula Püntener
- Centre for Biological Sciences, University of Southampton, South Lab and Path Block, MP840, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
22
|
Vascular effects of glycoprotein130 ligands--part I: pathophysiological role. Vascul Pharmacol 2011; 56:34-46. [PMID: 22197898 DOI: 10.1016/j.vph.2011.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 12/25/2022]
Abstract
The vessel wall is no longer considered as only an anatomical barrier for blood cells but is recognized as an active endocrine organ. Dysfunction of the vessel wall occurs in various disease processes including atherosclerosis, hypertension, peripheral artery disease, aneurysms, and transplant and diabetic vasculopathies. Different cytokines were shown to modulate the behavior of the cells, which constitute the vessel wall such as immune cells, endothelial cells and smooth muscle cells. Glycoprotein 130 (gp130) is a common cytokine receptor that controls the activity of a group of cytokines, namely, interleukin (IL)-6, oncostatin M (OSM), IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), IL-27, and neuropoietin (NP). Gp130 and associated cytokines have abundantly diverse functions. Part I of this review focuses on the pathophysiological functions of gp130 ligands. We specifically describe vascular effects of these molecules and discuss the respective underlying molecular and cellular mechanisms.
Collapse
|
23
|
Canale S, Cocco C, Frasson C, Seganfreddo E, Di Carlo E, Ognio E, Sorrentino C, Ribatti D, Zorzoli A, Basso G, Dufour C, Airoldi I. Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model. Leukemia 2011; 25:1815-24. [DOI: 10.1038/leu.2011.158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Li J, Zhao Q, Xing W, Feng J, Wu H, Li H, Ge M, Tian K, Li X, Zhou J, Liu B, Zhang L, Zheng Y, Han ZC. Interleukin-27 enhances the production of tumour necrosis factor-α and interferon-γ by bone marrow T lymphocytes in aplastic anaemia. Br J Haematol 2011; 153:764-72. [PMID: 21506940 DOI: 10.1111/j.1365-2141.2010.08431.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aplastic anaemia (AA) is considered as an immune-mediated bone marrow failure syndrome. The mechanism is involved with a variety of immune molecules including interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) and interleukins (ILs). IL-27 is a novel member of the IL-12 family, which mediates T cell response and enhances the production of IFN-γ. However, little is known about the role of IL-27 in the development of AA. This study investigated the role of IL-27 and its receptor IL-27R in the pathogenesis of AA. Both the mRNA expression of IL-27/IL-27R subunits in the bone marrow mononuclear cells (BMMNCs) and the levels of IL-27 in the marrow plasma in AA were found to be higher than in controls. Increased IL-27 correlated with the disease severity of AA. Subsequently, we stimulated marrow T lymphocytes with recombinant human (rh)IL-27 and found that rhIL-27 enhanced the production of TNF-α and IFN-γ in both CD4(+) and CD8(+) T lymphocytes from AA patients. We also detected increased TNF-α and IFN-γ in the supernatants of BMMNCs from AA patients after IL-27 stimulation. In conclusion, our data suggest that elevated IL-27 and IL-27-induced TNF-α and IFN-γ overproduction might be involved in the pathogenesis of AA.
Collapse
Affiliation(s)
- Jianping Li
- State Key Laboratory of Experimental Haematology, Institute of Haematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Interleukin-27: Biological Properties and Clinical Application. Arch Immunol Ther Exp (Warsz) 2010; 58:417-25. [DOI: 10.1007/s00005-010-0098-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/26/2010] [Indexed: 12/18/2022]
|
26
|
Li JP, Wu H, Xing W, Yang SG, Lu SH, Du WT, Yu JX, Chen F, Zhang L, Han ZC. Interleukin-27 as a Negative Regulator of Human Neutrophil Function. Scand J Immunol 2010; 72:284-92. [DOI: 10.1111/j.1365-3083.2010.02422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Cocco C, Giuliani N, Di Carlo E, Ognio E, Storti P, Abeltino M, Sorrentino C, Ponzoni M, Ribatti D, Airoldi I. Interleukin-27 Acts as Multifunctional Antitumor Agent in Multiple Myeloma. Clin Cancer Res 2010; 16:4188-97. [DOI: 10.1158/1078-0432.ccr-10-0173] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chittiprol S, Venkatasubramanian G, Neelakantachar N, Reddy NA, Shetty KT, Gangadhar BN. Longitudinal study of beta2-microglobulin abnormalities in schizophrenia. Int Immunopharmacol 2009; 9:1215-7. [PMID: 19596084 DOI: 10.1016/j.intimp.2009.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/16/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
In an earlier cross-sectional study, we reported antipsychotic-naive schizophrenia patients to have significantly elevated beta2-microglobulin (beta2M) level suggestive of its potential association with the pathogenesis of schizophrenia. In this study, we present the follow-up analyses of beta2M in 31 patients from the previous study who were re-assessed after 92.1+/-7.2 days of antipsychotic treatment. Compared to baseline, there was a further significant elevation of beta2M in schizophrenia patients following treatment, especially in those who were treated with risperidone. Also, there was a significant negative correlation between beta2M level and total psychopathology score during follow-up in risperidone group. The study findings extend further support the role for beta2M in the pathogenesis of schizophrenia strengthening the case for immune dysregulation. Moreover, the observations suggest the possibility that the mechanism of action of antipsychotics might involve alteration of immune parameters.
Collapse
Affiliation(s)
- Seetharamaiah Chittiprol
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
29
|
Vultaggio A, Nencini F, Fitch PM, Filì L, Maggi L, Fanti P, deVries A, Beccastrini E, Palandri F, Manuelli C, Bani D, Giudizi MG, Guarna A, Annunziato F, Romagnani S, Maggi E, Howie SEM, Parronchi P. Modified adenine (9-benzyl-2-butoxy-8-hydroxyadenine) redirects Th2-mediated murine lung inflammation by triggering TLR7. THE JOURNAL OF IMMUNOLOGY 2009; 182:880-9. [PMID: 19124731 DOI: 10.4049/jimmunol.182.2.880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Substitute adenine (SA)-2, a synthetic heterocycle chemically related to adenine with substitutions in positions 9-, 2-, and 8- (i.e., 9-benzyl-2-butoxy-8-hydroxyadenine), induces in vitro immunodeviation of Th2 cells to a Th0/Th1 phenotype. In this article, we evaluate the in vivo ability of SA-2 to affect Th2-mediated lung inflammation and its safety. TLR triggering and NF-kappaB activation by SA-2 were analyzed on TLR-transfected HEK293 cells and on purified bone marrow dendritic cells. The in vivo effect of SA-2 on experimental airway inflammation was evaluated in both prepriming and prechallenge protocols by analyzing lung inflammation, including tissue eosinophilia and goblet cell hyperplasia, bronchoalveolar lavage fluid cell types, and the functional profile of Ag-specific T cells from draining lymph nodes and spleens. SA-2 induced mRNA expression and production of proinflammatory (IL-6, IL-12, and IL-27) and regulatory (IL-10) cytokines and chemokines (CXCL10) in dendritic cells but down-regulated TGF-beta. Prepriming administration of SA-2 inhibited OVA-specific Abs and Th2-driven lung inflammation, including tissue eosinophilia and goblet cells, with a prevalent Foxp3-independent regulatory mechanism. Prechallenge treatment with SA-2 reduced the lung inflammation through the induction of a prevalent Th1-related mechanism. In this model the activity of SA-2 was route-independent, but adjuvant- and Ag dose-dependent. SA-2-treated mice did not develop any increase of serum antinuclear autoantibodies. In conclusion, critical substitutions in the adenine backbone creates a novel synthetic TLR7 ligand that shows the ability to ameliorate Th2-mediated airway inflammation by a complex mechanism, involving Th1 redirection and cytokine-mediated regulation, which prevents autoreactivity.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Center for Research, Transfer and High Education (DENOThe), Department of Internal Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|