1
|
Yu J, Leng J, Hou Z, Sun D, Wu LY. Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis. Brief Bioinform 2024; 25:bbae093. [PMID: 38493346 PMCID: PMC10944575 DOI: 10.1093/bib/bbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data provided new insights into the understanding of epigenetic heterogeneity and transcriptional regulation. With the increasing abundance of dataset resources, there is an urgent need to extract more useful information through high-quality data analysis methods specifically designed for scATAC-seq. However, analyzing scATAC-seq data poses challenges due to its near binarization, high sparsity and ultra-high dimensionality properties. Here, we proposed a novel network diffusion-based computational method to comprehensively analyze scATAC-seq data, named Single-Cell ATAC-seq Analysis via Network Refinement with Peaks Location Information (SCARP). SCARP formulates the Network Refinement diffusion method under the graph theory framework to aggregate information from different network orders, effectively compensating for missing signals in the scATAC-seq data. By incorporating distance information between adjacent peaks on the genome, SCARP also contributes to depicting the co-accessibility of peaks. These two innovations empower SCARP to obtain lower-dimensional representations for both cells and peaks more effectively. We have demonstrated through sufficient experiments that SCARP facilitated superior analyses of scATAC-seq data. Specifically, SCARP exhibited outstanding cell clustering performance, enabling better elucidation of cell heterogeneity and the discovery of new biologically significant cell subpopulations. Additionally, SCARP was also instrumental in portraying co-accessibility relationships of accessible regions and providing new insight into transcriptional regulation. Consequently, SCARP identified genes that were involved in key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to diseases and predicted reliable cis-regulatory interactions. To sum up, our studies suggested that SCARP is a promising tool to comprehensively analyze the scATAC-seq data.
Collapse
Affiliation(s)
- Jiating Yu
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Leng
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Lab, Hangzhou 311121, China
| | - Zhichao Hou
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duanchen Sun
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Ling-Yun Wu
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
3
|
Mourits VP, van Puffelen JH, Novakovic B, Bruno M, Ferreira AV, Arts RJ, Groh L, Crișan TO, Zwaag J, Jentho E, Kox M, Pickkers P, van de Veerdonk FL, Weis S, Oosterwijk E, Vermeulen SH, Netea MG, Joosten LA. Lysine methyltransferase G9a is an important modulator of trained immunity. Clin Transl Immunology 2021; 10:e1253. [PMID: 33708384 PMCID: PMC7890679 DOI: 10.1002/cti2.1253] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives Histone methyltransferase G9a, also known as Euchromatic Histone Lysine Methyltransferase 2 (EHMT2), mediates H3K9 methylation which is associated with transcriptional repression. It possesses immunomodulatory effects and is overexpressed in multiple types of cancer. In this study, we investigated the role of G9a in the induction of trained immunity, a de facto innate immune memory, and its effects in non‐muscle‐invasive bladder cancer (NMIBC) patients treated with intravesical Bacillus Calmette‐Guérin (BCG). Methods EHMT2 expression was assessed upon induction of trained immunity by RNA sequencing and Western blotting. G9a inhibitor BIX‐01294 was used to investigate the effect on trained immunity responses in vitro. Subsequent cytokine production was measured by ELISA, epigenetic modifications were measured by ChIP‐qPCR, Seahorse technology was used to measure metabolic changes, and a luminescence assay was used to measure ROS release. RNA sequencing was performed on BIX‐01294‐treated monocytes ex vivo. Results The expression of EHMT2 mRNA and protein decreased in monocytes during induction of trained immunity. G9a inhibition by BIX‐01294 induced trained immunity and amplified trained immunity responses evoked by various microbial ligands in vitro. This was accompanied by decreased H3K9me2 at the promoters of pro‐inflammatory genes. G9a inhibition was also associated with amplified ex vivo trained immunity responses in circulating monocytes of NMIBC patients. Additionally, altered RNA expression of inflammatory genes in monocytes of NMIBC patients was observed upon ex vivo G9a inhibition. Furthermore, intravesical BCG therapy decreased H3K9me2 at the promoter of pro‐inflammatory genes. Conclusion Inhibition of G9a is important in the induction of trained immunity, and G9a may represent a novel therapeutic target in NMIBC patients.
Collapse
Affiliation(s)
- Vera P Mourits
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands
| | - Jelmer H van Puffelen
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands.,Department for Health Evidence Radboud University Medical Center Nijmegen The Netherlands
| | - Boris Novakovic
- Epigenetics Research Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics University of Melbourne Melbourne VIC Australia
| | - Mariolina Bruno
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands
| | - Anaísa V Ferreira
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS) Universidade do Porto Porto Portugal
| | - Rob Jw Arts
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands
| | - Laszlo Groh
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca Romania
| | - Jelle Zwaag
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care Medicine Jena University Hospital Friedrich-Schiller University Jena Germany.,Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Matthijs Kox
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Peter Pickkers
- Department of Intensive Care and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine Jena University Hospital Friedrich-Schiller University Jena Germany.,Institute for Infectious Disease and Infection Control Jena University Hospital Friedrich-Schiller University Jena Germany
| | - Egbert Oosterwijk
- Department of Urology Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence Radboud University Medical Center Nijmegen The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES) University of Bonn Bonn Germany
| | - Leo Ab Joosten
- Department of Internal Medicine Radboud Center for Infectious Diseases (RCI) Radboud University Medical Center Nijmegen The Netherlands.,Department of Medical Genetics Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca Romania
| |
Collapse
|
4
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Jiang W, Agrawal DK, Boosani CS. Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 2018; 18:1215-1224. [PMID: 29901135 PMCID: PMC6072136 DOI: 10.3892/mmr.2018.9142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone modifications are the key epigenetic mechanisms that have been identified to regulate gene expression in many human diseases. However, in the early developmental stages, such as in utero and the postnatal stages, histone modifications are essential for gene regulation and cell growth. Atherosclerosis represents a classical example of the involvement of different cell types, and their cumulative effects in the development of atheroma and the progression of the disease. Post translational modifications on proteins either induces their functional activity or renders them inactive. Post translational modifications such as methylation or acetylation on histones have been well characterized, and their role in enhancing or inhibiting specific gene expression was clearly elucidated. In the present review article, the critical roles of different histone modifications that occur in atherosclerosis have been summarized. Different histone proteins have been identified to serve a critical role in the development of atherosclerosis. Specifically, histone methylation and histone acetylation in monocytes, macrophages, vascular smooth muscle cells and in endothelial cells during the progression of atherosclerosis, have been well reported. In recent years, different target molecules and genes that regulate histone modifications have been examined for their effects in the treatment of atherosclerosis in animal models and in clinical trials. An increasing body of evidence suggests that these epigenetic changes resulting from DNA methylation and non-coding RNA may also be associated with histone modifications, thereby indicating that novel therapeutic strategies can be developed by targeting these post translational modifications, which may in turn aid in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Chandra S Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
6
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Jia SJ, Gao KQ, Zhao M. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc Ther 2017; 35. [PMID: 28371472 DOI: 10.1111/1755-5922.12262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Su-Jie Jia
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ke-Qin Gao
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
8
|
Cameron AM, Lawless SJ, Pearce EJ. Metabolism and acetylation in innate immune cell function and fate. Semin Immunol 2016; 28:408-416. [PMID: 28340958 PMCID: PMC10911065 DOI: 10.1016/j.smim.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
Innate immunity is the first line of defense against invading pathogens. Changes in both metabolism and chromatin accessibility contribute to the shaping of these innate immune responses, and we are beginning to appreciate that cross-talk between these two systems plays an important role in determining innate immune cell differentiation and function. In this review we focus on acetylation, a post-translational modification important for both regulating chromatin accessibility by modulating histone function, and for functional regulation of non-histone proteins, which has many links to both immune signaling and metabolism. We discuss the interactions between metabolism and acetylation, including the requirement for metabolic intermediates as substrates and co-factors for acetylation, and the regulation of metabolic proteins and enzymes by acetylation. Here we highlight recent findings, which demonstrate the role that the metabolism-acetylation axis has in coordinating the responses of innate immune cells to the availability of nutrients and the microenvironment.
Collapse
Affiliation(s)
- Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Simon J Lawless
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
9
|
Fiszbein A, Kornblihtt AR. Histone methylation, alternative splicing and neuronal differentiation. NEUROGENESIS 2016; 3:e1204844. [PMID: 27606339 DOI: 10.1080/23262133.2016.1204844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
Abstract
Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs.
Collapse
Affiliation(s)
- Ana Fiszbein
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
10
|
Fiszbein A, Giono LE, Quaglino A, Berardino BG, Sigaut L, von Bilderling C, Schor IE, Enriqué Steinberg JH, Rossi M, Pietrasanta LI, Caramelo JJ, Srebrow A, Kornblihtt AR. Alternative Splicing of G9a Regulates Neuronal Differentiation. Cell Rep 2016; 14:2797-808. [PMID: 26997278 DOI: 10.1016/j.celrep.2016.02.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/25/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023] Open
Abstract
Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.
Collapse
Affiliation(s)
- Ana Fiszbein
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Luciana E Giono
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Ana Quaglino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Bruno G Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina
| | - Catalina von Bilderling
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina
| | - Ignacio E Schor
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Juliana H Enriqué Steinberg
- Instituto de Investigación en Biomedicina de Buenos Aires CONICET, Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires CONICET, Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Lía I Pietrasanta
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina; Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cuidad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Julio J Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina; Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Anabella Srebrow
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|