1
|
Niedowicz DM, Gollihue JL, Weekman EM, Phe P, Wilcock DM, Norris CM, Nelson PT. Using digital pathology to analyze the murine cerebrovasculature. J Cereb Blood Flow Metab 2024; 44:595-610. [PMID: 37988134 PMCID: PMC10981399 DOI: 10.1177/0271678x231216142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Research on the cerebrovasculature may provide insights into brain health and disease. Immunohistochemical staining is one way to visualize blood vessels, and digital pathology has the potential to revolutionize the measurement of blood vessel parameters. These tools provide opportunities for translational mouse model research. However, mouse brain tissue presents a formidable set of technical challenges, including potentially high background staining and cross-reactivity of endogenous IgG. Formalin-fixed paraffin-embedded (FFPE) and fixed frozen sections, both of which are widely used, may require different methods. In this study, we optimized blood vessel staining in mouse brain tissue, testing both FFPE and frozen fixed sections. A panel of immunohistochemical blood vessel markers were tested (including CD31, CD34, collagen IV, DP71, and VWF), to evaluate their suitability for digital pathological analysis. Collagen IV provided the best immunostaining results in both FFPE and frozen fixed murine brain sections, with highly-specific staining of large and small blood vessels and low background staining. Subsequent analysis of collagen IV-stained sections showed region and sex-specific differences in vessel density and vessel wall thickness. We conclude that digital pathology provides a useful tool for relatively unbiased analysis of the murine cerebrovasculature, provided proper protein markers are used.
Collapse
Affiliation(s)
- Dana M Niedowicz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Jenna L Gollihue
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Erica M Weekman
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Panhavuth Phe
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Fernandez Gonzalez De La Vega C, Duenweg S, Jain P, Rubenstein SI, Bobholz S, Barrett MJ, LaViolette PS, Iczkowski KA. Morphologic features of prostate cancer-encased native vessels: An image analysis study. Pathol Res Pract 2024; 256:155239. [PMID: 38461692 DOI: 10.1016/j.prp.2024.155239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Vasculature plays a crucial role in the progression of prostate cancer (PC). Changes to the prostatic native vessels have not been studied since 2000 when Garcia et al. demonstrated marked media hypercellularity and increased artery thickness in prostatic native arteries within PC. We aim to further evaluate and characterize prostatic native vessels with a more accurate method with the use of virtual slides and digital analysis. DESIGN Pathologist-annotated whole-mount digital slides from 96 entirely submitted prostatectomies were annotated for PC (color-coded by Gleason) using Omero platform. A subset of 44 cases met criteria for further analysis of media thickness, cellularity, and wall thickness to lumen ratio. Cases were included based on containing ≥5 native arteries (≥100 µm diameter) encased on at least 3 sides by PC, with vessels (≥100 µm diameter) designated as controls if they were ≥ 1000 µm away from PC. Annotated vessels were segmented and processed using Matlab 2023b. Mean media thickness (corrected for oblique sections), media: lumen ratio (based on numbers of pixels), and media cellularity (nuclei count) were studied by analysis with SPSS by linear mixed model with nested random effects for subject and slide to account for repeated measures. RESULTS Vessels encased by PC showed greater media thickness (p=0.02), cellularity (p=0.02) and wall thickness/lumen ratio (p= <0.001) compared to vessels away from PC. These values showed an increasing trend according to stage in cellularity (p=0.14), media thickness (p=0.12) and wall thickness/ lumen ratio (p= 0.33) with higher stage (pT3). A Gleason group comparison showed a borderline-significant gradewise trend when analyzing wall thickness/lumen ratio (p=0.06). Grade 5 emerged as significantly different (p=0.02) from grades 3 or 4 non-cribriform. CONCLUSIONS Similar to the 2000 study, increased media thickness and hypercellularity of vessels encased by PC were evident compared to controls. Borderline grade-dependent increased vessel cellularity changes were seen, suggesting a possible role in PC progression; the predictive value of these changes for outcome is uncertain. Whether the etiology of changes reflects locally increased intravascular pressure of vessels within tumor should be investigated.
Collapse
Affiliation(s)
| | - Savannah Duenweg
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pragya Jain
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Samuel Bobholz
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Barrett
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth A Iczkowski
- Department of Pathology and Laboratory Medicine, University of California - Davis, Sacramento, USA.
| |
Collapse
|
3
|
Børretzen A, Reisæter LAR, Ringheim A, Gravdal K, Haukaas SA, Fasmer KE, Haldorsen IHS, Beisland C, Akslen LA, Halvorsen OJ. Microvascular proliferation is associated with high tumour blood flow by mpMRI and disease progression in primary prostate cancer. Sci Rep 2023; 13:17949. [PMID: 37863961 PMCID: PMC10589248 DOI: 10.1038/s41598-023-45158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Active angiogenesis may be assessed by immunohistochemistry using Nestin, a marker of newly formed vessels, combined with Ki67 for proliferating cells. Here, we studied microvascular proliferation by Nestin-Ki67 co-expression in prostate cancer, focusing on relations to quantitative imaging parameters from anatomically matched areas obtained by preoperative mpMRI, clinico-pathological features and prognosis. Tumour slides from 67 patients (radical prostatectomies) were stained for Nestin-Ki67. Proliferative microvessel density (pMVD) and presence of glomeruloid microvascular proliferation (GMP) were recorded. From mpMRI, forward volume transfer constant (Ktrans), reverse volume transfer constant (kep), volume of EES (ve), blood flow, and apparent diffusion coefficient (ADC) were obtained. High pMVD was associated with high blood flow (p = 0.008) and low ADC (p = 0.032). High Ktrans, kep, and blood flow were associated with high Gleason score. High pMVD, GMP, and low ADC were associated with most adverse clinico-pathological factors. Regarding prognosis, high pMVD, Ktrans, kep, and low ADC were associated with reduced biochemical recurrence-free- and metastasis-free survival (p ≤ 0.044) and high blood flow with reduced time to biochemical- and clinical recurrence (p < 0.026). In multivariate analyses however, microvascular proliferation was a stronger predictor compared with blood flow. Indirect, dynamic markers of angiogenesis from mpMRI and direct, static markers of angiogenesis from immunohistochemistry may aid in the stratification and therapy planning of prostate cancer patients.
Collapse
Affiliation(s)
- Astrid Børretzen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Lars A R Reisæter
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Anders Ringheim
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Karsten Gravdal
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Svein A Haukaas
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Kristine E Fasmer
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid H S Haldorsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Ole J Halvorsen
- Centre for Cancer Biomarkers CCBIO, Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Grizzi F, Hegazi MAAA, Zanoni M, Vota P, Toia G, Clementi MC, Mazzieri C, Chiriva-Internati M, Taverna G. Prostate Cancer Microvascular Routes: Exploration and Measurement Strategies. Life (Basel) 2023; 13:2034. [PMID: 37895416 PMCID: PMC10608780 DOI: 10.3390/life13102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Angiogenesis is acknowledged as a pivotal feature in the pathology of human cancer. Despite the absence of universally accepted markers for gauging the comprehensive angiogenic activity in prostate cancer (PCa) that could steer the formulation of focused anti-angiogenic treatments, the scrutiny of diverse facets of tumoral blood vessel development may furnish significant understanding of angiogenic processes. Malignant neoplasms, encompassing PCa, deploy a myriad of strategies to secure an adequate blood supply. These modalities range from sprouting angiogenesis and vasculogenesis to intussusceptive angiogenesis, vascular co-option, the formation of mosaic vessels, vasculogenic mimicry, the conversion of cancer stem-like cells into tumor endothelial cells, and vascular pruning. Here we provide a thorough review of these angiogenic mechanisms as they relate to PCa, discuss their prospective relevance for predictive and prognostic evaluations, and outline the prevailing obstacles in quantitatively evaluating neovascularization via histopathological examinations.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Giovanni Toia
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maria Chiara Clementi
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Cinzia Mazzieri
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| |
Collapse
|
5
|
Gao Y, Zeng X, Liao X. Correlation between microvessel maturity and ISUP grades assessed using contrast-enhanced transrectal ultrasonography in prostate cancer. Open Med (Wars) 2023; 18:20230772. [PMID: 37588658 PMCID: PMC10426265 DOI: 10.1515/med-2023-0772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
This study aimed to assess the correlation among the peak intensity (PI) values of quantitative parameters, microvessel density (MVD), microvessel maturity, and International Society of Urological Pathology (ISUP) grades in biopsy specimens from prostate cancer (PCa) patients. The study population included PCa patients who underwent targeted and systematic biopsy, without radiation or chemohormonal therapy before biopsy. Contrast-enhanced transrectal ultrasonography (CE-TRUS) was performed in all patients before biopsy. Contrast-enhancement patterns and PI values of quantitative parameters were observed. Tumor tissue samples were immunostained for CD31 expression. MVD, microvessel maturity, and ISUP grades were determined in prostate biopsy specimens. Based on the contrast enhancement patterns of prostate lesions, 16 patients were assigned to a low-enhancement group and 45 to a high-enhancement group. The number of mature vessels, MVD, mature vessel index, and ISUP grades were all higher in the high-enhancement group than in the low-enhancement group (all P < 0.05). The immature vessel index was lower in the high-enhancement group than in the low-enhancement group (P < 0.05). The PI value was positively correlated with the number of mature vessels (r = 0.372). In conclusion, enhancement patterns on CE-TRUS can reflect microvessel maturity in PCa. The PI value was positively correlated with the number of mature vessels.
Collapse
Affiliation(s)
- Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Xuerong Zeng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Xinhong Liao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd,
Nanning, 530021Guangxi, China
| |
Collapse
|
6
|
Milosevic V, Edelmann RJ, Winge I, Strell C, Mezheyeuski A, Knutsvik G, Askeland C, Wik E, Akslen LA, Östman A. Vessel size as a marker of survival in estrogen receptor positive breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06974-4. [PMID: 37222874 DOI: 10.1007/s10549-023-06974-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Angiogenesis is crucial for tumor growth and is one of the hallmarks of cancer. In this study, we analyzed microvessel density, vessel median size, and perivascular a-SMA expression as prognostic biomarkers in breast cancer. METHODS Dual IHC staining was performed where alpha-SMA antibodies were used together with antibodies against the endothelial cell marker CD34. Digital images of stainings were analyzed to extract quantitative data on vessel density, vessel size, and perivascular alpha-SMA status. RESULTS The analyses in the discovery cohort (n = 108) revealed a statistically significant relationship between large vessel size and shorter disease-specific survival (p = 0.007, log-rank test; p = 0.01, HR 3.1; 95% CI 1.3-7.4, Cox-regression analyses). Subset analyses indicated that the survival association of vessel size was strengthened in ER + breast cancer. To consolidate these findings, additional analyses were performed on a validation cohort (n = 267) where an association between large vessel size and reduced survival was also detected in ER + breast cancer (p = 0.016, log-rank test; p = 0.02; HR 2.3, 95% CI 1.1-4.7, Cox-regression analyses). CONCLUSION Alpha-SMA/CD34 dual-IHC staining revealed breast cancer heterogeneity regarding vessel size, vessel density, and perivascular a-SMA status. Large vessel size was linked to shorter survival in ER + breast cancer.
Collapse
Affiliation(s)
- Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Askeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
7
|
Esteves M, Silva C, Bovolini A, Pereira SS, Morais T, Moreira Â, Costa MM, Monteiro MP, Duarte JA. Regular Voluntary Running is Associated with Increased Tumor Vascularization and Immune Cell Infiltration and Decreased Tumor Growth in Mice. Int J Sports Med 2023. [PMID: 36931293 DOI: 10.1055/a-2008-7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Tumors present dysfunctional vasculature that limits blood perfusion and hinders immune cells delivery. We aimed to investigate if regular voluntary running promotes tumor vascular remodelling, improves intratumoral immune cells infiltration and inhibits tumor growth. Tumors were induced in C57BL/6 male mice (n=28) by subcutaneous inoculation in the dorsal region with a suspension of RM1 cells (1.5×105 cells/500 µL PBS) and randomly allocated into two groups: sedentary (n=14) and voluntarily exercised on a wheel (n=14). Seven mice from each group were sacrificed 14 and 28 days after cells' inoculation to evaluate tumor weight, microvessel density, vessels' lumen regularity and the intratumoral quantity of NKG2D receptors, CD4+and CD8+T cells, by immunohistochemistry. The statistical inference was done through a two-way ANOVA. Exercised mice developed smaller tumors at 14 (0.17±0.1 g vs. 0.48±0.2 g, p<0.05) and 28 (0.92±0.7 g vs. 2.09±1.3 g, p<0.05) days, with higher microvessel density (21.20±3.2 vs. 15.86±4.0 vessels/field, p<0.05), more regular vessels' lumen (1.06±0.2 vs. 1.43±0.2, p<0.05), and higher CD8+T cells (464.95±48.0 vs. 364.70±49.4 cells/mm2, p<0.01), after 28 days. NKG2D expression was higher in exercised mice at 14 (263.27±25.8 cells/mm2, p<0.05) and 28 (295.06±56.2 cells/mm2, p<0.001) days. Regular voluntary running modulates tumor vasculature, increases immune cells infiltration and attenuates tumor growth, in mice.
Collapse
Affiliation(s)
- Mário Esteves
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Escola Superior de Saude Fernando Pessoa, Porto, Portugal.,Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal
| | - Carina Silva
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal
| | - António Bovolini
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal
| | - Sofia S Pereira
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine, University of Porto Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
| | - Tiago Morais
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine, University of Porto Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
| | - Ângela Moreira
- Communication Unit, Universidade do Porto Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Madalena M Costa
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine, University of Porto Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine, University of Porto Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
| | - Jose Alberto Duarte
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,TOXRUN, University Institute of Health Sciences, CESPU, Gandra, Portuga
| |
Collapse
|
8
|
Palombo M, Valindria V, Singh S, Chiou E, Giganti F, Pye H, Whitaker HC, Atkinson D, Punwani S, Alexander DC, Panagiotaki E. Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with relaxation-VERDICT MRI. Sci Rep 2023; 13:2999. [PMID: 36810476 PMCID: PMC9943845 DOI: 10.1038/s41598-023-30182-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy. We estimate joint diffusion and relaxation prostate tissue parameters with rVERDICT using deep neural networks for fast fitting. We tested the feasibility of rVERDICT estimates for Gleason grade discrimination and compared with classic VERDICT and the apparent diffusion coefficient (ADC) from mp-MRI. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3 + 3 and 3 + 4 (p = 0.003) and Gleason 3 + 4 and ≥ 4 + 3 (p = 0.040), outperforming classic VERDICT and the ADC from mp-MRI. To evaluate the relaxation estimates we compare against independent multi-TE acquisitions, showing that the rVERDICT T2 values are not significantly different from those estimated with the independent multi-TE acquisition (p > 0.05). Also, rVERDICT parameters exhibited high repeatability when rescanning five patients (R2 = 0.79-0.98; CV = 1-7%; ICC = 92-98%). The rVERDICT model allows for accurate, fast and repeatable estimation of diffusion and relaxation properties of PCa sensitive enough to discriminate Gleason grades 3 + 3, 3 + 4 and ≥ 4 + 3.
Collapse
Affiliation(s)
- Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK.
| | - Vanya Valindria
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Saurabh Singh
- Centre for Medical Imaging, University College London, London, UK
| | - Eleni Chiou
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Francesco Giganti
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, UK
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, UK
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Eleftheria Panagiotaki
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| |
Collapse
|
9
|
Curcio A, Perez JE, Prévéral S, Fromain A, Genevois C, Michel A, Van de Walle A, Lalatonne Y, Faivre D, Ménager C, Wilhelm C. The role of tumor model in magnetic targeting of magnetosomes and ultramagnetic liposomes. Sci Rep 2023; 13:2278. [PMID: 36755030 PMCID: PMC9908874 DOI: 10.1038/s41598-023-28914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
The combined passive and active targeting of tumoral tissue remains an active and relevant cancer research field. Here, we exploit the properties of two highly magnetic nanomaterials, magnetosomes and ultramagnetic liposomes, in order to magnetically target prostate adenocarcinoma tumors, implanted orthotopically or subcutaneously, to take into account the role of tumor vascularization in the targeting efficiency. Analysis of organ biodistribution in vivo revealed that, for all conditions, both nanomaterials accumulate mostly in the liver and spleen, with an overall low tumor retention. However, both nanomaterials were more readily identified in orthotopic tumors, reflecting their higher tumor vascularization. Additionally, a 2- and 3-fold increase in nanomaterial accumulation was achieved with magnetic targeting. In summary, ultramagnetic nanomaterials show promise mostly in the targeting of highly-vascularized orthotopic murine tumor models.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Sandra Prévéral
- Aix-Marseille University (AMU), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), 13108, Saint-Paul-lez-Durance, France
| | - Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Coralie Genevois
- TBM Core, UAR 3427, INSERM US 005, University of Bordeaux, 33000, Bordeaux, France
| | - Aude Michel
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Phenix, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny, F-93017, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne F- 93009, Bobigny, France
| | - Damien Faivre
- Aix-Marseille University (AMU), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), 13108, Saint-Paul-lez-Durance, France
| | - Christine Ménager
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Phenix, 75005, Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
10
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Yuri P, Shigemura K, Kitagawa K, Hadibrata E, Risan M, Zulfiqqar A, Soeroharjo I, Hendri AZ, Danarto R, Ishii A, Yamasaki S, Yan Y, Heriyanto DS, Fujisawa M. Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients' survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int 2020; 8:62-69. [PMID: 32647642 PMCID: PMC7335973 DOI: 10.1016/j.prnil.2019.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) and microvessel density (MVD) play an essential role for tumor progression in prostate cancer (PCa). In this study, we evaluated the association between TAMs, the infiltration with tumor angiogenesis and the response to androgen deprivation therapies (ADTs) in PCa to evaluate TAM infiltration as a predictive factor for PCa survival. MATERIALS AND METHODS Fifty-four specimens were collected and stained with CD 68 antibody to investigated TAM infiltration in tumor. Von Willebrand factor was stained to evaluate MVD around the cancer foci. We assessed the association between patient's age, preoperative serum prostate-specific antigen, pathologic Gleason sum (GS), TAM infiltration, MVD, and the response to ADT for 5 years after PCa diagnosis. RESULTS The median TAM was observed in 28 (6-76)/high power field (x400). Increasing TAM correlated with increasing tumor angiogenesis (P < 0.001, r = 0.61), and the response to ADT was significantly better in patients with fewer TAMs (<28) than in patients with higher TAMs (>28) (P = 0.003). TAM infiltration was significantly higher in those with higher serum prostate-specific antigen, higher GS, and metastasis. Multivariate analysis showed that GS, ADT type, and MVD number were significant prognostic factors for response to ADT in PCa (P < 0.0001). An increased infiltration of TAM [hazards ratio (HR) = 4.47; 95% confidence interval (CI): 1.97-10.15], MVD (HR = 2.66; 95% CI: 1.27-5.61), metastatic status (HR = 2.29; 95% CI: 0.14-0.60), and prostate volume (HR = 2.19; 95% CI: 1.27-3.12) significantly correlated with shorter survival in PCa patients by univariate analysis (P < 0.05). Multivariate analyses revealed that TAM and metastatic status significantly correlated with poor overall survival. CONCLUSIONS TAM infiltration is associated with response to ADT and increased tumor angiogenesis in PCa. GS, ADT type, and MVD in PCa specimens are useful predictive factors for poor response to ADT. Increasing TAM and positive metastatic status were prognostic factors for a poorer survival in PCa patients.
Collapse
Affiliation(s)
- Prahara Yuri
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Katsumi Shigemura
- Division of Urology, Department of Organ Therapeutics, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
- Department of International Health, Kobe University Graduate School of Health Science, Kobe, 654-0142, Japan
| | - Koichi Kitagawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, 650-0017, Japan
| | - Exsa Hadibrata
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Muhammad Risan
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Andy Zulfiqqar
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Indrawarman Soeroharjo
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Ahmad Z. Hendri
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Raden Danarto
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Aya Ishii
- Department of International Health, Kobe University Graduate School of Health Science, Kobe, 654-0142, Japan
| | - Saya Yamasaki
- Department of International Health, Kobe University Graduate School of Health Science, Kobe, 654-0142, Japan
| | - Yongmin Yan
- Department of International Health, Kobe University Graduate School of Health Science, Kobe, 654-0142, Japan
| | - Didik S. Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Masato Fujisawa
- Division of Urology, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| |
Collapse
|
12
|
Cosma I, Tennstedt-Schenk C, Winzler S, Psychogios MN, Pfeil A, Teichgraeber U, Malich A, Papageorgiou I. The role of gadolinium in magnetic resonance imaging for early prostate cancer diagnosis: A diagnostic accuracy study. PLoS One 2019; 14:e0227031. [PMID: 31869380 PMCID: PMC6927639 DOI: 10.1371/journal.pone.0227031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Prostate lesions detected with multiparametric magnetic resonance imaging (mpMRI) are classified for their malignant potential according to the Prostate Imaging-Reporting And Data System (PI-RADS™2). In this study, we evaluate the diagnostic accuracy of the mpMRI with and without gadolinium, with emphasis on the added diagnostic value of the dynamic contrast enhancement (DCE). Materials and methods The study was retrospective for 286 prostate lesions / 213 eligible patients, n = 116/170, and 49/59% malignant for the peripheral (Pz) and transitional zone (Tz), respectively. A stereotactic MRI-guided prostate biopsy served as the histological ground truth. All patients received a mpMRI with DCE. The influence of DCE in the prediction of malignancy was analyzed by blinded assessment of the imaging protocol without DCE and the DCE separately. Results Significant (CSPca) and insignificant (IPca) prostate cancers were evaluated separately to enhance the potential effects of the DCE in the detection of CSPca. The Receiver Operating Characteristics Area Under Curve (ROC-AUC), sensitivity (Se) and specificity (Spe) of PIRADS-without-DCE in the Pz was 0.70/0.47/0.86 for all cancers (IPca and CSPca merged) and 0.73/0.54/0.82 for CSPca. PIRADS-with-DCE for the same patients showed ROC-AUC/Se/Spe of 0.70/0.49/0.86 for all Pz cancers and 0.69/0.54/0.81 for CSPca in the Pz, respectively, p>0.05 chi-squared test. Similar results for the Tz, AUC/Se/Spe for PIRADS-without-DCE was 0.75/0.61/0.79 all cancers and 0.67/0.54/0.71 for CSPca, not influenced by DCE (0.66/0.47/0.81 for all Tz cancers and 0.61/0.39/0.75 for CSPca in Tz). The added Se and Spe of DCE for the detection of CSPca was 88/34% and 78/33% in the Pz and Tz, respectively. Conclusion DCE showed no significant added diagnostic value and lower specificity for the prediction of CSPca compared to the non-enhanced sequences. Our results support that gadolinium might be omitted without mitigating the diagnostic accuracy of the mpMRI for prostate cancer.
Collapse
Affiliation(s)
- Ilinca Cosma
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
- Institute of Radiology, Suedharz Hospital Nordhausen, Nordhausen, Germany
| | | | - Sven Winzler
- Institute of Radiology, Suedharz Hospital Nordhausen, Nordhausen, Germany
| | - Marios Nikos Psychogios
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Alexander Pfeil
- Department of Internal Medicine, University Hospital Jena, Jena, Germany
| | - Ulf Teichgraeber
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Ansgar Malich
- Institute of Radiology, Suedharz Hospital Nordhausen, Nordhausen, Germany
| | - Ismini Papageorgiou
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
- Institute of Radiology, Suedharz Hospital Nordhausen, Nordhausen, Germany
- * E-mail:
| |
Collapse
|
13
|
Osorio CFEM, Costa WS, Gallo CBM, Sampaio FJB. Expression of stromal elements of prostatic adenocarcinoma in different gleason scores. Acta Cir Bras 2019; 34:e201901005. [PMID: 31851213 PMCID: PMC6912842 DOI: 10.1590/s0102-865020190100000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/28/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose: To quantify and compare the expression of stromal elements in prostate
adenocarcinoma of different Gleason scores with non-tumor area
(control). Methods: We obtained 132 specimens from samples of prostate peripheral and transition
zone. We analyzed the following elements of the extracellular matrix:
collagen fibers, elastic system, smooth muscle fibers and blood vessels. The
tumor area and non-tumor area (control) of the TMA (tissue microarray) were
photographed and analyzed using the ImageJ software. Results: The comparison between the tumor area and the non-tumor area showed
significant differences between stromal prostate elements. There was an
increase of collagen fibers in the tumor area, mainly in Gleason 7. Elastic
system fibers showed similar result, also from the Gleason 7. Blood vessels
showed a significant increase occurred in all analyzed groups. The muscle
fibers exhibited a different behavior, with a decrease in relation to the
tumor area. Conclusions: There is a significant difference between the extracellular matrix in
prostate cancer compared to the non-tumor area (control) especially in
Gleason 7. Important modifications of the prostatic stromal elements
strongly correlate with different Gleason scores and can contribute to
predict the pathological staging of prostate cancer.
Collapse
Affiliation(s)
- Clarice Fraga Esteves Maciel Osorio
- Fellow PhD degree, Postgraduate Program in Physiopathology and Surgical Sciences, Urogenital Research Unit, Universidade do Estado do Rio de Janeiro (UERJ), Brazil. Conception and design of the study; acquisition, analysis and interpretation of data; technical procedures; histological examinations; statistics analysis; manuscript preparation and writing; final approval
| | - Waldemar Silva Costa
- PhD, Associate Professor, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Conception and design of the study, technical procedures, histological examination, interpretation of data, manuscript preparation and writing, final approval
| | - Carla Braga Mano Gallo
- PhD, Researcher, Urogenital Research Unit, Rio de Janeiro-RJ, Brazil. Conception and design of the study, interpretation of data, statistics analysis, manuscript preparation and writing, final approval
| | - Francisco José Barcellos Sampaio
- PhD, Full Professor, Urogenital Research Unit, UERJ, Rio de Janeiro-RJ, Brazil. Conception and design of the study, interpretation of data, critical revision, final approval
| |
Collapse
|
14
|
Smentoch J, Szade J, Żaczek AJ, Eltze E, Semjonow A, Brandt B, Bednarz-Knoll N. Low Numbers of Vascular Vessels Correlate to Progression in Hormone-Naïve Prostate Carcinomas Undergoing Radical Prostatectomy. Cancers (Basel) 2019; 11:cancers11091356. [PMID: 31547460 PMCID: PMC6770894 DOI: 10.3390/cancers11091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Vascularization influences tumor development by supporting the nutrition and dissemination of tumor cells. On the other hand, a low number of vascular vessels (VVlow) may induce hypoxia, accounting for selection of resistant clone(s) of tumor cells. This study aimed to evaluate the prognostic significance of vascular (VV) and lymphatic vessels (LV) in prostate cancer (PCa). Tumor samples from 400 PCa patients undergoing radical prostatectomy (RP) were prepared in duplex as tissue microarrays. Numbers of VV and LV were evaluated using immunohistochemistry detecting CD34 and podoplanin, respectively, and correlated to clinical data, biochemical recurrence (BR), and proteins analyzed in tumor cells. VVlow and LV were found in 32% and 43% of patients with informative PCa samples, respectively. VVlow correlated with a shorter time to BR 3, 5, and 10 years after RP in hormone-naïve patients (p = 0.028, p = 0.027 and p = 0.056, respectively). It was also shown to be an independent prognostic factor 5 years after surgery (multivariate analysis, p = 0.046). Tumors characterized by VVlow expressed the epithelial cell adhesion molecule, EpCAM, less frequently (p = 0.016) and revealed a borderline correlation to increased levels of tumor cell invasion marker Loxl-2 (p = 0.059). No correlations were found for LV. In summary, VVlow in hormone-naïve patients undergoing RP has prognostic potential and seems to be related to an aggressive phenotype of tumor cells.
Collapse
Affiliation(s)
- Julia Smentoch
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk 80-214, Poland;
| | - Anna J. Żaczek
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, Saarbruecken 66113, Germany;
| | - Axel Semjonow
- Department of Urology, Prostate Center, University Clinic Münster, Münster 48149, Germany;
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany;
| | - Natalia Bednarz-Knoll
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
- Correspondence: ; Tel.: +48-58-349-14-34
| |
Collapse
|
15
|
Melegh Z, Oltean S. Targeting Angiogenesis in Prostate Cancer. Int J Mol Sci 2019; 20:E2676. [PMID: 31151317 PMCID: PMC6600172 DOI: 10.3390/ijms20112676] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer among men in the Western world. Although localized disease can be effectively treated with established surgical and radiopharmaceutical treatments options, the prognosis of castration-resistant advanced prostate cancer is still disappointing. The objective of this study was to review the role of angiogenesis in prostate cancer and to investigate the effectiveness of anti-angiogenic therapies. A literature search of clinical trials testing the efficacy of anti-angiogenic therapy in prostate cancer was performed using Pubmed. Surrogate markers of angiogenic activity (microvessel density and vascular endothelial growth factor A (VEGF-A) expression) were found to be associated with tumor grade, metastasis, and prognosis. Six randomizedstudies were included in this review: two phase II trials on localized and hormone-sensitive disease (n = 60 and 99 patients) and four phase III trials on castration-resistant refractory disease (n = 873 to 1224 patients). Although the phase II trials showed improved relapse-free survival and stabilisation of the disease, the phase III trials found increased toxicity and no significant improvement in overall survival. Although angiogenesis appears to have an important role in prostate cancer, the results of anti-angiogenic therapy in castration-resistant refractory disease have hitherto been disappointing. There are various possible explanations for this lack of efficacy in castration-resistant refractory disease: redundancy of angiogenic pathways, molecular heterogeneity of the disease, loss of tumor suppressor protein phosphatase and tensin homolog (PTEN) expression as well as various VEGF-A splicing isoforms with pro- and anti-angiogenic activity. A better understanding of the molecular mechanisms of angiogenesis may help to develop effective anti-angiogenic therapy in prostate cancer.
Collapse
Affiliation(s)
- Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX12LU, UK.
| |
Collapse
|
16
|
Defourny SVP, Romanucci M, Grieco V, Quaglione GR, Santolini C, Della Salda L. Tumor⁻Microenvironment Interaction: Analysis of Mast Cell Populations in Normal Tissue and Proliferative Disorders of the Canine Prostate. Vet Sci 2019; 6:E16. [PMID: 30781786 PMCID: PMC6466327 DOI: 10.3390/vetsci6010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are involved in angiogenesis, tissue remodeling and immunomodulation in several human and animal tumors, although their exact role is still controversial. Since no information is available in canine prostate carcinoma (PC) and normal prostate tissues, the aims of this study were to evaluate the possible correlations between MC distribution, molecular expression and microvessel density (MVD) in normal prostatic tissue and proliferative disorders of the canine prostate. All samples (6 normal, 15 benign prostate hyperplasia-BPH, 8 PC) were stained with Toluidine Blue and immunohistochemically evaluated for tryptase, c-Kit (CD117) and CD31. Mast cell density (MCD) and MVD were quantified by the hot-spot method. MCD was significantly increased in periglandular/peritumoral areas, when compared with intraglandular/intratumoral areas, in all groups (p = 0.03). C-Kit expression was strongly associated with PC (ρ = 0.75 p = 0.03), whereas positive correlation between tryptase and c-Kit expression (ρ = 0.64 p = 0.01) was observed in periglandular areas of BPH. MVD showed a correlation with MCD in BPH (ρ = 0.54 p = 0.04). Our data support the importance of c-Kit in regulating MC proliferation. The predominant location of MCs in peritumoral areas of canine PC was similar to the human counterpart, in which PC cells are supposed to produce substances attracting MCs to the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Valeria Grieco
- Department of Veterinary Medicine, University of Milan, 20154 Milan, Italy.
| | - Gina Rosaria Quaglione
- Unità Ospedaliera Complessa, Anatomia patologica, Ospedale G. Mazzini, 64100 Teramo, Italy.
| | | | | |
Collapse
|
17
|
Bonet‐Carne E, Johnston E, Daducci A, Jacobs JG, Freeman A, Atkinson D, Hawkes DJ, Punwani S, Alexander DC, Panagiotaki E. VERDICT-AMICO: Ultrafast fitting algorithm for non-invasive prostate microstructure characterization. NMR IN BIOMEDICINE 2019; 32:e4019. [PMID: 30378195 PMCID: PMC6492114 DOI: 10.1002/nbm.4019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 05/10/2023]
Abstract
VERDICT (vascular, extracellular and restricted diffusion for cytometry in tumours) estimates and maps microstructural features of cancerous tissue non-invasively using diffusion MRI. The main purpose of this study is to address the high computational time of microstructural model fitting for prostate diagnosis, while retaining utility in terms of tumour conspicuity and repeatability. In this work, we adapt the accelerated microstructure imaging via convex optimization (AMICO) framework to linearize the estimation of VERDICT parameters for the prostate gland. We compare the original non-linear fitting of VERDICT with the linear fitting, quantifying accuracy with synthetic data, and computational time and reliability (performance and precision) in eight patients. We also assess the repeatability (scan-rescan) of the parameters. Comparison of the original VERDICT fitting versus VERDICT-AMICO showed that the linearized fitting (1) is more accurate in simulation for a signal-to-noise ratio of 20 dB; (2) reduces the processing time by three orders of magnitude, from 6.55 seconds/voxel to 1.78 milliseconds/voxel; (3) estimates parameters more precisely; (4) produces similar parametric maps and (5) produces similar estimated parameters with a high Pearson correlation between implementations, r2 > 0.7. The VERDICT-AMICO estimates also show high levels of repeatability. Finally, we demonstrate that VERDICT-AMICO can estimate an extra diffusivity parameter without losing tumour conspicuity and retains the fitting advantages. VERDICT-AMICO provides microstructural maps for prostate cancer characterization in seconds.
Collapse
Affiliation(s)
- Elisenda Bonet‐Carne
- UCL Centre for Medical ImagingLondonUK
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | | | - Alessandro Daducci
- Computer Science DepartmentUniversity of VeronaItaly
- Radiology DepartmentCentre Hospitalier Universitaire Vaudois (CHUV)Switzerland
| | - Joseph G. Jacobs
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | | | | | - David J. Hawkes
- Department of Medical PhysicsUCL Centre for Medical Imaging ComputingLondonUK
| | | | - Daniel C. Alexander
- Department of Computer ScienceUCL Centre for Medical Image ComputingLondonUK
| | | |
Collapse
|
18
|
Yi F, Yang L, Wang S, Guo L, Huang C, Xie Y, Xiao G. Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinformatics 2018; 19:64. [PMID: 29482496 PMCID: PMC5828328 DOI: 10.1186/s12859-018-2055-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. RESULTS In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. CONCLUSIONS This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.
Collapse
Affiliation(s)
- Faliu Yi
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Lin Yang
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100023 P. R. China
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100023 P. R. China
| | - Chenglong Huang
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX 75390 USA
| |
Collapse
|
19
|
Ziegler J, Pody R, Coutinho de Souza P, Evans B, Saunders D, Smith N, Mallory S, Njoku C, Dong Y, Chen H, Dong J, Lerner M, Mian O, Tummala S, Battiste J, Fung KM, Wren JD, Towner RA. ELTD1, an effective anti-angiogenic target for gliomas: preclinical assessment in mouse GL261 and human G55 xenograft glioma models. Neuro Oncol 2017; 19:175-185. [PMID: 27416955 PMCID: PMC5464087 DOI: 10.1093/neuonc/now147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/05/2016] [Indexed: 11/13/2022] Open
Abstract
Background Despite current therapies, glioblastoma is a devastating cancer, and validation of effective biomarkers for it will enable better diagnosis and therapeutic intervention for this disease. We recently discovered a new biomarker for high-grade gliomas, ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1) via bioinformatics, and validated that ELTD1 protein levels are significantly higher in human and rodent gliomas. The focus of this study was to assess the effect on tumor growth of an antibody against ELTD1 in orthotopic, GL261, and G55 xenograft glioma models. Methods The effect of anti-ELTD1 antibody therapy was assessed by animal survival, MRI measured tumor volumes, MR angiography, MR perfusion imaging, and immunohistochemistry (IHC) characterization of microvessel density in mouse glioma models. Comparative treatments included anti-vascular endothelial growth factor (VEGF) and anti-c-Met antibody therapies, compared with untreated controls. Results Tumor volume and survival data in this study show that antibodies against ELTD1 inhibit glioma growth just as effectively or even more so compared with other therapeutic targets studied, including anti-VEGF antibody therapy. Untreated GL261 or G55 tumors were found to have significantly higher ELTD1 levels (IHC) compared with contralateral normal brain. The anti-angiogenic effect of ELTD1 antibody therapy was observed in assessment of microvessel density, as well as from MR angiography and perfusion measurements, which indicated that anti-ELTD1 antibody therapy significantly decreased vascularization compared with untreated controls. Conclusions Either as a single therapy or in conjunction with other therapeutic approaches, anti-ELTD1 antibodies could be a valuable new clinical anti-angiogenic therapeutic for high-grade gliomas.
Collapse
Affiliation(s)
- Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| | - Richard Pody
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Blake Evans
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Samantha Mallory
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,The University of Oklahoma Children's Hospital, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Charity Njoku
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Karp Family Research Laboratories, Boston, Massachusetts, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Karp Family Research Laboratories, Boston, Massachusetts, USA
| | - Jiali Dong
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Megan Lerner
- Department of Surgery Research Laboratory, Oklahoma City, Oklahoma
| | - Osamah Mian
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Sai Tummala
- Comparative Medicine, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Kar-Ming Fung
- The Stephenson Cancer Center, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,Department of Biochemistry and Molecular Biology, Oklahoma City, Oklahoma
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.,The Stephenson Cancer Center, Oklahoma City, Oklahoma.,Department of Pathology, Oklahoma City, Oklahoma
| |
Collapse
|
20
|
Kather JN, Marx A, Reyes-Aldasoro CC, Schad LR, Zöllner FG, Weis CA. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget 2016; 6:19163-76. [PMID: 26061817 PMCID: PMC4662482 DOI: 10.18632/oncotarget.4383] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank Gerrit Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Van Blarigan EL, Gerstenberger JP, Kenfield SA, Giovannucci EL, Stampfer MJ, Jones LW, Clinton SK, Chan JM, Mucci LA. Physical Activity and Prostate Tumor Vessel Morphology: Data from the Health Professionals Follow-up Study. Cancer Prev Res (Phila) 2015; 8:962-967. [PMID: 26276753 PMCID: PMC4596787 DOI: 10.1158/1940-6207.capr-15-0132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022]
Abstract
Vigorous activity is associated with lower risk of prostate cancer progression, but the biologic mechanisms are unknown. Exercise affects vascularization of tumors in animal models, and small, irregularly shaped vessels in prostate tumors are associated with fatal prostate cancer. We hypothesized that men who engaged in vigorous activity or brisk walking would have larger, more regularly shaped vessels in their prostate tumors. We prospectively examined whether physical activity was associated with prostate tumor microvessel morphology among 571 men in the Health Professionals Follow-up Study using ordinal logistic regression. Vessel size (μm(2)), vessel lumen regularity (perimeter(2)/4 · Π · area), and microvessel density (number/high-powered field) were ascertained in tumor sections stained for endothelial cell marker CD34. Vigorous activity [metabolic equivalent task (MET) ≥ 6], nonvigorous activity (MET < 6), and walking pace were assessed a median of 14 months before diagnosis. Prostate tumors from men who reported a brisk walking pace (3+ mph) had larger, more regularly shaped blood vessels compared with those of men who walked at a less than brisk pace [vessel regularity OR, 1.59; 95% confidence interval (CI), 1.11-2.27; P value, 0.01; vessel size OR, 1.48; 95% CI, 1.04-2.12; P value, 0.03]. Brisk walking was not associated with microvessel density; total vigorous and nonvigorous activities were not associated with vessel size, shape, or number. Brisk walking may be associated with larger, more regularly shaped vessels in prostate tumors. Additional research elucidating the effect of physical activity on prostate tumor biology is needed.
Collapse
Affiliation(s)
- Erin L Van Blarigan
- Dept. of Epidemiology and Biostatistics, University of California San Francisco
- Dept. of Urology, University of California San Francisco
| | | | - Stacey A Kenfield
- Dept. of Urology, University of California San Francisco
- Department of Epidemiology, Harvard School of Public Health
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
- Dept. of Nutrition, Harvard School of Public Health
| | - Meir J Stampfer
- Department of Epidemiology, Harvard School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
- Dept. of Nutrition, Harvard School of Public Health
| | - Lee W Jones
- Dept. of Medicine, Memorial Sloan Kettering Cancer Center
| | - Steven K Clinton
- Ohio State University Medical Center and Comprehensive Cancer Center
| | - June M Chan
- Dept. of Epidemiology and Biostatistics, University of California San Francisco
- Dept. of Urology, University of California San Francisco
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
| |
Collapse
|
22
|
Bender RJ, Mac Gabhann F. Dysregulation of the vascular endothelial growth factor and semaphorin ligand-receptor families in prostate cancer metastasis. BMC SYSTEMS BIOLOGY 2015; 9:55. [PMID: 26341082 PMCID: PMC4559909 DOI: 10.1186/s12918-015-0201-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
Background The vascular endothelial growth factor (VEGF) family is central to cancer angiogenesis. However, targeting VEGF as an anti-cancer therapeutic approach has shown success for some tumor types but not others. Here we examine the expression of the expanded VEGF family in prostate cancer, including the Semaphorin (Sema) family members that compete with VEGFs for Neuropilin binding and can themselves have pro- or anti-angiogenic activity. Results First, we used multivariate statistical methods, including partial least squares and clustering, to examine VEGF/Sema gene expression variability in previously published prostate cancer microarray datasets. We show that unlike some cancers, such as kidney cancer, primary prostate cancer is characterized by both a down-regulation of the pro-angiogenic members of the VEGF family and a down-regulation of anti-angiogenic members of the Sema family. We found pro-lymphangiogenic signatures, including the genes encoding VEGFC and VEGFD, associated with primary tumors that ultimately became aggressive. In contrast to primary prostate tumors, prostate cancer metastases showed increased expression of key pro-angiogenic VEGF family members and further repression of anti-angiogenic class III Sema family members. Given the lack of success of VEGF-targeting molecules so far in prostate cancer, this suggests that the reduction in anti-angiogenic Sema signaling may potentiate VEGF signaling and even promote resistance to VEGF-targeting therapies. Inhibition of the VEGF ‘accelerator’ may need to be accompanied by promotion of the Sema ‘brake’ to block cancer angiogenesis. To leverage our mechanistic understanding, and to link multigene expression changes to outcomes, we performed individualized computational simulations of competitive VEGF and Sema receptor binding across many tumor samples. The simulations suggest that loss of Sema expression promotes angiogenesis by lowering plexin signaling, not by potentiating VEGF signaling via relaxation of competition. Conclusions The combined analysis of bioinformatic data with computational modeling of ligand-receptor interactions demonstrated that enhancement of angiogenesis in prostate cancer metastases may occur through two different routes: elevation of VEGFA and reduction of class 3 Semaphorins. Therapeutic inhibition of angiogenesis in metastatic prostate cancer should account for both of these routes. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0201-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Joseph Bender
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
23
|
Yuri P, Hendri AZ, Danarto R. Association between tumor-associated macrophages and microvessel density on prostate cancer progression. Prostate Int 2015; 3:93-8. [PMID: 26473151 PMCID: PMC4588394 DOI: 10.1016/j.prnil.2015.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 02/02/2023] Open
Abstract
Background To evaluate tumor-associated macrophages (TAMs) infiltration and microvessel density as possible prognostic factors related to prostate cancer (PCa) progression. Methods Immunostaining of TAMs in prostate biopsy specimens was performed using a monoclonal antibody CD68 and microvessel density (MVD) using von Willebrand factor (vWF) from 25 specimens with high-grade prostatic intraepithelial neoplasia (HGPIN) and 25 specimens with PCa after transurethral resection of the prostate (TURP). Six microscopic (×200) fields were selected for TAM counting and six microscopic (×100) fields were selected for MVD counting around the cancer foci. Association between age, preoperative prostate-specific antigen (PSA), pathologic Gleason sum (GS), TAM, MVD, extracapsular extension, and metastasis were assessed using Pearson/Spearman, Student t test/Mann-Whitney U test and one-way analysis of variance/Kruskal-Wallis test. Results The mean of age, PSA, TAMs, and MVD were 69.1 ± 9.9, 67.1 ± 92.4, 26.2 ± 11.9, and 31.4 ± 14.0, respectively, from 50 specimens with PCa and HGPIN. Increasing TAMs number was not correlated with increasing MVD number and there was no significant mean difference statistically (P > 0.05) in TAMs and MVD although the mean of TAMs number was higher in PCa versus HGPIN but significant in PSA level (P < 0.001). In PCa specimens, age, PSA, TAMs, and MVD number were higher in patients with metastatic and extracapsular extension, but not significant statistically (P > 0.005). There was no correlation between TAMs and MVD (P > 0.001). Conclusions TAMs and MVD had increased PCa but did not provide independent prognostic value. Increasing numbers of TAMs was not always followed by an increase in MVD. HGPIN is the most likely precursor for PCa.
Collapse
Affiliation(s)
- Prahara Yuri
- Department of Urology, Faculty of Medicine, University of Indonesia, Sardjito Hospital, Yogyakarta, Indonesia
| | - Ahmad Zulfan Hendri
- Department of Urology, Faculty of Medicine, Gajah Mada University, Sardjito Hospital, Yogyakarta, Indonesia
| | - Raden Danarto
- Department of Urology, Faculty of Medicine, Gajah Mada University, Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
24
|
Miyata Y, Sakai H. Reconsideration of the clinical and histopathological significance of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density measurement. Int J Urol 2015; 22:806-15. [PMID: 26153072 DOI: 10.1111/iju.12840] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/24/2015] [Indexed: 12/28/2022]
Abstract
Angiogenesis plays important roles in tumor growth and cancer cell dissemination in almost all cancers. In prostate cancer, there is general agreement that increased angiogenesis is an important factor in determining tumor development and prognosis in these patients. Microvessel density is recognized as a useful marker for evaluating the angiogenic status of cancer tissues. Many investigators have reported that microvessel density is significantly associated with pathological features and outcomes in prostate cancer patients; however, some researchers have expressed opposing opinions. As the reason for such discrepancy, previous reports have suggested differences in the methodologies of measuring microvessel density in cancer tissues. In the present review, we focus on the variation in such methods, including the selected area and the method used for (semi)quantification. In particular, we discuss the relationship between malignancy potential, tumor progression, and survival and differences in the antibodies used for detection of endothelial cells in detail. We briefly compare the pathological significance and prognostic roles of microvessel density measured using von Willebrand factor, CD31, CD34, and CD105. Based on these analyses, the advantages and limitations of microvessel density measurements in prostate cancer tissues are clarified. Improved "real" and "specific" markers of cancer-related angiogenesis are necessary for better predictions of prognoses and for discussion of treatment strategies for patients with prostate cancer. However, establishment of a satisfactory cancer-related endothelial marker could take a long time. Therefore, knowledge regarding the pathological significance of microvessel density - based on understanding of the advantages and limitations of microvessel density determination methods - is important.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
25
|
Özcan A, Türkbey B, Choyke PL, Akin O, Aras Ö, Mun SK. Interactive Feature Space Explorer© for multi-modal magnetic resonance imaging. Magn Reson Imaging 2015; 33:804-15. [PMID: 25868623 PMCID: PMC4458231 DOI: 10.1016/j.mri.2015.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/14/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Wider information content of multi-modal biomedical imaging is advantageous for detection, diagnosis and prognosis of various pathologies. However, the necessity to evaluate a large number images might hinder these advantages and reduce the efficiency. Herein, a new computer aided approach based on the utilization of feature space (FS) with reduced reliance on multiple image evaluations is proposed for research and routine clinical use. The method introduces the physician experience into the discovery process of FS biomarkers for addressing biological complexity, e.g., disease heterogeneity. This, in turn, elucidates relevant biophysical information which would not be available when automated algorithms are utilized. Accordingly, the prototype platform was designed and built for interactively investigating the features and their corresponding anatomic loci in order to identify pathologic FS regions. While the platform might be potentially beneficial in decision support generally and specifically for evaluating outlier cases, it is also potentially suitable for accurate ground truth determination in FS for algorithm development. Initial assessments conducted on two different pathologies from two different institutions provided valuable biophysical perspective. Investigations of the prostate magnetic resonance imaging data resulted in locating a potential aggressiveness biomarker in prostate cancer. Preliminary findings on renal cell carcinoma imaging data demonstrated potential for characterization of disease subtypes in the FS.
Collapse
Affiliation(s)
- Alpay Özcan
- Arlington Innovation Center: Health Research, Virginia Polytechnic Institute and State University, 900 N. Glebe Road, Arlington VA 22203, USA.
| | - Barış Türkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Bldg. 10, Rm. 1B40, Bethesda, MD 20892-1088, USA.
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Bldg. 10, Rm. 1B40, Bethesda, MD 20892-1088, USA.
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, 1275 York Ave C276, New York, NY 10065, USA.
| | - Ömer Aras
- Memorial Sloan Kettering Cancer Center, 1275 York Ave C276, New York, NY 10065, USA.
| | - Seong K Mun
- Arlington Innovation Center: Health Research, Virginia Polytechnic Institute and State University, 900 N. Glebe Road, Arlington VA 22203, USA.
| |
Collapse
|
26
|
Singanamalli A, Rusu M, Sparks RE, Shih NNC, Ziober A, Wang LP, Tomaszewski J, Rosen M, Feldman M, Madabhushi A. Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J Magn Reson Imaging 2015; 43:149-58. [PMID: 26110513 DOI: 10.1002/jmri.24975] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/29/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To identify computer extracted in vivo dynamic contrast enhanced (DCE) MRI markers associated with quantitative histomorphometric (QH) characteristics of microvessels and Gleason scores (GS) in prostate cancer. METHODS This study considered retrospective data from 23 biopsy confirmed prostate cancer patients who underwent 3 Tesla multiparametric MRI before radical prostatectomy (RP). Representative slices from RP specimens were stained with vascular marker CD31. Tumor extent was mapped from RP sections onto DCE MRI using nonlinear registration methods. Seventy-seven microvessel QH features and 18 DCE MRI kinetic features were extracted and evaluated for their ability to distinguish low from intermediate and high GS. The effect of temporal sampling on kinetic features was assessed and correlations between those robust to temporal resolution and microvessel features discriminative of GS were examined. RESULTS A total of 12 microvessel architectural features were discriminative of low and intermediate/high grade tumors with area under the receiver operating characteristic curve (AUC) > 0.7. These features were most highly correlated with mean washout gradient (WG) (max rho = -0.62). Independent analysis revealed WG to be moderately robust to temporal resolution (intraclass correlation coefficient [ICC] = 0.63) and WG variance, which was poorly correlated with microvessel features, to be predictive of low grade tumors (AUC = 0.77). Enhancement ratio was the most robust (ICC = 0.96) and discriminative (AUC = 0.78) kinetic feature but was moderately correlated with microvessel features (max rho = -0.52). CONCLUSION Computer extracted features of prostate DCE MRI appear to be correlated with microvessel architecture and may be discriminative of low versus intermediate and high GS.
Collapse
Affiliation(s)
- Asha Singanamalli
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mirabela Rusu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rachel E Sparks
- Centre for Medical Image Computing, University College of London, London, United Kingdom
| | - Natalie N C Shih
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy Ziober
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li-Ping Wang
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Tomaszewski
- Department of Pathology & Anatomical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Mark Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Feldman
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Taverna G, Grizzi F, Colombo P, Seveso M, Giusti G, Proietti S, Fiorini G, Lughezzani G, Casale P, Buffi N, Lazzari M, Guazzoni G. Two-dimensional neovascular complexity is significantly higher in nontumor prostate tissue than in low-risk prostate cancer. Korean J Urol 2015; 56:435-442. [PMID: 26078840 PMCID: PMC4462633 DOI: 10.4111/kju.2015.56.6.435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Prostate cancer is the most frequent cancer in men in Europe. A major focus in urology is the identification of new biomarkers with improved accuracy in patients with low-risk prostate cancer. Here, we evaluated two-dimensional neovascular complexity in prostate tumor and nontumor biopsy cores by use of a computer-aided image analysis system and assessed the correlations between the results and selected clinical and pathological parameters of prostate carcinoma. MATERIALS AND METHODS A total of 280 prostate biopsy sections from a homogeneous series of 70 patients with low-risk prostate cancer (Gleason score 3+3, prostate-specific antigen [PSA]<10 ng/mL, and clinical stage T1c) who underwent systematic biopsy sampling and subsequent radical prostatectomy were analyzed. For each biopsy, 2-µm sections were treated with CD34 antibodies and were digitized by using an image analysis system that automatically estimates the surface fractal dimension. RESULTS Our results showed that biopsy sections without cancer were significantly more vascularized than were tumors. No correlations were found between the vascular surface fractal dimension and patient's age, PSA and free-to-total PSA ratios, pathological stage, Gleason score, tumor volume, vascular invasion, capsular penetration, surgical margins, and biochemical recurrence. CONCLUSIONS The value of angiogenesis in prostate cancer is still controversial. Our findings suggest that low-risk prostate cancer tissues are less vascularized than are nontumor tissues. Further studies are necessary to understand whether angiogenesis is a hallmark of intermediate- and high-risk prostate cancer.
Collapse
Affiliation(s)
- Gianluigi Taverna
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Mauro Seveso
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Guido Giusti
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Silvia Proietti
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Girolamo Fiorini
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Giovanni Lughezzani
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Paolo Casale
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Buffi
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Massimo Lazzari
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| | - Giorgio Guazzoni
- Department of Urology, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Cho E, Chung DJ, Yeo DM, Sohn D, Son Y, Kim T, Hahn ST. Optimal cut-off value of perfusion parameters for diagnosing prostate cancer and for assessing aggressiveness associated with Gleason score. Clin Imaging 2015; 39:834-40. [PMID: 26001659 DOI: 10.1016/j.clinimag.2015.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
To determine cut-off value of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters for differentiation of prostate malignant from benign and cancer with high-grade Gleason score (GS) (GS>7) from low-grade GS (GS≤7), 35 patients (24 malignant and 11 benign) who underwent DCE-MRI were included. Difference between malignant and benign was statistically significant for all magnetic resonance parameters except Ve. The cut-off values were K(trans)=0.184min(-1), Kep=0.695min(-1), iAUC=4.219mmol/l/min, and ADC=1340.5mm(2)/s. A significant difference in mean values of K(trans) and Kep between cancer with high-grade GS and low-grade GS was also observed. K(trans) and Kep showed a significant correlation with GS.
Collapse
Affiliation(s)
- Eunkyung Cho
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dong Jin Chung
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dong Myung Yeo
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dongwan Sohn
- Department of Urology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Yohan Son
- Imaging and Therapy Systems Division, SIEMENS Healthcare Korea, Poongsan Building 6th Floor, 23, Chungjeong-ro, Seodaemun-gu, Seoul, Korea, 120-714.
| | - Taejung Kim
- Department of Pathology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Sung-Tae Hahn
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| |
Collapse
|
29
|
Strzępek A, Kaczmarczyk K, Białas M, Szpor J, Dyduch G, Szopiński T, Chłosta P, Okoń K. ERG positive prostatic cancer may show a more angiogenetic phenotype. Pathol Res Pract 2014; 210:897-900. [DOI: 10.1016/j.prp.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
|
30
|
Tumor microvasculature characteristics studied by image analysis: histologically-driven angiogenic profile. Int J Biol Markers 2014; 29:e204-7. [PMID: 25041785 DOI: 10.5301/jbm.5000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 11/20/2022]
Abstract
Angiogenesis, a hallmark of cancer, has been studied to be a potential marker for diagnosis, prognosis and therapy in breast cancer. To evaluate tumor angiogenesis, histological assessment has been a common approach and counting tumor microvessels after visualizing them by immunohistochemistry has been in use for a long time. With recent advances in digital pathology and image analysis, other characteristics of tumor vasculature can also be evaluated. In this article we briefly review the potentials of image analysis in assessing tumor microvessel morphologically that might be helpful in defining a better angiogenesis marker than other common markers like vessel count.
Collapse
|
31
|
Li J, Zhang Y, Zhang W, Gao Y, Jia S, Guo J. Contrast enhanced computed tomography is indicative for angiogenesis pattern and display prognostic significance in breast cancer. BMC Cancer 2014; 14:672. [PMID: 25224155 PMCID: PMC4176577 DOI: 10.1186/1471-2407-14-672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/12/2014] [Indexed: 11/23/2022] Open
Abstract
Background The Prognostic value of microvessel density in cancer remains unclear. Recent studies have suggested that the uneven distribution of microvessels in tumours caused the variation in sample selection which led to different prognostic outcome. The enhancement pattern of Contrast-enhanced computed tomography (CECT) is determined in part by the microvessel distribution in solid tumors. Therefore, survival analysis of tumors grouping by the enhancement pattern and the pattern of microvessel distribution is important. Methods Survival analysis grouped by the tumor enhancement pattern and the microvessel distribution was carried out in 255 patients with invasive ductal carcinoma. Results There were significant differences in overall survival (OS) and disease-free survival (DFS) among the homogeneous, heterogeneous and peripheral enhancement groups. There were significant differences between OS and DFS groups with uniform and uneven distributions of microvessels. Conclusions The distribution of microvessels in a tumor is a potential prognostic indicator in patients with breast cancer, and can be assessed by CECT prior the operation.
Collapse
Affiliation(s)
| | | | - Wenhai Zhang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Sanhao Street 36#, Shenyang City, Liaoning Province, China.
| | | | | | | |
Collapse
|
32
|
Peng Y, Jiang Y, Antic T, Giger ML, Eggener SE, Oto A. Validation of Quantitative Analysis of Multiparametric Prostate MR Images for Prostate Cancer Detection and Aggressiveness Assessment: A Cross-Imager Study. Radiology 2014; 271:461-71. [PMID: 24533870 DOI: 10.1148/radiol.14131320] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yahui Peng
- From the Departments of Radiology (Y.P., Y.J., M.L.G., A.O.), Pathology (T.A.), and Surgery Section of Urology (S.E.E.), University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
33
|
Reeves F, Sapre N, Corcoran N, Hovens C. Tumor vascularity in prostate cancer: an update on circulating endothelial cells and platelets as noninvasive biomarkers. Biomark Med 2013; 7:879-91. [PMID: 24266820 DOI: 10.2217/bmm.13.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In order to individually tailor prostate cancer (PCa) treatment, clinicians need better tools to predict prognosis and treatment response. Given the relationship between angiogenesis and cancer progression, circulating endothelial cells (CECs) and their progenitors have logically been proposed as potential biomarkers. The utility of their baseline levels and kinetics has been investigated for years. However, owing to a lack of standardization and validation of CEC and circulating endothelial progenitors enumeration protocols, results have been inconsistent in prostate and other cancers. Similarly, platelets play a significant part in cancer progression, yet the role of platelet-related biomarkers in PCa is unclear. While there have been a number of theoretically interesting platelet-related markers proposed, limited research has been conducted in PCa patients. Currently, CECs and platelets do not have a clear role as biomarkers in routine PCa care. Given the theoretical merits of these cells, prospective trials are warranted.
Collapse
Affiliation(s)
- Fairleigh Reeves
- Department of Urology & Surgery, University of Melbourne, Level 3 Centre, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | | | | | | |
Collapse
|
34
|
Zhang L, Qian X, Zhang K, Cui Q, Zhao Q, Liu Z. Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging. Biomed Eng Online 2013; 12:30. [PMID: 23577753 PMCID: PMC3642019 DOI: 10.1186/1475-925x-12-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023] Open
Abstract
Background A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diameter is just a few microns. The newly developed medical imaging technology, X-ray phase-contrast imaging (XPCI), is able to distinguish the structure of the vessels in the eye. In this study, XPCI was used to identify the internal structure of the blood vessels in the eye. Methods After injection with barium sulfate via the ear border artery, an anesthetized rabbit was killed and its eye was fixed in vitro in 10% formalin solution. We acquired images using XPCI at the Shanghai Synchrotron Radiation Facility. The datasets were converted into slices by filtered back-projection (FBP). An angiographic score was obtained as a parameter to quantify the density of the blood vessels. A three-dimensional (3D) model of the blood vessels was then established using Amira 5.2 software. Results With XPCI, blood vessels in the rabbit eye as small as 18 μm in diameter and a sixth of the long posterior ciliary artery could be clearly distinguished. In the 3D model, we obtained the level 4 branch structure of vessels in the fundus. The diameters of the arteria centralis retinae and its branches are about 200 μm, 110 μm, 95 μm, 80 μm and 40 μm. The diameters of the circulus arteriosus iridis major and its branches are about 210 μm, 70 μm and 30 μm. Analysis of vessel density using the angiographic score showed that the blood vessels had maximum density in the fundus and minimum density in the area anterior to the equator (scores 0.27 ± 0.029 and 0.16 ± 0.032, respectively). We performed quantitative angiographic analysis of the blood vessels to further investigate the density of the vessels. Conclusions XPCI provided a feasible means to determine the structure of the blood vessels in the eye. We were able to determine the diameters and morphological characteristics of the vessels from both 2D images and the 3D model. By analyzing the images, we obtained measurements of the density distribution of the microvasculature, and this approach may provide valuable reference information prior to glaucoma filtration surgery.
Collapse
|
35
|
Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, Schmid-Tannwald C, Giger ML, Eggener SE, Oto A. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score--a computer-aided diagnosis development study. Radiology 2013; 267:787-96. [PMID: 23392430 DOI: 10.1148/radiol.13121454] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the potential utility of a number of parameters obtained at T2-weighted, diffusion-weighted, and dynamic contrast material-enhanced multiparametric magnetic resonance (MR) imaging for computer-aided diagnosis (CAD) of prostate cancer and assessment of cancer aggressiveness. MATERIALS AND METHODS In this institutional review board-approved HIPAA-compliant study, multiparametric MR images were acquired with an endorectal coil in 48 patients with prostate cancer (median age, 62.5 years; age range, 44-73 years) who subsequently underwent prostatectomy. A radiologist and a pathologist identified 104 regions of interest (ROIs) (61 cancer ROIs, 43 normal ROIs) based on correlation of histologic and MR findings. The 10th percentile and average apparent diffusion coefficient (ADC) values, T2-weighted signal intensity histogram skewness, and Tofts K(trans) were analyzed, both individually and combined, via linear discriminant analysis, with receiver operating characteristic curve analysis with area under the curve (AUC) as figure of merit, to distinguish cancer foci from normal foci. Spearman rank-order correlation (ρ) was calculated between cancer foci Gleason score (GS) and image features. RESULTS AUC (maximum likelihood estimate ± standard error) values in the differentiation of prostate cancer from normal foci of 10th percentile ADC, average ADC, T2-weighted skewness, and K(trans) were 0.92 ± 0.03, 0.89 ± 0.03, 0.86 ± 0.04, and 0.69 ± 0.04, respectively. The combination of 10th percentile ADC, average ADC, and T2-weighted skewness yielded an AUC value for the same task of 0.95 ± 0.02. GS correlated moderately with 10th percentile ADC (ρ = -0.34, P = .008), average ADC (ρ = -0.30, P = .02), and K(trans) (ρ = 0.38, P = .004). CONCLUSION The combination of 10th percentile ADC, average ADC, and T2-weighted skewness with CAD is promising in the differentiation of prostate cancer from normal tissue. ADC image features and K(trans) moderately correlate with GS.
Collapse
Affiliation(s)
- Yahui Peng
- Departments of Radiology, Pathology, and Surgery, Section of Urology, University of Chicago, 5841 S Maryland Ave, MC2026, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Taverna G, Grizzi F, Colombo P, Graziotti P. Is angiogenesis a hallmark of prostate cancer? Front Oncol 2013; 3:15. [PMID: 23390615 PMCID: PMC3565155 DOI: 10.3389/fonc.2013.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gianluigi Taverna
- Department of Urology, Humanitas Clinical and Research CenterRozzano, Milan, Italy
| | - Fabio Grizzi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research CenterRozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research CenterRozzano, Milan, Italy
| | - Pierpaolo Graziotti
- Department of Urology, Humanitas Clinical and Research CenterRozzano, Milan, Italy
| |
Collapse
|