1
|
He W, Liu W, Liu X, Tan W. The mechanism of L1 cell adhesion molecule interacting with protein tyrosine kinase 2 to regulate the focal adhesion kinase-growth factor receptor-bound protein 2-son of sevenless-rat sarcoma pathway in the identification and treatment of type I high-risk endometrial cancer. Cytojournal 2024; 21:34. [PMID: 39563667 PMCID: PMC11574687 DOI: 10.25259/cytojournal_50_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/06/2024] [Indexed: 11/21/2024] Open
Abstract
Objective The objective of this study was to investigate how L1 cell adhesion molecule (L1CAM) interacting with protein tyrosine kinase 2 (PTK2) affects endometrial cancer (EC) progression and determine its association with the focal adhesion kinase (FAK)-growth factor receptor-bound protein 2 (GRB2)-son of sevenless (SOS)-rat sarcoma (RAS) pathway. EC is a female cancer of major concern in the world, and its incidence has increased rapidly in recent years. L1CAM is considered a reliable marker of poor prognosis in patients with EC. Material and Methods A single-center and prospective study was conducted using data from the Cancer Genome Atlas and samples from normal and EC tissues to explore the differential expression of L1CAM. Additional experimental models included human immortalized endometrial epithelium cells (hEECs) and EC cell lines such as KLE, RL95-2, and Ishikawa. L1CAM expression was regulated using lentiviruses designed for either overexpression or interference, and PTK2/focal adhesion kinase (FAK) signaling was inhibited with PF431396. Transfected KLE cells were injected into mice, and tumor growth was monitored over 14 days. Cellular proliferation and survival were assessed using cell counting kit, colony formation, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling assays. Metastatic behavior was evaluated through Transwell assays for cell migration and invasion. The expression levels of matrix metallopeptidase (MMP) 2 and MMP9 were determined by Western blot. In addition, the activation of the FAK-GRB2-SOS-RAS pathway was examined by assessing the protein levels of FAK, GRB2, SOS, and RAS. Results There was a significant difference in L1CAM expression between EC tumor tissues and normal tissues, and L1CAM messenger RNA (1.85-fold) and L1CAM protein (2.59-fold) were significantly more expressed in EC tissues (P < 0.01) than in normal tissues. The tumor growth of L1CAM overexpressing EC cells was faster than that of negative control EC cells (6.43 fold; P < 0.001). L1CAM promoted the expression of FAK (1.43-2.72-fold; P < 0.001); enhanced EC cell proliferation (P < 0.01), survival and motility (P < 0.001), migration (P < 0.001), and invasion (P < 0.001); and activated the FAK-GRB2-SOS-RAS pathway, all of which were reversed when FAK expression was not upregulated (P < 0.001). Conclusion By upregulating PTK2 and its encoded protein FAK, L1CAM was found to promote tumor progression and increase the activation of the FAK-GRB2-SOS-RAS pathway. These findings establish L1CAM and PTK2 as reference genes for poor prognostic prediction in EC and as targets for EC therapy, providing a valuable basis for distinguishing between benign and malignant endometrial conditions and justifying the necessity of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wei He
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Liu
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Liu
- Department of Gynecology and Oncology, Maternal and Child Care Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wenhua Tan
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Debets DO, de Graaf EL, Liefaard MC, Sonke GS, Lips EH, Ressa A, Altelaar M. Predicting treatment outcome using kinome activity profiling in HER2+ breast cancer biopsies. iScience 2024; 27:109858. [PMID: 38784015 PMCID: PMC11112361 DOI: 10.1016/j.isci.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we measured the kinase activity profiles of 32 pre-treatment tumor biopsies of HER2-positive breast cancer patients. The aim of this study was to assess the prognostic potential of kinase activity levels, to identify potential mechanisms of resistance and to predict treatment success of HER2-targeted therapy combined with chemotherapy. Indeed, our system-wide kinase activity analysis allowed us to link kinase activity to treatment response. Overall, high kinase activity in the HER2-pathway was associated with good treatment outcome. We found eleven kinases differentially regulated between treatment outcome groups, including well-known players in therapy resistance, such as p38a, ERK, and FAK, and an unreported one, namely MARK1. Lastly, we defined an optimal signature of four kinases in a multiple logistic regression diagnostic test for prediction of treatment outcome (AUC = 0.926). This kinase signature showed high sensitivity and specificity, indicating its potential as predictive biomarker for treatment success of HER2-targeted therapy.
Collapse
Affiliation(s)
- Donna O. Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH Utrecht, the Netherlands
| | - Erik L. de Graaf
- Pepscope B.V, Nieuwe Kanaal 7, 6709 PA Wageningen, the Netherlands
| | - Marte C. Liefaard
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S. Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther H. Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anna Ressa
- Pepscope B.V, Nieuwe Kanaal 7, 6709 PA Wageningen, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
3
|
Gao J, Cheng J, Xie W, Zhang P, Liu X, Wang Z, Zhang B. Prospects of focal adhesion kinase inhibitors as a cancer therapy in preclinical and early phase study. Expert Opin Investig Drugs 2024; 33:639-651. [PMID: 38676368 DOI: 10.1080/13543784.2024.2348068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.
Collapse
Affiliation(s)
| | | | - Wanyu Xie
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Ping Zhang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Xuebin Liu
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | | |
Collapse
|
4
|
Hou W, Gad SA, Ding X, Dhanarajan A, Qiu W. Focal adhesion kinase confers lenvatinib resistance in hepatocellular carcinoma via the regulation of lysine-deficient kinase 1. Mol Carcinog 2024; 63:173-189. [PMID: 37787401 PMCID: PMC10842616 DOI: 10.1002/mc.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Shaimaa A. Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Egypt
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
5
|
Li M, Zhao Z, Mak TK, Wang X, Chen J, Ren H, Yu Z, Zhang C. Neutrophil extracellular traps-related signature predicts the prognosis and immune infiltration in gastric cancer. Front Med (Lausanne) 2023; 10:1174764. [PMID: 37636564 PMCID: PMC10447905 DOI: 10.3389/fmed.2023.1174764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most prevalent cancer globally, with the third highest case fatality rate. Neutrophil extracellular traps (NETs) are a reticulated structure of DNA, histones, and antimicrobial peptides produced by active neutrophils that trap pathogens. Even though NETs are associated with poorer recurrence-free survival (RFS) and overall survival (OS), the specifics of this interaction between NETs and cancer cells are yet unknown. Methods The keywords "neutrophil extracellular traps and gastric cancer" were used in the GEO database for retrieval, and the GSE188741 dataset was selected to obtain the NETs-related gene. 27 NETs-related genes were screened by univariate Cox regression analysis (p < 0.05). 27 NETs-related genes were employed to identify and categorize NETs-subgroups of GC patients under the Consensus clustering analysis. 808 GC patients in TCGA-STAD combined with GES84437 were randomly divided into a training group (n = 403) and a test group (n = 403) at a ratio of 1:1 to validate the NETs-related signature. Results Based on Multivariate Cox regression and LASSO regression analysis to develop a NETs-related prognosis model. We developed a very specific nomogram to improve the NETs-clinical score's usefulness. Similarly, we also performed a great result in pan-cancer study with NETs-score. Low NETs scores were linked to higher MSI-H (microsatellite instability-high), mutation load, and immune activity. The cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity were also connected to the NET score. Our comprehensive analysis of NETs in GC suggests that NETs have a role in the tumor microenvironment, clinicopathological features, and prognosis. Discussion The NETs-score risk model provides a basis for better prognosis and therapy outcomes in GC patients.
Collapse
Affiliation(s)
- Mingzhe Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqun Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Ren
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiwei Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Ma Y, Fu Y, Fan X, Ji Q, Duan X, Wang Y, Zhang Y, Wang Z, Hao H. FAK/IL-8 axis promotes the proliferation and migration of gastric cancer cells. Gastric Cancer 2023; 26:528-541. [PMID: 36959335 DOI: 10.1007/s10120-023-01384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies in China and is associated with high mortality. The occurrence and development of gastric cancer are related to genetic and environmental factors. Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor protein tyrosine kinase that is activated by the extracellular matrix and growth factors. FAK is highly expressed in cancer and promotes its development by regulating cancer cell proliferation, migration, and angiogenesis. The expression of IL-8 is increased in many types of malignant tumor cells and is linked to their proliferation, migration, invasion, angiogenesis, and EMT. In this study, we found FAK to be essential for the proliferation, migration, and peritoneal metastasis of gastric cancer cells. To examine the molecular regulatory mechanisms of FAK in the peritoneal dissemination of gastric cancer, we performed RNA-seq analysis of MKN-45-FAK-/- and MKN45 cells and demonstrated that IL-8 was downregulated in FAK-deficient cells. Conversely, we confirmed that IL-8 activates FAK activity. We established that IL-8 promotes the proliferation, colony formation, and migration of gastric cancer cells that are partially mediated by FAK. Thus, we propose that an IL-8-FAK-IL-8 positive feedback loop effects the proliferation and migration of gastric cancer cells.
Collapse
Affiliation(s)
- Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Yu Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Xiaoli Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - XiaoJiao Duan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Yongmin Zhang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China.
- Department of Chemistry and Chemical Engineering, Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Inner Mongolia University, 24#Zhaojun Road, Hohhot, 010070, People's Republic of China.
| |
Collapse
|
7
|
Chen J, Han G, Xu A, Akutsu T, Cai H. Identifying miRNA-Gene Common and Specific Regulatory Modules for Cancer Subtyping by a High-Order Graph Matching Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:421-431. [PMID: 35320104 DOI: 10.1109/tcbb.2022.3161635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying regulatory modules between miRNAs and genes is crucial in cancer research. It promotes a comprehensive understanding of the molecular mechanisms of cancer. The genomic data collected from subjects usually relate to different cancer statuses, such as different TNM Classifications of Malignant Tumors (TNM) or histological subtypes. Simple integrated analyses generally identify the core of the tumorigenesis (common modules) but miss the subtype-specific regulatory mechanisms (specific modules). In contrast, separate analyses can only report the differences and ignore important common modules. Therefore, there is an urgent need to develop a novel method to jointly analyze miRNA and gene data of different cancer statuses to identify common and specific modules. To that end, we developed a High-Order Graph Matching model to identify Common and Specific modules (HOGMCS) between miRNA and gene data of different cancer statuses. We first demonstrate the superiority of HOGMCS through a comparison with four state-of-the-art techniques using a set of simulated data. Then, we apply HOGMCS on stomach adenocarcinoma data with four TNM stages and two histological types, and breast invasive carcinoma data with four PAM50 subtypes. The experimental results demonstrate that HOGMCS can accurately extract common and subtype-specific miRNA-gene regulatory modules, where many identified miRNA-gene interactions have been confirmed in several public databases.
Collapse
|
8
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Mukherjee A, Ha P, Wai KC, Naara S. The Role of ECM Remodeling, EMT, and Adhesion Molecules in Cancerous Neural Invasion: Changing Perspectives. Adv Biol (Weinh) 2022; 6:e2200039. [PMID: 35798312 DOI: 10.1002/adbi.202200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Perineural invasion (PNI) refers to the cancerous invasion of nerves. It provides an alternative route for metastatic invasion and can exist independently in the absence of lymphatic or vascular invasion. It is a prominent characteristic of specific aggressive malignancies where it correlates with poor prognosis. The clinical significance of PNI is widely recognized despite a lack of understanding of the molecular mechanisms underlying its pathogenesis. The interaction between the nerve and the cancer cells is the most pivotal PNI step which is mediated by the activation or inhibition of multiple signaling pathways that include chemokines, interleukins, nerve growth factors, and matrix metalloproteinases, to name a few. The nerve-cancer cell interaction brings about specific changes in the perineural niche, which not only affects the regular nerve functions, but also enhances the migratory, invasive, and adherent properties of the tumor cells. This review aims to elucidate the vital role of adhesion molecules, extracellular matrix, and epithelial-mesenchymal proteins that promote PNI, which may serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Katherine C Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Shorook Naara
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel.,Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| |
Collapse
|
10
|
ptk2 and mt2a Genes Expression in Gastritis and Gastric Cancer Patients with Helicobacter pylori Infection. Can J Gastroenterol Hepatol 2022; 2022:8699408. [PMID: 36060520 PMCID: PMC9436627 DOI: 10.1155/2022/8699408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND ptk2 and mt2a genes contribute to the cell cycle during proliferation and apoptosis, respectively. Designing a case-control study including gastric adenocarcinoma and gastritis patients with and without Helicobacter pylori infection would lead to determinate of the correlations between ptk2 and mt2a genes expression with H. pylori infection in gastric antral epithelial cells. METHODS Overall, 50 and 30 gastric antral biopsy samples of gastric cancer (case group) and gastritis (control group) patients were included into study, respectively. All biopsy samples were collected considering the exclusion criteria including patients with a history of consumption of tobacco, alcohol, and anti-H. pylori drugs. Each patient group is divided into with and without H. pylori infection to detect cDNA fold changes of ptk2 and mt2a genes by using Real Time RT PCR. Furthermore, the presence of H. pylori virulence genes was detected directly by using specific primers and simple PCR on cDNA synthesized from total RNA of gastric antral biopsy samples. RESULTS A negative correlation was revealed between age and clinical manifestations with the ΔCt value of the ptk2 gene (P < 0.05). The H. pylori iceA1/2 and cagE genes revealed positive and negative correlations with the ΔCt value of the ptk2 gene (P < 0.05), respectively. Furthermore, a weak correlation was detectable between H. pylori babA2/B, oipA, and cagY genes and the ΔCt value of the mt2a gene in gastric antral epithelial cells of patients (P < 0.1). CONCLUSIONS The results of the current study opened a view for more investigation on the stunning roles of H. pylori infection in clinical outcomes through mt2a and ptk2 gene expression in gastric antral epithelial cells.
Collapse
|
11
|
Mak TK, Li X, Huang H, Wu K, Huang Z, He Y, Zhang C. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Front Immunol 2022; 13:951214. [PMID: 35967313 PMCID: PMC9372353 DOI: 10.3389/fimmu.2022.951214] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers, with a wide range of symptoms and outcomes. Cancer-associated fibroblasts (CAFs) are newly identified in the tumor microenvironment (TME) and associated with GC progression, prognosis, and treatment response. A novel CAF-associated prognostic model is urgently needed to improve treatment strategies. METHODS The detailed data of GC samples were downloaded from The Cancer Genome Atlas (TCGA), GSE62254, GSE26253, and GSE84437 datasets, then obtained 18 unique CAF-related genes from the research papers. Eight hundred eight individuals with GC were classified as TCGA or GSE84437 using consensus clustering by the selected CAF-related genes. The difference between the two subtypes revealed in this study was utilized to create the "CAF-related signature score" (CAFS-score) prognostic model and validated with the Gene Expression Omnibus (GEO) database. RESULTS We identified two CAF subtypes characterized by high and low CAFS-score in this study. GC patients in the low CAFS-score group had a better OS than those in the high CAFS-score group, and the cancer-related malignant pathways were more active in the high CAFS-score group, compared to the low CAFS-score group. We found that there was more early TNM stage in the low CAFS-score subgroup, while there was more advanced TNM stage in the high CAFS-score subgroup. The expression of TMB was significantly higher in the low CAFS-score subgroup than in the high CAFS-score subgroup. A low CAFS-score was linked to increased microsatellite instability-high (MSI-H), mutation load, and immunological activation. Furthermore, the CAFS-score was linked to the cancer stem cell (CSC) index as well as chemotherapeutic treatment sensitivity. The patients in the high CAFS-score subgroup had significantly higher proportions of monocytes, M2 macrophages, and resting mast cells, while plasma cells and follicular helper T cells were more abundant in the low-risk subgroup. The CAFS-score was also highly correlated with the sensitivity of chemotherapeutic drugs. The low CAFS-score group was more likely to have an immune response and respond to immunotherapy. We developed a nomogram to improve the CAFS-clinical score's usefulness. CONCLUSION The CAFS-score may have a significant role in the TME, clinicopathological characteristics, prognosis, CSC, MSI, and drug sensitivity, according to our investigation of CAFs in GC. We also analyzed the value of the CAFS-score in immune response and immunotherapy. This work provides a foundation for improving prognosis and responding to immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kaiming Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Ding C, Zhang Q, Jiang X, Wei D, Xu S, Li Q, Wu M, Wang H. The Analysis of Potential Diagnostic and Therapeutic Targets for the Occurrence and Development of Gastric Cancer Based on Bioinformatics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4321466. [PMID: 35756405 PMCID: PMC9232307 DOI: 10.1155/2022/4321466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Gastric cancer is among the most common malignant tumors of the digestive system. This study explored the molecular mechanisms and potential therapeutic targets for gastric cancer occurrence and progression using bioinformatics. Methods The gastric cancer microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. The R package was used for data mining and screening differentially expressed genes (DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Based on the protein-protein interaction (PPI) network analysis, core targets and core subsets were screened. Then, the relationship between the expression level of the core genes and the prognosis of gastric cancer patients was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Results Using the GSE19826 and GSE54129 datasets, a total of 550 DEGs were identified, including 248 upregulated and 302 downregulated genes. GO and KEGG analyses showed that the upregulated DEGs were mainly enriched in the extracellular matrix (ECM) organization of the biological process (BP), the collagen-containing ECM of cellular component (CC), and the ECM structural constituent of molecular function (MF). DEGs were also enriched in human papillomavirus infections, the focal adhesion pathway, PI3K-Akt signaling pathway, and among others. The downregulated DEGs were mainly enriched in digestion, basal part of the cell, and aldo-keto reductase (NADP) activity. And the above pathways were enriched primarily in the metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450, and retinol metabolism. Five core genes, including COL1A2, COL3A1, BGN, FN1, and VCAN, were significantly highly expressed in gastric cancer patients and were associated with poor prognosis. Conclusion This study identified new potential molecular targets closely related to gastric cancer occurrence and development via mining public data using bioinformatics analysis methods.
Collapse
Affiliation(s)
- Chuan Ding
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Qiqi Zhang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xinying Jiang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Diandian Wei
- Department of Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shu Xu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Qingdai Li
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Meng Wu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Hongbin Wang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
13
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
14
|
Gunn SA, Kreps LM, Zhao H, Landon K, Ilacqua JS, Addison CL. Focal Adhesion Kinase Inhibitors Prevent Osteoblast Mineralization in Part Due to Suppression of Akt-mediated stabilization of Osterix. J Bone Oncol 2022; 34:100432. [PMID: 35620245 PMCID: PMC9126966 DOI: 10.1016/j.jbo.2022.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmacological blockade of FAK results in reduced ALP expression and mineralization by differentiated osteoblasts. Although FAK inhibition resulted in increased levels of BMP2, Wnt3a and Mdm2, and decreased p53, alteration of these pathways was unable to restore mineralization in the presence of FAK tyrosine kinase inhibitors. FAK tyrosine kinase inhibitors resulted in decreased levels of phospho-S473 Akt which led to increased levels of active GSK3β which in turn inhibited Runx2 activity that could contribute to the observed reduced ALP levels. FAK tyrosine kinase inhibitors blocked Akt-mediated stabilization of osterix leading to decreased overall levels of osterix and impaired mineralization in MC3T3-E1 cells differentiated into osteoblasts.
Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3β. We found treatment with PF-562,271 resulted in increased GSK3β activity as measured by reduced levels of phospho-Ser9-GSK3β which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3β inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.
Collapse
|
15
|
Qiu Z, Jiang H, Ju K, Liu X. A Novel RNA-Binding Protein Signature to Predict Clinical Outcomes and Guide Clinical Therapy in Gastric Cancer. Front Med (Lausanne) 2021; 8:670141. [PMID: 34336882 PMCID: PMC8319385 DOI: 10.3389/fmed.2021.670141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: This study aimed to develop an RNA-binding protein (RBP)-based signature for risk stratification and guiding clinical therapy in gastric cancer. Methods: Based on survival-related RBPs, an RBP-based signature was established by LASSO regression analysis in TCGA dataset. Kaplan-Meier curves were drawn between high- and low-risk groups. The predictive efficacy of this signature was assessed via ROCs at 1-, 3-, and 5-year survival. Its generalizability was verified in an external dataset. Following adjustment with other clinicopathological characteristics, the independency of survival prediction was evaluated via multivariate Cox regression and subgroup analyses. GSEA was utilized in identifying activated pathways in two groups. Stromal score, immune score, tumor purity, and infiltration levels of 22 immune cells were determined in each sample via the ESTIMATE and CIBERSORT algorithms. The sensitivity to chemotherapy drugs was assessed through the GDSC database. Results: Data showed that patients with high risk exhibited unfavorable clinical outcomes than those with low risk. This signature possessed good performance in predicting 1-, 3-, and 5-year survival and can be independently predictive of patients' survival. Calcium, ECM receptor interaction, and focal adhesion were highly enriched in high-risk samples. High-risk samples presented increased stromal and immune scores and reduced tumor purity. Moreover, this signature presented close relationships with immune infiltrations. Low-risk specimens were more sensitive to sorafenib, gefitinib, vinorelbine, and gemcitabine than high-risk specimens. Conclusion: This RBP-based signature may be a promising tool for predicting clinical outcomes and guiding clinical therapy in gastric cancer.
Collapse
Affiliation(s)
- Zhigang Qiu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Jiang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Kun Ju
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xichun Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Han C, Shen K, Wang S, Wang Z, Su F, Wu X, Hu X, Li M, Han J, Wu L. Discovery of Novel 2,4-Dianilinopyrimidine Derivatives Containing 4-(Morpholinomethyl)phenyl and N-Substituted Benzamides as Potential FAK Inhibitors and Anticancer Agents. Molecules 2021; 26:molecules26144187. [PMID: 34299462 PMCID: PMC8304610 DOI: 10.3390/molecules26144187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.
Collapse
Affiliation(s)
- Chun Han
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Kemin Shen
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046011, China;
| | - Shijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Xi Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Xiaoqin Hu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Jing Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (J.H.); (L.W.); Tel.: +86-516-8340-3166 (J.H.); +86-355-217-8113 (L.W.)
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
- Correspondence: (J.H.); (L.W.); Tel.: +86-516-8340-3166 (J.H.); +86-355-217-8113 (L.W.)
| |
Collapse
|
17
|
Jiang M, Zhang X. Antiangiogenesis Combined with Immunotherapy to Treat Advanced Small-Cell Carcinoma of the Esophagus Resistant to Chemotherapy: According to the Guidance of Next-Generation Sequencing. Onco Targets Ther 2021; 14:1613-1621. [PMID: 33688208 PMCID: PMC7936705 DOI: 10.2147/ott.s293733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
A 64-year-old woman admitted to our hospital with the chief complaint of swallowing obstruction was diagnosed as relapsed small-cell carcinoma of the esophagus. Complete remission (CR) was observed after six cycles of irinotecan plus cisplatin therapy. According to the results of a next-generation sequencing analysis of the tumor specimen, anlotinib (12 mg PO q3w) was recommended. After 1 month of anlotinib treatment, the tumor decreased significantly according to computed tomography scan and gastroscopy. However, the disease progressed after 2 months of therapy. A gene analysis of the new puncture sample showed microsatellite instability and a high tumor mutation burden. Immunohistochemistry indicated positive programmed death ligand-1 expression (>1%). Because of these results, the patient was treated with anlotinib (12 mg PO q3w) in combination with toripalimab (240 mg IV drip q3w). After 3 months of therapy, CR was achieved, although progression-free survival had not been reached at the time of publication.
Collapse
Affiliation(s)
- Man Jiang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People's Republic of China
| | - Xiaochun Zhang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People's Republic of China
| |
Collapse
|
18
|
ADP ribosylation factor guanylate kinase 1 promotes the malignant phenotype of gastric cancer by regulating focal adhesion kinase activation. Life Sci 2021; 273:119264. [PMID: 33639150 DOI: 10.1016/j.lfs.2021.119264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
AIMS ADP ribosylation factor guanylate kinase 1 (ASAP1), a phospholipid-dependent guanosine triphosphate (GTP)ase activating protein, has been reported to be involved in the development of various malignant tumors. However, the biological function of ASAP1 in gastric cancer (GC) remains unclear. This study was to investigate its effect and the underlying mechanism for the malignant phenotype of GC. MATERIALS AND METHODS The Cell Counting Kit-8 assay, flow cytometry, Transwell invasion assay, and wound-healing assay were used to assess the malignant biological behavior of GC cells with ASAP1 overexpression and knockdown. In addition, co-immunoprecipitation was used to analyze the interaction between ASAP1 and FAK in BGC823 cells, and western blotting was used to determine the effects of overexpression and knockdown of ASAP1 on FAK activity in BGC823 cells. Subsequently, functional recovery experiments were used to observe the effect of ASAP1 and FAK on the malignant phenotype of GC cells. KEY FINDINGS ASAP1 overexpression strongly promoted the malignant biological behavior of SGC7901 cells. Knockdown of ASAP1 effectively weakened the malignant biological behavior of SGC7901 and BGC823 cells. ASAP1 directly interacted with FAK to potentiate FAK activation. In addition, knockdown of FAK combined with ASAP1 overexpression significantly weakened the malignant biological behavior of GC cells, whereas overexpression of FAK combined with knockdown of ASAP1 significantly enhanced the malignant biological behavior of GC cells. SIGNIFICANCE ASAP1 interacted with FAK, and ASAP1 promoted the malignant phenotype of GC cells by regulating FAK activity. The specific underlying mechanism is worth further investigation.
Collapse
|
19
|
Rab11a Is Overexpressed in Gastric Cancer and Regulates FAK/AKT Signaling. JOURNAL OF ONCOLOGY 2020; 2020:3494396. [PMID: 33178272 PMCID: PMC7648696 DOI: 10.1155/2020/3494396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of Rab11a has been implicated in the progression of several cancers. However, there have been no such studies for human gastric cancers. In the current study, we examined Rab11a protein expression and found it was upregulated in 49 of 108 gastric cancer tissues and correlated with local invasion, nodal metastasis, and advanced stage. Rab11a protein was higher in gastric cancer cell lines than normal gastric cell line. We transfected Rab11a plasmid and siRNA in both MGC803 and AGS cell lines. Rab11a overexpression increased the cell growth rate, colony numbers, and invasion ability in both MGC803 and AGS cell lines. Downregulation of Rab11a using siRNA decreased the cell proliferation rate, colony numbers, and inhibited invasion. Rab11a overexpression also conferred cisplatin resistance. Annexin V/PI staining showed that Rab11a overexpression suppressed cisplatin-induced apoptosis, while Rab11a depletion promoted cell apoptosis. We also showed that Rab11a overexpression maintained mitochondrial membrane potential. Western blot analysis revealed that Rab11a increased protein expression of MMP2, cyclin D1, Bcl-2, p-FAK, and p-AKT, while Rab11a depletion showed the opposite effects. Blockage of FAK using inhibitor downregulated Bcl-2, cyclin D1, MMP2, and p-AKT expression and abolished the effects of Rab11a on these proteins. In summary, our data demonstrated that Rab11a is upregulated in human gastric cancers. Rab11a facilitated cell proliferation and invasion, as well as cisplatin sensitivity and mitochondrial membrane potential, possibly via the FAK/AKT signaling pathway.
Collapse
|
20
|
Luo Q, Zhang S, Zhang D, Yuan F, Chen X, Yang S. Expression of ASAP1 and FAK in gastric cancer and its clinicopathological significance. Oncol Lett 2020; 20:974-980. [PMID: 32566028 DOI: 10.3892/ol.2020.11612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/06/2020] [Indexed: 01/23/2023] Open
Abstract
The present study aimed to analyze the expression levels of adenosine diphosphate ribosylation factor guanylate kinase 1 (ASAP1) and focal adhesion kinase (FAK) in gastric cancer (GC) tissues in order to explore their association with clinicopathological features and prognosis. A total of 32 patients with GC were enrolled in the present study. All patients had complete clinical follow-up data and paraffin-embedded normal gastric mucosal tissues. The expression levels of ASAP1 and FAK in these tissues were measured by immunohistochemistry. The associations of ASAP1 and FAK expression with clinicopathological factors and the survival of patients with GC were subsequently analyzed. The expression levels of ASAP1 (59.4%) and FAK (68.8%) in GC tissues were significantly higher than those in normal gastric mucosal tissues (28.1 and 40.6%, P<0.05). The expression levels of ASAP1 and FAK were associated with depth of invasion, lymph node metastasis and pathological stage (P<0.05). ASAP1 expression was positively associated with FAK expression (P<0.001). In addition, ASAP1 and FAK expression levels were negatively associated with disease-free survival time and overall survival time (P<0.05). The 5-year overall survival rate was significantly higher in patients with negative ASAP1 or FAK expression compared with that in patients with positive ASAP1 or FAK expression (P<0.05). In conclusion, ASAP1 and FAK were highly expressed in human GC tissues and may serve a synergistic role in promoting tumorigenesis, progression, invasion and metastasis in patients with GC. ASAP1 and FAK expression in GC were associated with patient's survival. Therefore, ASAP1 and FAK may represent novel molecular markers for the pathophysiology and prognosis of GC.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Suyun Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Donghuan Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fang Yuan
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
21
|
Tong X, Tanino R, Sun R, Tsubata Y, Okimoto T, Takechi M, Isobe T. Protein tyrosine kinase 2: a novel therapeutic target to overcome acquired EGFR-TKI resistance in non-small cell lung cancer. Respir Res 2019; 20:270. [PMID: 31791326 PMCID: PMC6889213 DOI: 10.1186/s12931-019-1244-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Protein tyrosine kinase 2 (PTK2) expression has been reported in various types of human epithelial cancers including lung cancer; however, the role of PTK2 in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) has not been elucidated. We previously reported that pemetrexed-resistant NSCLC cell line PC-9/PEM also acquired EGFR-TKI resistance with constitutive Akt activation, but we could not find a therapeutic target. Methods Cell viability in EGFR-mutant NSCLC cell lines was measured by the WST-8 assay. Phosphorylation antibody array assay for receptor tyrosine kinases was performed in PC-9 and PC-9/PEM cell lines. We evaluated the efficacy of EGFR and PTK2 co-inhibition in EGFR-TKI-resistant NSCLC in vitro. Oral defactinib and osimertinib were administered in mice bearing subcutaneous xenografts to evaluate the efficacy of the treatment combination in vivo. Both the PTK2 phosphorylation and the treatment combination efficacy were evaluated in erlotinib-resistant EGFR-mutant NSCLC cell lines. Results PTK2 was hyperphosphorylated in PC-9/PEM. Defactinib (PTK2 inhibitor) and PD173074 (FGFR inhibitor) inhibited PTK2 phosphorylation. Combination of PTK2 inhibitor and EGFR-TKI inhibited Akt and induced apoptosis in PC-9/PEM. The combination treatment showed improved in vivo therapeutic efficacy compared to the single-agent treatments. Furthermore, erlotinib-resistant NSCLC cell lines showed PTK2 hyperphosphorylation. PTK2 inhibition in the PTK2 hyperphosphorylated erlotinib-resistant cell lines also recovered EGFR-TKI sensitivity. Conclusion PTK2 hyperphosphorylation occurs in various EGFR-TKI-resistant NSCLCs. Combination of PTK2 inhibitor and EGFR-TKI (defactinib and osimertinib) recovered EGFR-TKI sensitivity in the EGFR-TKI-resistant NSCLC. Our study result suggests that this combination therapy may be a viable option to overcome EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Xuexia Tong
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ryosuke Tanino
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Rong Sun
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tamio Okimoto
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
22
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
23
|
Aboubakar Nana F, Hoton D, Ambroise J, Lecocq M, Vanderputten M, Sibille Y, Vanaudenaerde B, Pilette C, Bouzin C, Ocak S. Increased Expression and Activation of FAK in Small-Cell Lung Cancer Compared to Non-Small-Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11101526. [PMID: 31658694 PMCID: PMC6827365 DOI: 10.3390/cancers11101526] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Focal adhesion kinase (FAK) plays a crucial role in cancer development and progression. FAK is overexpressed and/or activated and associated with poor prognosis in various malignancies. However, in lung cancer, activated FAK expression and its prognostic value are unknown. METHODS FAK and activated FAK (phospho-FAK Y397) expressions were analyzed by multiplex immunofluorescence staining in formalin-fixed paraffin-embedded tissues from 95 non-small-cell lung cancer (NSCLC) and 105 small-cell lung cancer (SCLC) patients, and 37 healthy donors. The FAK staining score was defined as the percentage (%) of FAK-stained tumor area multiplied by (×) FAK mean intensity and phospho-FAK staining score as the (% of phospho-FAK-stained area of low intensity × 1) + (% of phospho-FAK-stained area of medium intensity × 2) + (% of the phospho-FAK-stained area of high intensity × 3). FAK and phospho-FAK staining scores were compared between normal, NSCLC, and SCLC tissues. They were also tested for correlations with patient characteristics and clinical outcomes. RESULTS The median follow-up time after the first treatment was 42.5 months and 6.4 months for NSCLC and SCLC patients, respectively. FAK and phospho-FAK staining scores were significantly higher in lung cancer than in normal lung and significantly higher in SCLC compared to NSCLC tissues (p < 0.01). Moreover, the ratio between phospho-FAK and FAK staining scores was significantly higher in SCLC than in NSCLC tissues (p < 0.01). However, FAK and activated FAK expression in lung cancer did not correlate with recurrence-free and overall survival in NSCLC and SCLC patients. CONCLUSIONS Total FAK and activated FAK expressions are significantly higher in lung cancer than in normal lung, and significantly higher in SCLC compared to NSCLC, but are not prognostic biomarkers in this study.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCLouvain, 1200 Brussels, Belgium.
| | - Delphine Hoton
- Department of Pathology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, IREC, UCLouvain, 1200 Brussels, Belgium.
| | - Marylène Lecocq
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Yves Sibille
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCLouvain, 5530 Yvoir, Belgium.
| | - Bart Vanaudenaerde
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCLouvain, 1200 Brussels, Belgium.
| | | | - Sebahat Ocak
- Pole of Pneumology, ENT, and Dermatology (PNEU), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCLouvain, 5530 Yvoir, Belgium.
| |
Collapse
|
24
|
Kim YH, Kim HK, Kim HY, Gawk H, Bae SH, Sim HW, Kang EK, Seoh JY, Jang H, Hong KM. FAK-Copy-Gain Is a Predictive Marker for Sensitivity to FAK Inhibition in Breast Cancer. Cancers (Basel) 2019; 11:E1288. [PMID: 31480645 PMCID: PMC6769494 DOI: 10.3390/cancers11091288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancers with copy-gain drug-target genes are excellent candidates for targeted therapy. In order to search for new predictive marker genes, we investigated the correlation between sensitivity to targeted drugs and the copy gain of candidate target genes in NCI-60 cells. METHODS For eight candidate genes showing copy gains in NCI-60 cells identified in our previous study, sensitivity to corresponding target drugs was tested on cells showing copy gains of the candidate genes. RESULTS Breast cancer cells with Focal Adhesion Kinase (FAK)-copy-gain showed a significantly higher sensitivity to the target inhibitor, FAK inhibitor 14 (F14). In addition, treatment of F14 or FAK-knockdown showed a specific apoptotic effect only in breast cancer cells showing FAK-copy-gain. Expression-profiling analyses on inducible FAK shRNA-transfected cells showed that FAK/AKT signaling might be important to the apoptotic effect by target inhibition. An animal experiment employing a mouse xenograft model also showed a significant growth-inhibitory effect of F14 on breast cancer cells showing FAK-copy-gain, but not on those without FAK-copy-gain. CONCLUSION FAK-copy-gain may be a predictive marker for FAK inhibition therapy in breast cancer.
Collapse
Affiliation(s)
- Young-Ho Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54689, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - HyeRan Gawk
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hye Won Sim
- Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Eun-Kyung Kang
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ju-Young Seoh
- Departments of Microbiology, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul 07804, Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Goyang 10408, Korea.
| |
Collapse
|
25
|
Zhou Y, Shu C, Huang Y. Fibronectin promotes cervical cancer tumorigenesis through activating FAK signaling pathway. J Cell Biochem 2019; 120:10988-10997. [PMID: 30977220 DOI: 10.1002/jcb.28282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023]
Abstract
Cervical cancer is a cancer arising from the cervix, and it is the fourth most common cause of death in women. Overexpression of fibronectin 1 (FN1) was observed in many tumors and associated with the survival and metastasis of cancer cells. However, the mechanism by which FN1 promotes cervical cancer cell viability, migration, adhesion, and invasion, and inhibits cell apoptosis through focal adhesion kinase (FAK) signaling pathway remains to be investigated. Our results demonstrated that FN1 was upregulated in patients with cervical cancer and higher FN1 expression correlated with a poor prognosis for patients with cervical cancer. FN1 knockdown by small interfering RNA (siRNA) inhibited SiHa cell viability, migration, invasion, and adhesion, and promoted cell apoptosis. FN1 overexpression in CaSki cell promoted cell viability, migration, invasion, and adhesion, and inhibited cell apoptosis. Further, phosphorylation of FAK, a main downstream signaling molecule of FN1, and the protein expression of Bcl-2/Bax, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and N-cadherin was upregulated in CaSki cells with FN1 overexpression, but caspase-3 protein expression was downregulated. The FAK phosphorylation inhibitor PF573228 inhibited FN1 overexpression-induced expression of those proteins in CaSki cells with FN1 overexpression. In vivo experiment demonstrated that FN1 knockdown significantly inhibited FN1 expression, phosphorylation of FAK, and tumor growth in xenograft from the nude mice. These results suggest that FN1 regulates the viability, apoptosis, migration, invasion, and adhesion of cervical cancer cells through the FAK signaling pathway and is a potential therapeutic target in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Obstetrics and Gynecology, Suzhou Traditional Chinese and Western Medicine Hospital, Suzhou, China
| | - Changzhen Shu
- Department of Obstetrics and Gynecology, Suzhou Traditional Chinese and Western Medicine Hospital, Suzhou, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Suzhou Traditional Chinese and Western Medicine Hospital, Suzhou, China
| |
Collapse
|
26
|
Lai YC, Huang KH, Chen MH, Chao Y, Lo SS, Li AFY, Wu CW, Shyr YM, Fang WL. The Clinical Implication of PTEN and FAK Expression in Gastric Cancer Patients. Int Surg 2019; 104:48-57. [DOI: 10.9738/intsurg-d-19-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Objective:
The tumor suppressor gene phosphatase and tensin homolog (PTEN) was reported to inhibit the growth and invasion of gastric cancer (GC) via the downregulation of focal adhesion kinase (FAK). To date, the clinical implication of PTEN and FAK expression in GC has not been well addressed.
Methods:
A total of 200 GC patients receiving curative surgery were enrolled. The clinicopathologic features according to the expression of PTEN and FAK protein using immunohistochemical staining were compared among patients.
Results:
Patients with high PTEN expression were more likely to have smaller tumor size, more well- and moderately differentiated tumors, a more superficial gross appearance, less scirrhous stromal reactions, more likely to have high FAK expression, and have less advanced pathologic tumor (T) category, node (N) category, and tumor, node, metastasis (TNM) stage and more distant metastases than patients with low PTEN expression. Multivariate analysis showed that PTEN/FAK expression status is an independent prognostic factor affecting overall survival (OS) and disease-free survival (DFS). Patients with PTEN(high)/FAK(low) had better OS and DFS, followed by those with PTEN(high)/FAK(high), those with PTEN(low)/FAK(low), and those with PTEN(low)/FAK(high) (OS: 83.3% versus 58.0% versus 46.2% versus 26.5%, respectively, P < 0.001; DFS: 83.3% versus 55.8% versus 30.8% versus 24.4%, respectively, P < 0.001).
Conclusions:
GC patients with high PTEN expression were more likely to have fewer tumor recurrences and a better prognosis than those with low PTEN expression. PTEN and FAK may have opposing effects on GC patient survival. Our results may have clinical impact on treatment of GC patients.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Hung Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- National Yang-Ming University Hospital, Yilan, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chew-Wun Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Shyr
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Fang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Tanaka A, Ishikawa S, Ushiku T, Yamazawa S, Katoh H, Hayashi A, Kunita A, Fukayama M. Frequent CLDN18-ARHGAP fusion in highly metastatic diffuse-type gastric cancer with relatively early onset. Oncotarget 2018; 9:29336-29350. [PMID: 30034621 PMCID: PMC6047683 DOI: 10.18632/oncotarget.25464] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/16/2022] Open
Abstract
CLDN18-ARHGAP26/6 fusions have been identified in gastric cancers, with a predominance in diffuse-type gastric cancers (DGCs). Although in vitro experiments have suggested an oncogenic role for CLDN18-ARHGAP26/6 fusions, the exact frequencies and clinicopathological characteristics of the fusion-positive cases are poorly understood. We analyzed 254 cases of gastric cancer (172 diffuse-type and 82 intestinal-type) using RT-PCR and FISH, and also analyzed TCGA transcriptome datasets to identify genes that are related to the aggressive behaviors of fusion-positive cancers. Our assays identified 26 fusion-positive cases, 22 of which were DGCs (22/172, 12.8%). Unlike fusion-negative DGCs, almost all fusion-positive DGCs retained E-cadherin expression (P = 0.036). Fusion-positive DGCs also showed a higher prevalence of lymphatic and distant organ metastases, and these trends were only significant in the younger age group (< 60 years). In this group, the majority of cases with distant organ metastases (4 of 6 cases) were fusion-positive, and the multivariate regression analysis revealed that fusion status was an independent predictive marker for distant organ metastases (P = 0.002). In the TCGA dataset analysis, carbonic anhydrase 9 was postulated to be a potential modulator of the age-specific effects of the fusion protein, compatible with the immunohistochemical analysis of our cohort. Therefore, CLDN18-ARHGAP26/6 fusion-positive DGCs are considered biologically distinct entities that will require more advanced therapeutic options.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Yamazawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
miR-135a inhibits tumor metastasis and angiogenesis by targeting FAK pathway. Oncotarget 2018; 8:31153-31168. [PMID: 28415713 PMCID: PMC5458197 DOI: 10.18632/oncotarget.16098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/01/2017] [Indexed: 01/28/2023] Open
Abstract
Tumor metastasis has been the major cause of recurrence and death in patients with gastric cancer. Here, we find miR-135a has a decreased expression in the metastatic cell lines compared with its parental cell lines by analyzing microRNA array. Further results show that miR-135a is downregulated in the majority of human gastric cancer tissues and cell lines. Decreased expression of miR-135a is associated with TNM stage and poor survival. Besides, regaining miR-135a in gastric cancer cells obviously inhibits tumor growth, migration, invasion and angiogenesis by targeting focal adhesion kinase (FAK) pathway. Bioinformatics analysis and molecular experiments further prove that miR-135a is a novel downstream gene of tumor suppressor p53. Blocking FAK with its inhibitor can also enhance miR-135a expression through inducing p53. In summary, this study reveals the expression and function of miR-135a in gastric cancer and uncovers a novel regulatory mechanism of miR-135a.
Collapse
|
29
|
Li D, Lo W, Rudloff U. Merging perspectives: genotype-directed molecular therapy for hereditary diffuse gastric cancer (HDGC) and E-cadherin-EGFR crosstalk. Clin Transl Med 2018; 7:7. [PMID: 29468433 PMCID: PMC5821620 DOI: 10.1186/s40169-018-0184-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Hereditary diffuse gastric cancer is a cancer predisposition syndrome associated with germline mutations of the E-cadherin gene (CDH1; NM_004360). Male CDH1 germline mutation carriers have by the age of 80 years an estimated 70% cumulative incidence of gastric cancer, females of 56% for gastric and of 42% for lobular breast cancer. Metastatic HDGC has a poor prognosis which is worse than for sporadic gastric cancer. To date, there have been no treatment options described tailored to this molecular subtype of gastric cancer. Here we review recent differential drug screening and gene expression results in c.1380del CDH1-mutant HDGC cells which identified drug classes targeting PI3K (phosphoinositide 3-kinase), MEK (mitogen-activated protein kinase), FAK (focal adhesion kinase), PKC (protein kinase C), and TOPO2 (topoisomerase II) as selectively more effective in cells with defective CDH1 function. ERK1-ERK2 (extracellular signal regulated kinase) signaling measured as top enriched network in c.1380delA CDH1-mutant cells. We compared these findings to synthetic lethality and pharmacological screening results in isogenic CDH1-/- MCF10A mammary epithelial cells with and without CDH1 expression and current knowledge of E-cadherin/catenin-EGFR cross-talk, and suggest different rationales how loss of E-cadherin function activates PI3K, mTOR, EGFR, or FAK signaling. These leads represent molecularly selected treatment options tailored to the treatment of CDH1-deficient familial gastric cancer.
Collapse
Affiliation(s)
- Dandan Li
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Winifred Lo
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Udo Rudloff
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
30
|
Han J, Liu S, Zhang Y, Xu Y, Jiang Y, Zhang C, Li C, Li X. MiRSEA: Discovering the pathways regulated by dysfunctional MicroRNAs. Oncotarget 2018; 7:55012-55025. [PMID: 27474169 PMCID: PMC5342398 DOI: 10.18632/oncotarget.10839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that dysfunctional microRNAs (miRNAs) are involved in the progression of various cancers. Dysfunctional miRNAs may jointly regulate their target genes and further alter the activities of canonical biological pathways. Identification of the pathways regulated by a group of dysfunctional miRNAs could help uncover the pathogenic mechanisms of cancer and facilitate development of new drug targets. Current miRNA-pathway analyses mainly use differentially-expressed miRNAs to predict the shared pathways on which they act. However, these methods fail to consider the level of differential expression level, which could improve our understanding of miRNA function. We propose a novel computational method, MicroRNA Set Enrichment Analysis (MiRSEA), to identify the pathways regulated by dysfunctional miRNAs. MiRSEA integrates the differential expression levels of miRNAs with the strength of miRNA pathway associations to perform direct enrichment analysis using miRNA expression data. We describe the MiRSEA methodology and illustrate its effectiveness through analysis of data from hepatocellular cancer, gastric cancer and lung cancer. With these analyses, we show that MiRSEA can successfully detect latent biological pathways regulated by dysfunctional miRNAs. We have implemented MiRSEA as a freely available R-based package on CRAN (https://cran.r-project.org/web/packages/MiRSEA/).
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Harbin, 150081, PR China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
31
|
Sun ZP, Li AQ, Jia WH, Ye S, Van Eps G, Yu JM, Yang WJ. MicroRNA expression profiling in exosomes derived from gastric cancer stem-like cells. Oncotarget 2017; 8:93839-93855. [PMID: 29212193 PMCID: PMC5706839 DOI: 10.18632/oncotarget.21288] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cells (CSCs) have been identified as the initial cell in formation of cancer. Quiescent CSCs can "hide out" from traditional cancer therapy which may produce an initial response but are often unsuccessful in curing patients. Thus, levels of CSC in patients may be used as an indicator to measure the chance of recurrence of cancer after therapy. The goals of our work are to develop specific exosomal miRNA clusters for gastric CSCs that can potentially predict which patients are at high risk for developing gastric cancer (GC) in order to diagnose GC at an early stage. Here, upon sorting gastric CSCs, we initially isolated and characterized exosomes secreted by both gastric CSCs and their differentiated cells (DCs). By deep sequencing of each exosomal miRNA library, 11 typical differentially expressed miRNAs were identified as signature miRNAs for CSC. Gene target prediction, GO annotation and KEGG pathway enrichment analysis showed possible functions associated with these signature miRNAs. Hence, upon research of exosomal miRNAs that would influence behavior of tumor cells and their microenvironment, this study shows that a specific miRNA signature is present in CSCs, and implies that a potential miRNA biomarker reflecting the stage of gastric cancer progression and metastasis could be developed in the foreseeable future.
Collapse
Affiliation(s)
- Zhan-Peng Sun
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife of The Ministry of Education, Zhejiang University, Hangzhou, China
| | - An-Qi Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Huan Jia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen Ye
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Grace Van Eps
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Min Yu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Conservation Biology for Endangered Wildlife of The Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
- Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
33
|
Xu M, Qin S, Cao F, Ding S, Li M. MicroRNA-379 inhibits metastasis and epithelial-mesenchymal transition via targeting FAK/AKT signaling in gastric cancer. Int J Oncol 2017; 51:867-876. [DOI: 10.3892/ijo.2017.4072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/04/2017] [Indexed: 11/05/2022] Open
|
34
|
DIMT1 overexpression correlates with progression and prognosis in gastric carcinoma. Hum Pathol 2017; 70:35-42. [PMID: 28601661 DOI: 10.1016/j.humpath.2017.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 01/12/2023]
Abstract
We investigated the expression of dimethyladenosine transferase 1 homolog (DIMT1) in human gastric carcinoma (GC) tissues, pericarcinoma histologically normal tissues, and normal gastric tissues and explored its clinical significance. Immunohistochemistry staining was used to detect the expression of DIMT1, and the findings were compared with clinicopathological features of patients with GC. The result also was ascertained by Western blotting. The Kaplan-Meier method and log-rank test were used to compare the overall survival rate and time in the DIMT1 low-level and high-level expression groups. Immunohistochemical staining indicated that the expression of DIMT1 in GC tissues (65/75; 86.7%) was significantly more common (P<.001) than that in pericarcinoma histologically normal tissues (14/75; 18.7%) and normal gastric tissues (2/12; 16.7%). High expression of DIMT1 correlated closely with differentiation (P=.023), invasion (P=.042), lymph node metastasis (P=.008), distant metastasis (P=.006), and TNM stage (P=.013). Western blotting showed that DIMT1 expression correlated positively with TNM stage and implied that more advanced TNM stage was accompanied by higher expression of DIMT1 (P<.001). Kaplan-Meier survival analysis showed that high DIMT1 expression correlated significantly (P<.001) with a poor prognosis. Our data suggest that DIMT1 is a useful molecular biomarker to predict tumor progression and prognosis in patients with GC.
Collapse
|
35
|
Matse JH, Veerman ECI, Bolscher JGM, Leemans CR, Ylstra B, Bloemena E. High number of chromosomal copy number aberrations inversely relates to t(11;19)(q21;p13) translocation status in mucoepidermoid carcinoma of the salivary glands. Oncotarget 2017; 8:69456-69464. [PMID: 29050216 PMCID: PMC5642491 DOI: 10.18632/oncotarget.17282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Although rare, mucoepidermoid carcinoma (MEC) is one of the most common malignant salivary gland tumors. The presence of the t(11;19)(q21;p13) translocation in a subset of MECs has raised interest in genomic aberrations in MEC. In the present study we conducted genome-wide copy-number-aberration analysis by micro-array comparative-genomic-hybridization on 27 MEC samples. Low/intermediate-grade MECs had significantly fewer copy-number-aberrations compared to high-grade MECs (low vs high: 3.48 vs 30; p = 0.0025; intermediate vs high: 5.7 vs 34.5; p = 0.036). The translocation-negative MECs contained more copy-number-aberrations than translocation-positive MECs (average amount of aberrations 15.9 vs 2.41; p =0.04). Within all 27 MEC samples, 16p11.2 and several regions on 8q were the most frequently gained regions , while 1q23.3 was the most frequently detected loss. Low/intermediate-grade MEC samples had copy-number-aberrations in chromosomes 1, 12 and 16, while high-grade MECs had a copy-number-aberration in 8p. The most commonly observed copy-number-aberration was the deletion of 3p14.1, which was observed in 4 of the translocation-negative MEC samples. No recurrent copy-number-aberrations were found in translocation-positive MEC samples. Based on these results, we conclude that MECs may be classified as follows: (i) t(11;19)(q21;p13) translocation-positive tumors with no or few chromosomal aberrations and (ii) translocation-negative tumors with multiple chromosomal aberrations.
Collapse
Affiliation(s)
- Johannes H Matse
- Department of Oral and Maxillofacial Surgery and Oral Pathology VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA) Amsterdam, The Netherlands.,Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - C René Leemans
- Department of Otolaryngology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Department of Oral and Maxillofacial Surgery and Oral Pathology VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA) Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Kong DB, Chen F, Sima N. Focal adhesion kinases crucially regulate TGFβ-induced migration and invasion of bladder cancer cells via Src kinase and E-cadherin. Onco Targets Ther 2017; 10:1783-1792. [PMID: 28367061 PMCID: PMC5370070 DOI: 10.2147/ott.s122463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein-tyrosine kinase that is triggered off by special extracellular signals such as some growth factors and integrins. FAK is found in cell-matrix attachment sites and implicated in cell migration, invasion, movement, gene expression, survival and apoptosis. In this study, we aimed to investigate whether FAK plays a role in invasion and migration of bladder cancer cells. Using an FAK-specific small interfering RNA (siRNA) and an FAK inhibitor PF-228, we found that inhibition of FAK tyrosine phosphorylation or knockdown of FAK suppressed invasion and migration of bladder cancer cells. Src is an important mediator of FAK-regulated migratory and invasive activity. Tyrosine phosphorylation of Src and FAK is mutually dependent and plays a key role in transforming growth factor beta (TGFβ)-induced invasion and migration. E-cadherin acts downstream of FAK and is a critical negative regulator in FAK-regulated invasion and migration of bladder cancer cells. These findings imply that FAK is involved in oncogenic signaling of invasion and migration, which can be a novel therapeutic target to treat patients with bladder cancer.
Collapse
Affiliation(s)
- De-Bo Kong
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang
| | - Feng Chen
- Department of Surgery, The Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi
| | - Ni Sima
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
37
|
Carter BZ, Mak PY, Wang X, Yang H, Garcia-Manero G, Mak DH, Mu H, Ruvolo VR, Qiu Y, Coombes K, Zhang N, Ragon B, Weaver DT, Pachter JA, Kornblau S, Andreeff M. Focal Adhesion Kinase as a Potential Target in AML and MDS. Mol Cancer Ther 2017; 16:1133-1144. [PMID: 28270436 DOI: 10.1158/1535-7163.mct-16-0719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/11/2016] [Accepted: 01/29/2017] [Indexed: 11/16/2022]
Abstract
Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics (P = 2 × 10-4) and relapse (P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3-ITD (P = 0.0024) or RAS (P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34+ (P = 5.42 × 10-20) and CD34+CD38- MDS (P = 7.62 × 10-9) cells compared with normal CD34+ cells. MDS patients with higher FAK in CD34+ cells tended to have better overall survival (P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yang
- Section of Myelodysplastic Syndromes, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo Garcia-Manero
- Section of Myelodysplastic Syndromes, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yihua Qiu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin Coombes
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Brittany Ragon
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Steven Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Prognostic Value of Focal Adhesion Kinase (FAK) in Human Solid Carcinomas: A Meta-Analysis. PLoS One 2016; 11:e0162666. [PMID: 27637100 PMCID: PMC5026375 DOI: 10.1371/journal.pone.0162666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023] Open
Abstract
Background Recently, the number of reports on focal adhesion kinase (FAK) as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis. Methods We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS). The hazard ratio (HR) of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted. Results Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712–2.510, p = 0.000). Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743–4.017, p = 0.000), hepatocellular carcinoma (HR = 1.788,95% CI:1.228–2.602, p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149, 95% CI:2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030–2.793, p = 0.038). No association was found between HR and disease staging according to our meta-regression analysis. Conclusions Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research.
Collapse
|
39
|
Feng R, Yang S. Effects of combining erlotinib and RNA-interfered downregulation of focal adhesion kinase expression on gastric cancer. J Int Med Res 2016; 44:855-64. [PMID: 27278554 PMCID: PMC5536637 DOI: 10.1177/0300060516647550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/11/2016] [Indexed: 11/21/2022] Open
Abstract
Objective To investigate the synergistic effects of combining erlotinib and RNA-interference downregulation of focal adhesion kinase (FAK) expression on the proliferation, apoptosis, invasion and migration of the human gastric adenocarcinoma cell line AGS. Methods Cells were divided into five experimental groups: Group A, nontransfected control; Group B, transfected with empty vector; Group C, transfected with FAK-shRNA; Group D, erlotinib treatment; Group E, combination erlotinib treatment and transfected with FAK-shRNA. FAK protein levels were confirmed via Western blotting. Cell proliferation (CCK-8 assay, apoptosis (flow cytometry), cell invasion (transwell assay) and migration (scratch assay) were evaluated. Results RNA interference significantly decreased FAK protein levels. Cell proliferation, invasion and migration were significantly lower in Groups C, D and E compared with Group A, and significantly lower in Group E than in Groups C and D. Conclusions RNA interference effectively silences FAK expression and inhibits malignant cell proliferation and invasion in gastric cancer cells. The effect of FAK inhibition is increased by co-treatment with erlotinib.
Collapse
Affiliation(s)
- Rui Feng
- Teaching and Research Department of Oncology, Union Clinical Medical College of Fujian Medical University, Fujian, China
| | - Sheng Yang
- Teaching and Research Department of Oncology, Union Clinical Medical College of Fujian Medical University, Fujian, China Department of Medical Oncology, Fujian Medical University Union Hospital, Fujian, China Fujian Key Laboratory of Translational Cancer Medicine, Fujian, China Fujian Medical University Stem Cell Research Institute, Fuzhou, Fujian, China
| |
Collapse
|
40
|
Constanzo JD, Tang KJ, Rindhe S, Melegari M, Liu H, Tang X, Rodriguez-Canales J, Wistuba I, Scaglioni PP. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia 2016; 18:282-293. [PMID: 27237320 PMCID: PMC4887597 DOI: 10.1016/j.neo.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022] Open
Abstract
The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.
Collapse
Affiliation(s)
- Jerfiz D Constanzo
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ke-Jing Tang
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA; Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Smita Rindhe
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Margherita Melegari
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hui Liu
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA.
| |
Collapse
|
41
|
Kong D, Chen F, Sima NI. Inhibition of focal adhesion kinase induces apoptosis in bladder cancer cells via Src and the phosphatidylinositol 3-kinase/Akt pathway. Exp Ther Med 2015; 10:1725-1731. [PMID: 26640543 PMCID: PMC4665970 DOI: 10.3892/etm.2015.2745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
Focal adhesion kinase (FAK) is a 125-kDa, cytosolic, non-receptor, protein tyrosine kinase localized at focal adhesions that can be activated by multiple inputs and in different manners. FAK is implicated in signaling pathways regulating cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. The aim of the present study was to investigate whether FAK plays a role in the apoptosis of bladder cancer cells. The study employed in situ deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and Annexin V labeling flow cytometry. It was found that both the knockdown of FAK and the suppression of FAK phosphorylation were able to induce apoptosis in bladder cancer cells. Caspase-3 was activated during the apoptosis induced by the suppression of FAK phosphorylation. Src was involved in FAK-regulated apoptosis in bladder cancer cells, while the suppression of Src phosphorylation was able to inhibit FAK tyrosine phosphorylation and induce apoptosis. Furthermore, phosphatidylinositol 3-kinase (PI3K)/Akt signaling was inhibited via the suppression of FAK tyrosine phosphorylation. Conversely, the expression of neither the general nor the tyrosine-phosphorylated FAK was regulated by inhibiting PI3K/Akt, which suggested that PI3K/Akt acted downstream of FAK to regulate apoptosis in bladder cancer cells. These findings indicate the presence of a mechanism of apoptosis involving FAK-mediated oncogenic signaling. FAK may function as an important regulator of extracellular signaling-mediated apoptosis in bladder cancer and be used as a novel therapeutic target in the treatment of the condition.
Collapse
Affiliation(s)
- Debo Kong
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Chen
- Department of Surgery, The Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - N I Sima
- Department of Gynecologic Oncology, Women's Reproductive Health Key Laboratory of Zhejiang, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
42
|
François RA, Maeng K, Nawab A, Kaye FJ, Hochwald SN, Zajac-Kaye M. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. J Natl Cancer Inst 2015; 107:djv123. [PMID: 25971297 DOI: 10.1093/jnci/djv123] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) mediates survival of normal pancreatic islets through activation of AKT. Upon malignant transformation of islet cells into pancreatic neuroendocrine tumors (PanNETs), AKT is frequently overexpressed and mutations in the AKT/mTOR pathway are detected. Because mTOR inhibitors rarely induce PanNET tumor regression, partly because of feedback activation of AKT, novel combination strategies are needed to target FAK/AKT/mTOR signaling. METHODS We characterized the activation of FAK in PanNETs using immunohistochemistry and Western blot analysis and tested the FAK inhibitor PF-04554878 in human PanNET cells in vitro and in vivo (at least three mice per group). In addition, we evaluated the effect of combined FAK and mTOR inhibition on PanNET viability and apoptosis. All statistical tests were two-sided. RESULTS We found that FAK is overexpressed and hyperphosphorylated in human PanNETs and that PF-04554878 strongly inhibited FAK (Tyr397) autophosphorylation in a dose-dependent manner. We found that PF-04554878 inhibited cell proliferation and clonogenicity and induced apoptosis in PanNET cells. Moreover, oral administration of PF-04554878 statistically significantly reduced tumor growth in a patient-derived xenograft model of PanNET (P = .02) and in a human PanNET xenograft model of peritoneal carcinomatosis (P = .03). Importantly, PF-04554878 synergized with the mTOR inhibitor everolimus by preventing feedback AKT activation. CONCLUSIONS We demonstrate for the first time that FAK is overexpressed in PanNETs and that inhibition of FAK activity induces apoptosis and inhibits PanNET proliferation. We found that the novel FAK inhibitor PF-04554878 synergizes with everolimus, a US Food and Drug Administration-approved agent for PanNETs. Our findings warrant the clinical investigation of combined FAK and mTOR inhibition in PanNETs.
Collapse
Affiliation(s)
- Rony A François
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Kyungah Maeng
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Frederic J Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Steven N Hochwald
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| |
Collapse
|
43
|
KANG YU, PU TAO, CAI QINGQING, HONG SHANSHAN, ZHANG MINGXING, LI GUILING, ZHU ZHILING, XU CONGJIAN. Identification of lymphatic metastasis-associated genes in a metastatic ovarian cancer cell line. Mol Med Rep 2015; 12:2741-8. [DOI: 10.3892/mmr.2015.3743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
|
44
|
Hung CH, Huang CC, Hsu LS, Kao SH, Wang CJ. Apple polyphenol inhibits colon carcinoma metastasis via disrupting Snail binding to focal adhesion kinase. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Su GQ, Zhang FX, Mao HH, Liu XW, Zheng YS, Zhang SY, Su JJ. Research of shRNAmir inhibitory effects towards focal adhesion kinase expression in the treatment of gastric cancer. Oncol Lett 2014; 9:595-603. [PMID: 25621028 PMCID: PMC4301487 DOI: 10.3892/ol.2014.2725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/16/2014] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer is the fourth most common type of malignant tumor, with a poor prognosis. Focal adhesion kinase (FAK) mediates the crosslink of intracellular signaling networks, playing a key role in cell migration and invasion. The aim of the present study was to investigate the effects of FAK interference on the proliferation ability, invasion and metastasis of gastric cancer cells. The FAK-RNAi lentiviral vector was infected into SGC7901 gastric cancer cells in order to observe the in vivo situations of tumor growth and metastasis before and after the FAK interference. The growth of SGC7901 gastric cancer cells in the interference group was significantly inhibited compared with that of the negative control (P<0.05) and the blank control groups (P<0.05), and the FAK expression significantly decreased (P<0.05). The in vitro invasion and metastasis experiments showed that the cell invasion and metastasis abilities of the interference group significantly decreased when compared with those of the negative control (P<0.05) and blank control groups (P<0.05). In the nude mouse subcutaneous tumor transplantation model, the mean ± standard deviation tumor weight of the interference group (1.474±0.9840 g) was lower than that of the negative control (3.134±0.3299 g) and blank control (2.68±0.12 g) groups (P<0.05). In the nude mice, the liver and peritoneal metastasis rates of the interference group were significantly lower than those of the negative control (P<0.05) and the blank control groups (P<0.05), and the FAK mRNA of the interference group significantly reduced (P<0.05). In conclusion, FAK interference could effectively suppress the proliferation, invasion and metastasis of transfected SGC7901 gastric cancer cells, and could inhibit the growth and distant metastasis of gastric cancer in nude mice.
Collapse
Affiliation(s)
- Guo-Qiang Su
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Fu-Xing Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - He-Hui Mao
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xian-Wei Liu
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yong-Sheng Zheng
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Si-Yu Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jing-Jun Su
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
46
|
Yoon H, Dehart JP, Murphy JM, Lim STS. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem 2014; 63:114-28. [PMID: 25380750 DOI: 10.1369/0022155414561498] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that regulates cellular adhesion, motility, proliferation and survival in various types of cells. Interestingly, FAK is activated and/or overexpressed in advanced cancers, and promotes cancer progression and metastasis. For this reason, FAK became a potential therapeutic target in cancer, and small molecule FAK inhibitors have been developed and are being tested in clinical phase trials. These inhibitors have demonstrated to be effective by inducing tumor cell apoptosis in addition to reducing metastasis and angiogenesis. Furthermore, several genetic FAK mouse models have made advancements in understanding the specific role of FAK both in tumors and in the tumor environment. In this review, we discuss FAK inhibitors as well as genetic mouse models to provide mechanistic insights into FAK signaling and its potential in cancer therapy.
Collapse
Affiliation(s)
- Hyunho Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Joshua P Dehart
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - James M Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
47
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
48
|
Batista S, Maniati E, Reynolds LE, Tavora B, Lees DM, Fernandez I, Elia G, Casanovas O, Lo Celso C, Hagemann T, Hodivala-Dilke K. Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis. Nat Commun 2014; 5:5054. [PMID: 25270220 DOI: 10.1038/ncomms6054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/21/2014] [Indexed: 12/28/2022] Open
Abstract
Metastasis is the main cause of cancer-related death and thus understanding the molecular and cellular mechanisms underlying this process is critical. Here, our data demonstrate, contrary to established dogma, that loss of haematopoietic-derived focal adhesion kinase (FAK) is sufficient to enhance tumour metastasis. Using both experimental and spontaneous metastasis models, we show that genetic ablation of haematopoietic FAK does not affect primary tumour growth but enhances the incidence of metastasis significantly. At a molecular level, haematopoietic FAK deletion results in an increase in PU-1 levels and decrease in GATA-1 levels causing a shift of hematopoietic homeostasis towards a myeloid commitment. The subsequent increase in circulating granulocyte number, with an increase in serum CXCL12 and granulocyte CXCR4 levels, was required for augmented metastasis in mice lacking haematopoietic FAK. Overall our findings provide a mechanism by which haematopoietic FAK controls cancer metastasis.
Collapse
Affiliation(s)
- Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Eleni Maniati
- Centre for Cancer and Inflammation, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Oriol Casanovas
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming building, Imperial College, London SW72AZ, UK
| | - Thorsten Hagemann
- Centre for Cancer and Inflammation, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
49
|
Zhang Q, Wang H, Ma Y, Zhang J, He X, Ma J, Zhao ZS. Overexpression of Nedd9 is a prognostic marker of human gastric cancer. Med Oncol 2014; 31:33. [PMID: 24906654 DOI: 10.1007/s12032-014-0033-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/10/2014] [Indexed: 01/06/2023]
Abstract
The present study was designed to evaluate the expression and prognostic significance of neural precursor cell-expressed, developmentally downregulated 9 (Nedd9) in patients with gastric cancer. Overexpression of Nedd9 was detected in a number of human cancers and was associated with progression and poor prognosis of the diseases. The expression of Nedd9 and focal adhesion kinase (FAK) were detected using the tissue microarray technique and immunohistochemical method and compared with clinicopathological parameters of patients with gastric cancer. The expressions of Nedd9 and FAK were upregulated in gastric cancer lesions compared with their expression in adjacent non-malignant tissues. High expression of Nedd9 correlated with age, location of tumor, tumor size, depth of invasion, vessel invasion, lymph node metastasis, and distant metastasis, and also with expression of FAK. Further, multivariate analysis suggested that expression of Nedd9 and FAK were independent prognostic indicators for gastric cancer. Cumulative 5-year survival rates of patients with high expression of both Nedd9 and FAK was significantly lower than those with low expression of both. Nedd9 was implicated in the progression of gastric cancer. Based on the TNM stage, Nedd9 and FAK proteins could be useful prognostic marker to predict tumor progression and prognosis in gastric cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ng L, Poon RTP, Pang R. Biomarkers for predicting future metastasis of human gastrointestinal tumors. Cell Mol Life Sci 2013; 70:3631-56. [PMID: 23370778 PMCID: PMC11113832 DOI: 10.1007/s00018-013-1266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
The recent advances in surgery and radiation therapy have significantly improved the prognosis of patients with primary cancer, and the major challenge of cancer treatment now is metastatic disease development. The 5-year survival rate of cancer patients who have distant metastasis at diagnosis is extremely low, suggesting that prediction and early detection of metastasis would definitely improve their prognosis because suitable patient therapeutic management and treatment strategy can be provided. Cancer cells from a primary site give rise to a metastatic tumor via a number of steps which require the involvement and altered expression of many regulators. These regulators may serve as biomarkers for predicting metastasis. Over the past few years, numerous regulators have been found correlating with metastasis. In this review, we summarize the findings of a number of potential biomarkers that are involved in cadherin-catenin interaction, integrin signaling, PI3K/Akt/mTOR signaling and cancer stem cell identification in gastrointestinal cancers. We will also discuss how certain biomarkers are associated with the tumor microenvironment that favors cancer metastasis.
Collapse
Affiliation(s)
- Lui Ng
- Department of Surgery, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China,
| | | | | |
Collapse
|