1
|
Yang W, Wu C, Jiang C, Jing T, Lu M, Xia D, Peng D. FDX1 overexpression inhibits the growth and metastasis of clear cell renal cell carcinoma by upregulating FMR1 expression. Cell Death Discov 2025; 11:115. [PMID: 40118855 PMCID: PMC11928736 DOI: 10.1038/s41420-025-02380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Kidney cancer has caused more than 150,000 deaths in 185 countries around the world and is a serious threat to human life. Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. FDX1, a crucial gene for regulating copper death, plays an important role in tumors. However, its specific role in ccRCC remains unclear. In this study, by analysing data from the TCGA-KIRC and GEO databases and validation in clinical samples from our center, the expression characteristics of FDX1 and its relationship with tumor clinicopathological features and patient prognosis were clarified; the effects of FDX1 overexpression on ccRCC cell proliferation, apoptosis, migration, and invasion were determined via cell phenotype experiments and mouse orthotopic renal tumor growth models; and the downstream regulatory mechanism of FDX1 was determined via TMT proteomic sequencing, Co-IP assays, and RNA-sequencing detection. Our results confirmed that FDX1 was significantly underexpressed in ccRCC and that reduced FDX1 expression was associated with adverse clinicopathologic features and poor prognosis. FDX1 overexpression markedly inhibited the proliferation, migration, and invasion of ccRCC cells and promoted cell apoptosis in vitro. Mechanistically, FDX1 bound to the FMR1 protein and upregulated its expression, subsequently restraining Bcl-2 and N-cadherin expression and enhancing ALCAM, Cleaved Caspase-3, and E-cadherin expression. In mouse models, FDX1 overexpression significantly suppressed the growth and metastasis of renal tumors, but this inhibitory effect was markedly reversed after FMR1 expression was knocked down. Thus, our results confirmed that FDX1 expression is significantly reduced in ccRCC and serves as a prognostic marker for ccRCC patients and that its overexpression suppresses the growth and metastasis ability of ccRCC by promoting the expression of FRM1.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Cunjin Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chaochao Jiang
- Department of Urology, Changxing Hospital of Traditional Chinese Medicine, Changxing, PR China
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Minghao Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ding Peng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| |
Collapse
|
2
|
Csizmarik A, Keresztes D, Nagy N, Bracht T, Sitek B, Witzke K, Puhr M, Tornyi I, Lázár J, Takács L, Kramer G, Sevcenco S, Maj-Hes A, Jurányi Z, Hadaschik B, Nyirády P, Szarvas T. Proteome profiling of enzalutamide-resistant cell lines and serum analysis identified ALCAM as marker of resistance in castration-resistant prostate cancer. Int J Cancer 2022; 151:1405-1419. [PMID: 35689436 PMCID: PMC9539937 DOI: 10.1002/ijc.34159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022]
Abstract
Enzalutamide (ENZA) is a frequently used therapy in metastatic castration‐resistant prostate cancer (mCRPC). Baseline or acquired resistance to ENZA have been observed, but the molecular mechanisms of resistance are poorly understood. We aimed to identify proteins involved in ENZA resistance and to find therapy‐predictive serum markers. We performed comparative proteome analyses on ENZA‐sensitive parental (LAPC4, DuCaP) and ‐resistant prostate cancer cell lines (LAPC4‐ENZA, DuCaP‐ENZA) using liquid chromatography tandem mass spectrometry (LC‐MS/MS). The top four most promising candidate markers were selected using bioinformatic approaches. Serum concentrations of selected markers (ALCAM, AGR2, NDRG1, IDH1) were measured in pretreatment samples of 72 ENZA‐treated mCRPC patients using ELISA. In addition, ALCAM serum levels were measured in 101 Abiraterone (ABI) and 100 Docetaxel (DOC)‐treated mCRPC patients' baseline samples. Results were correlated with clinical and follow‐up data. The functional role of ALCAM in ENZA resistance was assessed in vitro using siRNA. Our proteome analyses revealed 731 significantly differentially abundant proteins between ENZA‐sensitive and ‐resistant cells and our filtering methods identified four biomarker candidates. Serum analyses of these proteins revealed only ALCAM to be associated with poor patient survival. Furthermore, higher baseline ALCAM levels were associated with poor survival in ABI‐ but not in DOC‐treated patients. In LAPC4‐ENZA resistant cells, ALCAM silencing by siRNA knockdown resulted in significantly enhanced ENZA sensitivity. Our analyses revealed that ALCAM serum levels may help to identify ENZA‐ and ABI‐resistant patients and may thereby help to optimize future clinical decision‐making. Our functional analyses suggest the possible involvement of ALCAM in ENZA resistance.
Collapse
Affiliation(s)
- Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nikolett Nagy
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Thilo Bracht
- Medizinisches Proteom Center, Ruhr University Bochum, Bochum, Germany.,Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany.,Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom Center, Ruhr University Bochum, Bochum, Germany.,Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany.,Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Witzke
- Medizinisches Proteom Center, Ruhr University Bochum, Bochum, Germany.,Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ilona Tornyi
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| | | | - László Takács
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary.,Biosystems International Kft, Debrecen, Hungary
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Agnieszka Maj-Hes
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Zsolt Jurányi
- Department of Radiobiology and Diagnostic Onco-Cytogenetics, Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.,Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Kalantari E, Taheri T, Fata S, Abolhasani M, Mehrazma M, Madjd Z, Asgari M. Significant co-expression of putative cancer stem cell markers, EpCAM and CD166, correlates with tumor stage and invasive behavior in colorectal cancer. World J Surg Oncol 2022; 20:15. [PMID: 35016698 PMCID: PMC8751119 DOI: 10.1186/s12957-021-02469-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The crucial oncogenic role of cancer stem cells (CSCs) in tumor maintenance, progression, drug resistance, and relapse has been clarified in different cancers, particularly in colorectal cancer (CRC). The current study was conducted to evaluate the co-expression pattern and clinical significance of epithelial cell adhesion molecules (EpCAM) and activated leukocyte cell adhesion (CD166 or ALCAM) in CRC patients. METHODS This study was carried out on 458 paraffin-embedded CRC specimens by immunohistochemistry on tissue microarray (TMA) slides. RESULTS Elevated expression of EpCAM and CD166 was observed in 61.5% (246/427) and 40.5% (164/405) of CRC cases. Our analysis showed a significant positive association of EpCAM expression with tumor size (P = 0.02), tumor stage (P = 0.007), tumor differentiate (P = 0.005), vascular (P = 0.01), neural (P = 0.01), and lymph node (P = 0.001) invasion. There were no significant differences between CD166 expression and clinicopathological parameters. Moreover, the combined analysis demonstrated a reciprocal significant correlation between EpCAM and CD166 expression (P = 0.02). Interestingly, there was a significant positive correlation between EpCAM/CD166 phenotypes expression and tumor stage (P = 0.03), tumor differentiation (P = 0.05), neural, and lymph node invasion (P =0.01). CONCLUSIONS The significant correlation of EpCAM and CD166 expression and their association with tumor progression and aggressive behavior is the reason for the suggestion of these two CSC markers as promising targets to promote novel effective targeted-therapy strategies for cancer treatment in the present study.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Tahereh Taheri
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Fata
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
5
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Karstens KF, Bellon E, Polonski A, Wolters-Eisfeld G, Melling N, Reeh M, Izbicki JR, Tachezy M. Expression and serum levels of the neural cell adhesion molecule L1-like protein (CHL1) in gastrointestinal stroma tumors (GIST) and its prognostic power. Oncotarget 2020; 11:1131-1140. [PMID: 32284790 PMCID: PMC7138165 DOI: 10.18632/oncotarget.27525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Diagnosis of gastrointestinal stroma tumors (GIST) is based on the histological evaluation of tissue specimens. Reliable systemic biomarkers are lacking. We investigated the local expression of the neural cell adhesion molecule L1-like protein (CHL1) in GIST and determined whether soluble CHL1 proteoforms could serve as systemic biomarkers. MATERIAL AND METHODS Expression of CHL1 was analyzed in primary tumor specimens and metastases. 58 GIST specimens were immunohistochemically stained for CHL1 on a tissue microarray (TMA). Systemic CHL1 levels were measured in sera derived from 102 GIST patients and 91 healthy controls by ELISA. Results were statistically correlated with clinicopathological parameters. RESULTS CHL1 expression was detected in GIST specimens. Reduced tissue expression was significantly associated with advanced UICC stages (p = 0.036) and unfavorable tumor localization (p = 0.001). CHL1 serum levels are significantly elevated in GIST patients (p < 0.010). Elevated CHL1 levels were significantly associated with larger tumors (p = 0.023), advanced UICC stage (p = 0.021), and an increased Fletcher score (p = 0.041). Moreover, patients with a higher CHL1 serum levels displayed a significantly shortened recurrence free survival independent of other clinicopathological variables. CONCLUSION Local CHL1 expression and serum CHL1 levels show a reverse prognostic behavior, highlighting the relevance of proteolytic shedding of the molecule. The results of the study indicate a potential role of serum CHL1 as a diagnostic and prognostic marker in GIST.
Collapse
Affiliation(s)
- Karl-Frederick Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Eugen Bellon
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Adam Polonski
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendor, Hamburg, Germany
| |
Collapse
|
7
|
Guan SS, Wu CT, Liao TZ, Luo TY, Lin KL, Liu SH. Indium-111-labeled CD166-targeted peptide as a potential nuclear imaging agent for detecting colorectal cancer stem-like cells in a xenograft mouse model. EJNMMI Res 2020; 10:13. [PMID: 32096011 PMCID: PMC7040160 DOI: 10.1186/s13550-020-0597-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are involved in drug resistance, metastasis, and relapse of cancers, which can significantly affect tumor therapy. Hence, to develop specifically therapeutic target probe at CSCs for improvement of survival and quality of life of cancer patients is urgently needed. The CD166 protein has been suggested to be involved in colorectal cancer (CRC) tumorigenesis and to be considered a marker for colorectal CSCs (CRCSCs) detection. In this study, therefore, we attend to apply a nuclear imaging agent probe, Glycine18-Cystine-linked CD166-targeted peptides (CD166tp-G18C), to detect the changes of CD166 level in a CRC xenograft mouse model. RESULTS We isolated the CD166-positive cells from the HCT15 CRC cell line (CD166+HCT15) and evaluated their morphology and ability of clone formation, migration, protein expression, and drug resistance. The CD166-positive HCT15 cells display the CSCs characteristics. We discovered and designed a CD166-targeted peptide (CD166tp-G18C) as a targeted probe of CRC stem-like cell for cell binding assay. The CD166tp-G18C confirmed the CD166 protein targeting ability in CD166+HCT15 cells. The diethylenetriaminopentaacetic acid (DTPA)-conjugated CD166tp-G18C further was labeled with indium-111 (111In-DTPA-CD166tp-G18C) as nuclear imaging agent for imaging and bio-distribution analysis in vivo. Finally, we observed that the 111In-DTPA-CD166tp-G18C was significantly enhanced in tumor tissues of CD166+HCT15 xenograft mice as compared to the non-CD166tp-G18C control. CONCLUSIONS Our results indicated that the indium-111-labeled CD166tp-G18C may be served as a powerful tool for colorectal CSCs nuclear imaging in the CRC patients.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan.,Master Program of Food and Drug Safety, China Medical University, Taichung, 40402, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Kun-Liang Lin
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination. Oncotarget 2019; 10:6362-6377. [PMID: 31695844 PMCID: PMC6824871 DOI: 10.18632/oncotarget.27279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023] Open
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM) has been linked to the progression of numerous human cancers, where it appears to play a complex role. The current study aims to further assess the importance of ALCAM in prostate cancer and the prognostic potential of serum ALCAM as a biomarker for prostate cancer progression. Here we demonstrate enhanced levels of tissue ALCAM are associated with metastasis. Additionally, elevated serum ALCAM is indicative of progression and poorer patient outlook, and demonstrates comparable prognostic ability to PSA in terms of metastasis and prostate cancer survival. ALCAM suppression enhanced proliferation and invasiveness in PC-3 cells and motility/migration in PC-3 and LNCaP cells. ALCAM suppressed PC-3 cells were generally less responsive to HGF and displayed reduced MET transcript expression. Furthermore a recombinant human ALCAM-Fc chimera was able to inhibit LNCaP cell attachment to HECV and hFOB1.19 cells. Taken together, ALCAM appears to be a promising biomarker for prostate cancer progression, with enhanced serum expression associated with poorer prognosis. Suppression of ALCAM appears to impact cell function and cellular responsiveness to certain micro environmental factors.
Collapse
|
9
|
Modulation of cell adhesion and migration through regulation of the immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis 2019; 36:87-95. [PMID: 30778704 DOI: 10.1007/s10585-019-09957-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
In epithelial-derived cancers, altered regulation of cell-cell adhesion facilitates the disruption of tissue cohesion that is central to the progression to malignant disease. Although numerous intercellular adhesion molecules participate in epithelial adhesion, the immunoglobulin superfamily (IgSF) member activated leukocyte cell adhesion molecule (ALCAM), has emerged from multiple independent studies as a central contributor to tumor progression. ALCAM is an archetypal member of the IgSF with conventional organization of five Ig-like domains involved in homo- and heterotypic adhesions. Like many IgSF members, ALCAM is broadly expressed and involved in cellular adhesion across many cellular processes. While the redundancy of intercellular adhesion molecules (CAMs) could diminish the impact of any single CAM, consistent correlation between ALCAM expression and patient outcome for multiple cancers underscores its role in tumor progression. Unlike most oncogenes and tumor suppressors, ALCAM is neither mutated nor amplified or deleted. Experimental disruption of ALCAM-mediated adhesions implies that this IgSF member contributes to tumor progression through dynamic turnover of the protein at the cell surface. Since ALCAM is not frequently altered at the gene level, it appears to promote malignant behavior through regulation of its availability rather than its specific activity. These observations help explain its heterogeneous expression within malignant disease and the drastic changes in protein levels across tumor progression. To reveal how ALCAM contributes to tumor progression, we review regulation of its gene expression, alternative splicing, targeted proteolysis, binding partners, and surface shedding within the context of cancer. Studying ALCAM regulation has led to a novel understanding of the fine-tuning of cell adhesive state through the utilization of otherwise normal regulatory processes, which thereby enable tumor cell invasion and metastasis.
Collapse
|
10
|
Arnold Egloff SA, Du L, Loomans HA, Starchenko A, Su PF, Ketova T, Knoll PB, Wang J, Haddad AQ, Fadare O, Cates JM, Lotan Y, Shyr Y, Clark PE, Zijlstra A. Shed urinary ALCAM is an independent prognostic biomarker of three-year overall survival after cystectomy in patients with bladder cancer. Oncotarget 2018; 8:722-741. [PMID: 27894096 PMCID: PMC5352192 DOI: 10.18632/oncotarget.13546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
Proteins involved in tumor cell migration can potentially serve as markers of invasive disease. Activated Leukocyte Cell Adhesion Molecule (ALCAM) promotes adhesion, while shedding of its extracellular domain is associated with migration. We hypothesized that shed ALCAM in biofluids could be predictive of progressive disease. ALCAM expression in tumor (n = 198) and shedding in biofluids (n = 120) were measured in two separate VUMC bladder cancer cystectomy cohorts by immunofluorescence and enzyme-linked immunosorbent assay, respectively. The primary outcome measure was accuracy of predicting 3-year overall survival (OS) with shed ALCAM compared to standard clinical indicators alone, assessed by multivariable Cox regression and concordance-indices. Validation was performed by internal bootstrap, a cohort from a second institution (n = 64), and treatment of missing data with multiple-imputation. While ALCAM mRNA expression was unchanged, histological detection of ALCAM decreased with increasing stage (P = 0.004). Importantly, urine ALCAM was elevated 17.0-fold (P < 0.0001) above non-cancer controls, correlated positively with tumor stage (P = 0.018), was an independent predictor of OS after adjusting for age, tumor stage, lymph-node status, and hematuria (HR, 1.46; 95% CI, 1.03–2.06; P = 0.002), and improved prediction of OS by 3.3% (concordance-index, 78.5% vs. 75.2%). Urine ALCAM remained an independent predictor of OS after accounting for treatment with Bacillus Calmette-Guerin, carcinoma in situ, lymph-node dissection, lymphovascular invasion, urine creatinine, and adjuvant chemotherapy (HR, 1.10; 95% CI, 1.02–1.19; P = 0.011). In conclusion, shed ALCAM may be a novel prognostic biomarker in bladder cancer, although prospective validation studies are warranted. These findings demonstrate that markers reporting on cell motility can act as prognostic indicators.
Collapse
Affiliation(s)
- Shanna A Arnold Egloff
- Department of Veterans Affairs, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liping Du
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holli A Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alina Starchenko
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Taiwan
| | - Tatiana Ketova
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jifeng Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, The Fifth People's Hospital of Shanghai, Shanghai, China
| | - Ahmed Q Haddad
- Department of Urology, The University of Louisville, Louisville, KY, USA.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oluwole Fadare
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,University of California San Diego, La Jolla, CA, USA
| | - Justin M Cates
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yair Lotan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter E Clark
- Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Ingram-Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Xiao M, Wang X, Yan M, Chen W. A systematic evaluation for the potential translation of CD166-related expression as a cancer biomarker. Expert Rev Mol Diagn 2016; 16:925-32. [PMID: 27398729 DOI: 10.1080/14737159.2016.1211932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Xiao
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Lesser-Known Molecules in Ovarian Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:321740. [PMID: 26339605 PMCID: PMC4538335 DOI: 10.1155/2015/321740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/14/2015] [Accepted: 07/07/2015] [Indexed: 12/23/2022]
Abstract
Currently, the deciphering of the signaling pathways brings about new advances in the understanding of the pathogenic mechanism of ovarian carcinogenesis, which is based on the interaction of several molecules with different biochemical structure that, consequently, intervene in cell metabolism, through their role as regulators in proliferation, differentiation, and cell death. Given that the ensemble of biomarkers in OC includes more than 50 molecules the interest of the researchers focuses on the possible validation of each one's potential as prognosis markers and/or therapeutic targets. Within this framework, this review presents three protein molecules: ALCAM, c-FLIP, and caveolin, motivated by the perspectives provided through the current limited knowledge on their role in ovarian carcinogenesis and on their potential as prognosis factors. Their structural stability, once altered, triggers the initiation of the sequences characteristic for ovarian carcinogenesis, through their role as modulators for several signaling pathways, contributing to the disruption of cellular junctions, disturbance of pro-/antiapoptotic equilibrium, and alteration of transmission of the signals specific for the molecular pathways. For each molecule, the text is built as follows: (i) general remarks, (ii) structural details, and (iii) particularities in expression, from different tumors to landmarks in ovarian carcinoma.
Collapse
|
13
|
Clauditz TS, von Rheinbaben K, Lebok P, Minner S, Tachezy M, Borgmann K, Knecht R, Sauter G, Wilczak W, Blessmann M, Münscher A. Activated leukocyte cell adhesion molecule (ALCAM/CD166) expression in head and neck squamous cell carcinoma (HNSSC). Pathol Res Pract 2014; 210:649-55. [DOI: 10.1016/j.prp.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/22/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
14
|
Tachezy M, Zander H, Wolters-Eisfeld G, Müller J, Wicklein D, Gebauer F, Izbicki JR, Bockhorn M. Activated Leukocyte Cell Adhesion Molecule (CD166): An “Inert” Cancer Stem Cell Marker for Non-Small Cell Lung Cancer? Stem Cells 2014; 32:1429-36. [DOI: 10.1002/stem.1665] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Hilke Zander
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Julia Müller
- Institute of Pathology; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Daniel Wicklein
- Institute of Anatomy; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Florian Gebauer
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg Eppendorf; Hamburg Germany
| |
Collapse
|
15
|
Laban S, Atanackovic D, Luetkens T, Knecht R, Busch CJ, Freytag M, Spagnoli G, Ritter G, Hoffmann TK, Knuth A, Sauter G, Wilczak W, Blessmann M, Borgmann K, Muenscher A, Clauditz TS. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer. Int J Cancer 2014; 135:1142-52. [PMID: 24482145 DOI: 10.1002/ijc.28752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p < 0.0001), 46.6 versus 50.0 versus 109.0 for MAGE-A3/A4 (p = 0.0074) and 13.3 versus 50.0 versus 100.2 months for NY-ESO-1 (p = 0.0019). By multivariate analysis, these factors were confirmed as independent markers for poor survival. HNSCC patients showing protein expression of MAGE-A family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients.
Collapse
Affiliation(s)
- Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Head and Neck Cancer Center of the University Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hansen AG, Arnold SA, Jiang M, Palmer TD, Ketova T, Merkel A, Pickup M, Samaras S, Shyr Y, Moses HL, Hayward SW, Sterling JA, Zijlstra A. ALCAM/CD166 is a TGF-β-responsive marker and functional regulator of prostate cancer metastasis to bone. Cancer Res 2014; 74:1404-15. [PMID: 24385212 DOI: 10.1158/0008-5472.can-13-1296] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dissemination of prostate cancer to bone is a common, incurable aspect of advanced disease. Prevention and treatment of this terminal phase of prostate cancer requires improved molecular understanding of the process as well as markers indicative of molecular progression. Through biochemical analyses and loss-of-function in vivo studies, we demonstrate that the cell adhesion molecule, activated leukocyte cell adhesion molecule (ALCAM), is actively shed from metastatic prostate cancer cells by the sheddase ADAM17 in response to TGF-β. Not only is this posttranslational modification of ALCAM a marker of prostate cancer progression, the molecule is also required for effective metastasis to bone. Biochemical analysis of prostate cancer cell lines reveals that ALCAM expression and shedding is elevated in response to TGF-β signaling. Both in vitro and in vivo shedding is mediated by ADAM17. Longitudinal analysis of circulating ALCAM in tumor-bearing mice revealed that shedding of tumor, but not host-derived ALCAM is elevated during growth of the cancer. Gene-specific knockdown of ALCAM in bone-metastatic PC3 cells greatly diminished both skeletal dissemination and tumor growth in bone. The reduced growth of ALCAM knockdown cells corresponded to an increase in apoptosis (caspase-3) and decreased proliferation (Ki67). Together, these data demonstrate that the ALCAM is both a functional regulator as well as marker of prostate cancer progression.
Collapse
Affiliation(s)
- Amanda G Hansen
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology, Cancer Biology, and Urologic Surgery, Division of Cancer Biostatistics, Vanderbilt University; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt Center for Bone Biology; and Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, Schlomm T, Graefen M, Huland H, Salomon G, Steuber T, Wilczak W, Sirma H, Simon R, Sauter G, Minner S, Quaas A. βIII-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:609-17. [PMID: 24378408 DOI: 10.1016/j.ajpath.2013.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 02/08/2023]
Abstract
Evidence suggests that class III β-tubulin (βIII-tubulin) may represent a prognostic and predictive molecular marker in prostate cancer. βIII-Tubulin expression was determined by IHC in 8179 prostate cancer specimens in a TMA format. Results were compared with tumor phenotype, biochemical recurrence, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) status, and deletions on PTEN, 3p13, 5q21, and 6q15. βIII-Tubulin expression was detectable in 25.6% of 8179 interpretable cancers. High βIII-tubulin expression was strongly associated with both TMPRSS2:ERG rearrangement and ERG expression (P < 0.0001 each). High βIII-tubulin expression was tightly linked to high Gleason grade, advanced pT stage, and early prostate-specific antigen (PSA) recurrence in all cancers (P < 0.0001 each), but also in the subgroups of ERG-negative and ERG-positive cancers. When all tumors were analyzed, the prognostic role of βIII-tubulin expression was independent of Gleason grade, pT stage, pN stage, surgical margin status, and preoperative PSA. Independent prognostic value became even more evident if the analysis was limited to preoperatively available features, such as biopsy specimen Gleason grade, preoperative PSA, cT stage, and βIII-tubulin expression (P < 0.0001 each). βIII-Tubulin expression was associated with PTEN (P < 0.0001) when all tumors were analyzed, but also in the subgroups of ERG-negative and ERG-positive cancers. βIII-Tubulin expression is an independent prognostic parameter. The significant associations with key genomic alterations of prostate cancer, such as TMPRSS2:ERG fusions and PTEN deletions, suggest interactions with several pivotal pathways involved in prostate cancer.
Collapse
Affiliation(s)
- Maria C Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Prostate Cancer Center, Section for Translational Prostate Cancer Research, the Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Salomon
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Steuber
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hüseyin Sirma
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Quaas
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Grupp K, Diebel F, Sirma H, Simon R, Breitmeyer K, Steurer S, Hube-Magg C, Prien K, Pham T, Weigand P, Michl U, Heinzer H, Kluth M, Minner S, Tsourlakis MC, Izbicki JR, Sauter G, Schlomm T, Wilczak W. SPINK1 expression is tightly linked to 6q15- and 5q21-deleted ERG-fusion negative prostate cancers but unrelated to PSA recurrence. Prostate 2013; 73:1690-8. [PMID: 23843146 DOI: 10.1002/pros.22707] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND The serine peptidase inhibitor, Kazal type 1 (SPINK1) has been suggested to define an aggressive molecular subtype of ERG-fusion negative prostate cancer. It was the aim of this study to further study the clinical relevance of SPINK1 expression and its relationship with other key genomic alterations of prostate cancer. METHODS A tissue microarray containing more than 10,000 prostate cancers with clinical follow-up was used for immunohistochemical SPINK1 analysis. Data on ERG status as well as PTEN, 6q, 5q, and 3p deletions were available for comparison. RESULTS SPINK1 expression was absent in benign prostate glands and detectable in 5.9% of 9,503 interpretable prostate cancers. Presence of SPINK1 expression was markedly more frequent in ERG negative (10.4%) than in ERG positive cancers (0.3%; P < 0.0001). However, SPINK1 expression was unrelated to tumor phenotype and biochemical recurrence in all cancers and in the subgroup of ERG negative cancers. Further subgroup analyses revealed, however, that--within ERG negative cancers--SPINK1 expression was significantly linked to deletions at 6q15 (P < 0.0001) and 5q21 (P = 0.0042). CONCLUSIONS Our results exclude SPINK1 as a relevant prognostic prostate cancer biomarker. However, the data demonstrate that SPINK1 overexpression is tightly linked to the small subsets of 6q15- and 5q21-deleted ERG negative prostate cancers. These findings support the concept of molecularly defined subtypes of prostate cancers.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 6
- Gene Deletion
- Humans
- Male
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Prostate/metabolism
- Prostate/pathology
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Tissue Array Analysis
- Trans-Activators/genetics
- Transcriptional Regulator ERG
- Trypsin Inhibitor, Kazal Pancreatic
Collapse
Affiliation(s)
- Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Many surface antigens have been previously used to identify hematopoietic stem cells or cellular elements of the hematopoietic niche. However, to date, not a single surface marker has been identified as a common marker expressed on murine and human hematopoietic stem cells and on cells of the hematopoietic niche. Recently, a few laboratories, including ours, recognized the importance of CD166 as a functional marker on both stem cells and osteoblasts and have begun to characterize the role of CD166 in hematopoiesis. RECENT FINDINGS Expression of CD166 on hematopoietic cells and cells in the marrow microenvironment was first reported more than a decade ago. Lately, however, a more prominent role for CD166 in normal hematopoiesis and in cancer biology including metastasis began to emerge. This review will cover the significance of CD166 in identifying normal hematopoietic stem cells and cells of the hematopoietic niche and highlight how CD166-mediated homophilic interactions between both cell types may be critical for stem cell function. SUMMARY The conserved homology between murine and human CD166 and its involvement in metastasis provides an excellent bridge for translational investigations aimed at enhancing stem cell engraftment and clinical utility of stem cells and at using CD166 as a therapeutic target in cancer.
Collapse
|
20
|
High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol Oncol 2013; 7:1001-11. [PMID: 23941784 DOI: 10.1016/j.molonc.2013.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been suggested to play a role in cancer. To assess its role in prostate cancer, LPCAT1 expression was analyzed on a tissue microarray containing samples from 11,152 prostate cancer patients. In benign prostate glands, LPCAT1 immunostaining was absent or weak. In prostate cancer, LPCAT1 positivity was found in 73.8% of 8786 interpretable tumors including 29.2% with strong expression. Increased LPCAT1 expression was associated with advanced tumor stage (pT3b/T4) (p < 0.0001), high Gleason score (≥4 + 4) (p < 0.0001), positive nodal involvement (p = 0.0002), positive surgical margin (p = 0.0005), and early PSA recurrence (p < 0.0001). High LPCAT1 expression was strongly linked to ERG-fusion type prostate cancer. Strong LPCAT1 staining was detected in 45.3% of ERG positive but in only 16.7% of ERG negative tumors (p < 0.0001). Within ERG negative cancers, LPCAT1 staining was strongly increased within the subgroup of PTEN deleted cancers (p < 0.0001). Further subgroup analyses revealed that associations of high LPCAT1 expression with PSA recurrence and unfavorable tumor phenotype were largely driven by ERG negative cancers (p < 0.0001) while these effects were substantially mitigated in ERG positive cancers (p = 0.0073). The prognostic impact of LPCAT1 expression was independent of histological and clinical parameters. It is concluded, that LPCAT1 measurement, either alone or in combination, may be utilized for better clinical decision-making. These data also highlight the potentially important role of lipid metabolism in prostate cancer biology.
Collapse
|
21
|
Stumm L, Burkhardt L, Steurer S, Simon R, Adam M, Becker A, Sauter G, Minner S, Schlomm T, Sirma H, Michl U. Strong expression of the neuronal transcription factor FOXP2 is linked to an increased risk of early PSA recurrence in ERG fusion-negative cancers. J Clin Pathol 2013; 66:563-8. [PMID: 23559350 DOI: 10.1136/jclinpath-2012-201335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Transcription factors of the forkhead box P (FOXP1-4) family have been implicated in various human cancer types before. The relevance and role of neuronal transcription factor FOXP2 in prostate cancer is unknown. METHODS A tissue microarray containing samples from more than 11 000 prostate cancers from radical prostatectomy specimens with clinical follow-up data was analysed for FOXP2 expression by immunohistochemistry. FOXP2 data were also compared with pre-existing ERG fusion (by fluorescence in situ hybridisation and immunohistochemistry) and cell proliferation (Ki67 labelling index) data. RESULTS There was a moderate to strong FOXP2 protein expression in basal and secretory cells of normal prostatic glands. As compared with normal cells, FOXP2 expression was lost or reduced in 25% of cancers. Strong FOXP2 expression was linked to advanced tumour stage, high Gleason score, presence of lymph node metastases and early tumour recurrence (p<0.0001; each) in ERG fusion-negative, but not in ERG fusion-positive cancers. High FOXP2 expression was linked to high Ki67 labelling index (p<0.0001) in all cancers irrespective of ERG fusion status. CONCLUSIONS These data demonstrate that similar high FOXP2 protein levels as in normal prostate epithelium exert a 'paradoxical' oncogenic role in 'non fusion-type' prostate cancer. It may be speculated that interaction of FOXP2 with members of pathways that are specifically activated in 'non fusion-type' cancers may be responsible for this phenomenon.
Collapse
Affiliation(s)
- Laura Stumm
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hansen AG, Freeman TJ, Arnold SA, Starchenko A, Jones-Paris CR, Gilger MA, Washington MK, Fan KH, Shyr Y, Beauchamp RD, Zijlstra A. Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. Cancer Res 2013; 73:2955-64. [PMID: 23539446 DOI: 10.1158/0008-5472.can-12-2052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular biomarkers of cancer are needed to assist histologic staging in the selection of treatment, outcome risk stratification, and patient prognosis. This is particularly important for patients with early-stage disease. We show that shedding of the extracellular domain of activated leukocyte cell adhesion molecule (ALCAM) is prognostic for outcome in patients with colorectal cancer (CRC). Previous reports on the prognostic value of ALCAM expression in CRC have been contradictory and inconclusive. This study clarifies the prognostic value of ALCAM by visualizing ectodomain shedding using a dual stain that detects both the extracellular and the intracellular domains in formalin-fixed tissue. Using this novel assay, 105 patients with primary CRCs and 12 normal mucosa samples were evaluated. ALCAM shedding, defined as detection of the intracellular domain in the absence of the corresponding extracellular domain, was significantly elevated in patients with CRC and correlated with reduced survival. Conversely, retention of intact ALCAM was associated with improved survival, thereby confirming that ALCAM shedding is associated with poor patient outcome. Importantly, analysis of patients with stage II CRC showed that disease-specific survival is significantly reduced for patients with elevated ALCAM shedding (P = 0.01; HR, 3.0), suggesting that ALCAM shedding can identify patients with early-stage disease at risk of rapid progression.
Collapse
Affiliation(s)
- Amanda G Hansen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin Q, Tan HT, Lim HSR, Chung MCM. Sieving through the cancer secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2360-71. [PMID: 23376431 DOI: 10.1016/j.bbapap.2013.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/03/2013] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Cancer is among the most prevalent and serious health problems worldwide. Therefore, there is an urgent need for novel cancer biomarkers with high sensitivity and specificity for early detection and management of the disease. The cancer secretome, encompassing all the proteins that are secreted by cancer cells, is a promising source of biomarkers as the secreted proteins are most likely to enter the blood circulation. Moreover, since secreted proteins are responsible for signaling and communication with the tumor microenvironment, studying the cancer secretome would further the understanding of cancer biology. Latest developments in proteomics technologies have significantly advanced the study of the cancer secretome. In this review, we will present an overview of the secretome sample preparation process and summarize the data from recent secretome studies of six common cancers with high mortality (breast, colorectal, gastric, liver, lung and prostate cancers). In particular, we will focus on the various platforms that were employed and discuss the clinical applicability of the key findings in these studies. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Qifeng Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | | | | | | |
Collapse
|
24
|
Jannie KM, Stipp CS, Weiner JA. ALCAM regulates motility, invasiveness, and adherens junction formation in uveal melanoma cells. PLoS One 2012; 7:e39330. [PMID: 22745734 PMCID: PMC3383762 DOI: 10.1371/journal.pone.0039330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/23/2012] [Indexed: 01/19/2023] Open
Abstract
ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM's role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves.
Collapse
Affiliation(s)
- Karry M. Jannie
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher S. Stipp
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tachezy M, Zander H, Marx AH, Stahl PR, Gebauer F, Izbicki JR, Bockhorn M. ALCAM (CD166) expression and serum levels in pancreatic cancer. PLoS One 2012; 7:e39018. [PMID: 22745698 PMCID: PMC3380038 DOI: 10.1371/journal.pone.0039018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/18/2022] Open
Abstract
Background This study was conducted to evaluate the expression of the activated leukocyte cell adhesion molecule (ALCAM) in pancreatic cancer (PAC) and to determine whether or not the ectodomain shedding of ALCAM (s-ALCAM) could serve as a biomarker in the peripheral blood of PAC patients. Material and Methods Tissue specimens and blood sera of patients with PAC (n = 264 and n = 116, respectively) and the sera of 115 patients with chronic pancreatitis (CP) were analyzed via ALCAM immunohistochemistry and s-ALCAM ELISA tests. Results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, log-rank test, respectively). Results ALCAM was expressed in the majority of PAC lesions. Immunohistochemistry and serum ELISA tests revealed no association between ALCAM expression in primary tumors or s-ALCAM and clinical or histopathological data. Neither ALCAM nor s-ALCAM showed a significant impact regarding overall survival (p = 0.261 and p = 0.660, respectively). S-ALCAM serum levels were significantly elevated compared to the sera of CP patients (p<0.001). The sensitivity of s-ALCAM in detecting PAC was 58.6% at a specificity of 73.9% (AUC = 0.69). Conclusions ALCAM is expressed in the majority of PAC lesions, but statistical analysis revealed no association with clinical or pathological data. Although significantly elevated in patients with PAC, the sensitivity and specificity of the s-ALCAM serum quantification test was low. Therefore, its potential as a novel diagnostic marker for PAC remains elusive and further investigations are required.
Collapse
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tachezy M, Zander H, Gebauer F, Marx A, Kaifi JT, Izbicki JR, Bockhorn M. Activated leukocyte cell adhesion molecule (CD166)--its prognostic power for colorectal cancer patients. J Surg Res 2012; 177:e15-20. [PMID: 22482754 DOI: 10.1016/j.jss.2012.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND The activated leukocyte cell adhesion molecule (ALCAM, CD166) has been reported to be involved in tumorigenesis of colorectal cancer (CRC) and to function as a cancer stem cell marker. Controversial data exist regarding the prognostic power of ALCAM expression in CRC. Here, we evaluate the expression of ALCAM in a cohort of CRC patients and its usage as a prognostic marker for survival. MATERIALS AND METHODS Tissue specimens from 299 patients with CRC treated between 1993 and 2006 were analyzed via ALCAM immunohistochemistry (clone MOG/07) using a tissue microarray. Results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, and log-rank test, respectively). Multivariate analysis also was performed (Cox regression). RESULTS ALCAM is expressed in most primary (76%) and secondary (62%) CRC lesions (P = 0.014). Immunohistochemistry revealed an inverse association with tumor grading (P = 0.002) but not with any other clinical or histopathological data. Kaplan-Meier survival analysis revealed a significant overall survival benefit in the group of ALCAM-positive patients (P = 0.019). Multivariate analysis showed that ALCAM is an independent positive prognostic marker for overall survival (P = 0.023). CONCLUSIONS ALCAM expression is a positive prognostic marker for overall survival of CRC patients, and its detection might help to optimize the existing prognostic staging system. Elevated expression in higher differentiated tumors might indicate a potential role in the early steps of tumorigenesis, and its loss might be associated with reduced cellular adhesion, resulting in a higher metastatic potential of the tumor. Further studies must be conducted investigating these hypotheses.
Collapse
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
28
|
Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS, Simon R, Tennstedt P, Müller J, Scholz L, Brase JC, Liu AY, Schlüter H, Pantel K, Schumacher U, Bokemeyer C, Steuber T, Graefen M, Sauter G, Schlomm T. ERG Status Is Unrelated to PSA Recurrence in Radically Operated Prostate Cancer in the Absence of Antihormonal Therapy. Clin Cancer Res 2011; 17:5878-88. [DOI: 10.1158/1078-0432.ccr-11-1251] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|