1
|
Wang W, Liang S, Zou Y, Li Z, Wu Q, Wang L, Wu Z, Peng Z, You F. Expression of scp3 and dazl reveals the meiotic characteristics of the olive flounder Paralichthys olivaceus†. Biol Reprod 2023; 108:218-228. [PMID: 36308428 DOI: 10.1093/biolre/ioac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Olive flounder Paralichthys olivaceus is an important cultured marine fish. We found that the meiosis marker scp3 and its intrinsic regulator dazl were mainly expressed in the gonads. During the ovarian differentiation, scp3 signal was detected first in pre-meiotic oogonia at 60-mm total length (TL) and then in primary oocytes at 80- and 100-mm TL, with a sharp increase in scp3 expression level observed at 80- and 100-mm TL. Dazl signal was detected in primordial germ cells at 30-mm TL and oogonia at 60-mm TL, but no significant change of expression was observed. During the testicular differentiation period, scp3 and dazl expression remained at low levels, and scp3 signal was weakly detected in spermatogonia at 80-mm TL, whereas dazl signal was not found. During the ovarian developmental stages, the highest expression levels of scp3 and dazl were detected at stages I and II, respectively, and strong signals of scp3 and dazl were detected in primary oocytes and oocytes at phases I and II. In the testis, the high expression of scp3 and dazl was detected at stages II-IV and II-III, respectively. Scp3 signal was weakly observed in pre-meiotic spermatogonia at stages I and II and strongly detected in primary spermatocytes at stages III-V. Dazl was detected in the nuclei of spermatogonia and spermatids at stages II-IV. Furthermore, scp3 expression in the ovary could be promoted by 17α-ethynylestradiol and tamoxifen, whereas dazl expression could be downregulated by tamoxifen.
Collapse
Affiliation(s)
- Wenxiang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shaoshuai Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Yuxia Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Ze Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiaowan Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhihao Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhuangzhuang Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| |
Collapse
|
2
|
Bruggeman JW, Koster J, van Pelt AMM, Speijer D, Hamer G. How germline genes promote malignancy in cancer cells. Bioessays 2023; 45:e2200112. [PMID: 36300921 DOI: 10.1002/bies.202200112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a "germline program" promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.
Collapse
Affiliation(s)
- Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
4
|
Polyploidy as an Adaptation against Loss of Heterozygosity in Cancer. Int J Mol Sci 2022; 23:ijms23158528. [PMID: 35955663 PMCID: PMC9369199 DOI: 10.3390/ijms23158528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is common in cancer cells and has implications for tumor progression and resistance to therapies, but it is unclear whether it is an adaptation of the tumor or the non-adaptive effect of genomic instability. I discuss the possibility that polyploidy reduces the deleterious effects of loss of heterozygosity, which arises as a consequence of mitotic recombination, and which in diploid cells leads instead to the rapid loss of complementation of recessive deleterious mutations. I use computational predictions of loss of heterozygosity to show that a population of diploid cells dividing by mitosis with recombination can be easily invaded by mutant polyploid cells or cells that divide by endomitosis, which reduces loss of complementation, or by mutant cells that occasionally fuse, which restores heterozygosity. A similar selective advantage of polyploidy has been shown for the evolution of different types of asexual reproduction in nature. This provides an adaptive explanation for cyclical ploidy, mitotic slippage and cell fusion in cancer cells.
Collapse
|
5
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. Meiotic chromosome organization and its role in recombination and cancer. Curr Top Dev Biol 2022; 151:91-126. [PMID: 36681479 PMCID: PMC10022578 DOI: 10.1016/bs.ctdb.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.
Collapse
Affiliation(s)
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christophe Lambing
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
7
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
8
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
9
|
Oh SJ, Noh KH, Song KH, Kim TW. Interaction between SCP3 and JAB1 Confers Cancer Therapeutic Resistance and Stem-like Properties through EGF Expression. Int J Mol Sci 2021; 22:ijms22168839. [PMID: 34445562 PMCID: PMC8396186 DOI: 10.3390/ijms22168839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.
Collapse
Affiliation(s)
- Se Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea;
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu 42472, Korea
- Correspondence: (K.-H.S.); (T.W.K.); Tel.: +82-053-650-4752 (K.-H.S.); +82-02-2286-1301 (T.W.K.)
| | - Tae Woo Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea;
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: (K.-H.S.); (T.W.K.); Tel.: +82-053-650-4752 (K.-H.S.); +82-02-2286-1301 (T.W.K.)
| |
Collapse
|
10
|
Hosoya N, Miyagawa K. Synaptonemal complex proteins modulate the level of genome integrity in cancers. Cancer Sci 2021; 112:989-996. [PMID: 33382503 PMCID: PMC7935773 DOI: 10.1111/cas.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that is transiently formed during meiosis to promote homologous recombination between maternal and paternal chromosomes. As this structure is required only for meiotic recombination, the proteins constituting the complex are almost undetectable in normal somatic cells, but they can be expressed under the conditions in which the transcriptional machinery is deregulated. Accumulating evidence indicates that they are epigenetically expressed in cancers of various origin. Not surprisingly, in contrast to their meiotic roles, the somatic roles of the SC proteins remain to be investigated. However, it has recently been reported that SYCP3 and SYCE2 control DNA double‐strand break repair negatively and positively, respectively, suggesting that the ectopic expression of the SC proteins in somatic cells could be associated with the maintenance of genomic instability. Thus, it is highly likely that the investigation of the somatic roles of the SC proteins would improve our understanding of the mechanisms underlying tumor development.
Collapse
Affiliation(s)
- Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med 2020; 18:443. [PMID: 33228719 PMCID: PMC7686699 DOI: 10.1186/s12967-020-02618-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a critical player in tumor progression, metastasis and therapy outcomes. Tumor-associated macrophages (TAMs) are a well-recognized core element of the TME and generally characterized as M2-like macrophages. TAMs are believed to contribute to tumor progression, but the mechanism behind this remains unclear. We aimed to investigate the clinical, angiogenic, and lymphangiogenic significance of TAMs in non-small cell lung cancer (NSCLC). METHODS Utilizing combined immunohistochemistry and digital image analysis, we assessed CD68, CD163, VEGF-A, and VEGF-C expression in 349 patients with NSCLC. Subsequently, the potential association between M2 TAMs and angiogenic VEGF-A and/or lymphangiogenic VEGF-C was evaluated for its prognostic value. Furthermore, the effects of M2 TAMs on angiogenesis and lymphangiogenesis were explored via an in vitro co-culture system. RESULTS CD68 and CD163 expression were found to directly correlate with VEGF-A and/or VEGF-C expression (all p < 0.001). Furthermore, elevated M2 ratio (CD163+/CD68+) was significantly associated with poor overall survival (p = 0.023). Dual expression of M2 ratiohigh and VEGF-Chigh (M2 ratiohighVEGF-Chigh) was correlated with worse overall survival (p = 0.033). Multivariate analysis revealed that M2 ratiohigh [HR (95% CI) = 1.53 (1.01-2.33), p = 0.046] and combined M2 ratiohighVEGF-Chigh expression [HR (95% CI) = 2.01 (1.28-3.16), p = 0.003] were independent predictors of poor overall survival. Notably, we confirmed that M2 macrophages significantly enhanced the protein and mRNA expression of both VEGF-A and VEGF-C, while M1 macrophages induced only mRNA expression of VEGF-A in A549 cells. CONCLUSIONS This study suggests that TAMs are significantly associated with angiogenesis and lymphangiogenesis, contributing to the progression of NSCLC. Furthermore, elevated M2 ratio, similar to combined high M2 ratio and high VEGF-C expression, is a strong indicator of poor prognosis in patients with NSCLC, providing insight for future TAM-based immunotherapy strategies.
Collapse
Affiliation(s)
- Ilseon Hwang
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.,Department of Pathology, Keimyung University Scholl of Medicine and Institute for Cancer Research, Dongsan Medical Center, Daegu, 42601, Republic of Korea
| | - Jeong Won Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.,Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haruhisa Kitano
- Department of Thoracic Surgery, Vories Memorial Hospital, Shiga, 523-0806, Japan.,Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Candice Perry
- Advanced Biomedical Computational Science, Biomedical Informatics and Data Science, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Jun Hanaoka
- Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Gantchev J, Martínez Villarreal A, Gunn S, Zetka M, Ødum N, Litvinov IV. The ectopic expression of meiCT genes promotes meiomitosis and may facilitate carcinogenesis. Cell Cycle 2020; 19:837-854. [PMID: 32223693 DOI: 10.1080/15384101.2020.1743902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer meiomitosis is defined as the concurrent activation of both mitotic and meiotic machineries in neoplastic cells that confer a selective advantage together with increased genomic instability. MeiCT (meiosis-specific cancer/testis) genes that perform specialized functions in the germline events required for the first meiotic division are ectopically expressed in several cancers. Here we describe the expression profiles of meiCT genes and proteins across a number of cancers and review the proposed mechanisms that increase aneuploidy and elicit reduction division in polyploid cells. These mechanisms are centered on the overexpression and function of meiCT proteins in cancers under various conditions that includes a response to genotoxic stress. Since meiCT genes are transcriptionally repressed in somatic cells, their target offers a promising therapeutic approach with limited toxicity to healthy tissues. Throughout the review, we provide a detailed description of the roles for each gene in the context of meiosis and we discuss proposed functions and outcomes resulting from their ectopic reactivation in cancer.
Collapse
Affiliation(s)
- Jennifer Gantchev
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | | | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Neils Ødum
- Department of Microbiology and Immunology, The University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
13
|
Bollschweiler D, Radu L, Joudeh L, Plitzko JM, Henderson RM, Mela I, Pellegrini L. Molecular architecture of the SYCP3 fibre and its interaction with DNA. Open Biol 2019; 9:190094. [PMID: 31615332 PMCID: PMC6833220 DOI: 10.1098/rsob.190094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The synaptonemal complex (SC) keeps homologous chromosomes in close alignment during meiotic recombination. A hallmark of the SC is the presence of its constituent protein SYCP3 on the chromosome axis. During SC assembly, SYCP3 is deposited on both axes of the homologue pair, forming axial elements that fuse into the lateral element (LE) in the tripartite structure of the mature SC. We have used cryo-electron tomography and atomic force microscopy to study the mechanism of assembly and DNA binding of the SYCP3 fibre. We find that the three-dimensional architecture of the fibre is built on a highly irregular arrangement of SYCP3 molecules displaying very limited local geometry. Interaction between SYCP3 molecules is driven by the intrinsically disordered tails of the protein, with no contact between the helical cores, resulting in a flexible fibre assembly. We demonstrate that the SYCP3 fibre can engage in extensive interactions with DNA, indicative of an efficient mechanism for incorporation of DNA within the fibre. Our findings suggest that SYCP3 deposition on the chromosome axis might take place by polymerization into a fibre that is fastened to the chromosome surface via DNA binding.
Collapse
Affiliation(s)
| | - Laura Radu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luay Joudeh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Robert M Henderson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
14
|
Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes. Genes (Basel) 2019; 10:genes10080613. [PMID: 31412657 PMCID: PMC6723511 DOI: 10.3390/genes10080613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r ≈ 0.9, p < 0.001), negatively correlated with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types. We suggest that doubling of the maternal genome followed by pedogamic fusion with a paternal genome (a possible mimic of the fertilization aberration, 69, XXY digyny) associated with meiotic reprogramming may be responsible for the observed rearrangements of genome complements leading to cancer triploidy. The relatively frequent loss of the Y-chromosome results as a secondary factor from chromosome instability.
Collapse
|
15
|
Feichtinger J, McFarlane RJ. Meiotic gene activation in somatic and germ cell tumours. Andrology 2019; 7:415-427. [PMID: 31102330 PMCID: PMC6766858 DOI: 10.1111/andr.12628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Background Germ cell tumours are uniquely associated with the gametogenic tissues of males and females. A feature of these cancers is that they can express genes that are normally tightly restricted to meiotic cells. This aberrant gene expression has been used as an indicator that these cancer cells are attempting a programmed germ line event, meiotic entry. However, work in non‐germ cell cancers has also indicated that meiotic genes can become aberrantly activated in a wide range of cancer types and indeed provide functions that serve as oncogenic drivers. Here, we review the activation of meiotic factors in cancers and explore commonalities between meiotic gene activation in germ cell and non‐germ cell cancers. Objectives The objectives of this review are to highlight key questions relating to meiotic gene activation in germ cell tumours and to offer possible interpretations as to the biological relevance in this unique cancer type. Materials and Methods PubMed and the GEPIA database were searched for papers in English and for cancer gene expression data, respectively. Results We provide a brief overview of meiotic progression, with a focus on the unique mechanisms of reductional chromosome segregation in meiosis I. We then offer detailed insight into the role of meiotic chromosome regulators in non‐germ cell cancers and extend this to provide an overview of how this might relate to germ cell tumours. Conclusions We propose that meiotic gene activation in germ cell tumours might not indicate an unscheduled attempt to enter a full meiotic programme. Rather, it might simply reflect either aberrant activation of a subset of meiotic genes, with little or no biological relevance, or aberrant activation of a subset of meiotic genes as positive tumour evolutionary/oncogenic drivers. These postulates provide the provocation for further studies in this emerging field.
Collapse
Affiliation(s)
- J Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.,OMICS Center Graz, BioTechMed Graz, Graz, Austria
| | - R J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
16
|
Salmina K, Huna A, Kalejs M, Pjanova D, Scherthan H, Cragg MS, Erenpreisa J. The Cancer Aneuploidy Paradox: In the Light of Evolution. Genes (Basel) 2019; 10:E83. [PMID: 30691027 PMCID: PMC6409809 DOI: 10.3390/genes10020083] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy should compromise cellular proliferation but paradoxically favours tumour progression and poor prognosis. Here, we consider this paradox in terms of our most recent observations of chemo/radio-resistant cells undergoing reversible polyploidy. The latter perform the segregation of two parental groups of end-to-end linked dyads by pseudo-mitosis creating tetraploid cells through a dysfunctional spindle. This is followed by autokaryogamy and a homologous pairing preceding a bi-looped endo-prophase. The associated RAD51 and DMC1/γ-H2AX double-strand break repair foci are tandemly situated on the AURKB/REC8/kinetochore doublets along replicated chromosome loops, indicative of recombination events. MOS-associated REC8-positive peri-nucleolar centromere cluster organises a monopolar spindle. The process is completed by reduction divisions (bi-polar or by radial cytotomy including pedogamic exchanges) and by the release of secondary cells and/or the formation of an embryoid. Together this process preserves genomic integrity and chromosome pairing, while tolerating aneuploidy by by-passing the mitotic spindle checkpoint. Concurrently, it reduces the chromosome number and facilitates recombination that decreases the mutation load of aneuploidy and lethality in the chemo-resistant tumour cells. This cancer life-cycle has parallels both within the cycling polyploidy of the asexual life cycles of ancient unicellular protists and cleavage embryos of early multicellulars, supporting the atavistic theory of cancer.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV1067 Riga, Latvia.
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | | | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, LV1067 Riga, Latvia.
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affil. to the Univ. of Ulm, 80937 Munich, Germany.
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK.
| | | |
Collapse
|
17
|
Liu C, Cai Z, Jin G, Peng D, Pan BS, Zhang X, Han F, Xu X, Lin HK. Abnormal gametogenesis induced by p53 deficiency promotes tumor progression and drug resistance. Cell Discov 2018; 4:54. [PMID: 30302273 PMCID: PMC6167385 DOI: 10.1038/s41421-018-0054-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023] Open
Abstract
The century-old embryonal/gametogenesis hypothesis of tumors could link diverse tumors' malignant features together likely representing the real "stemness" of tumors. However, the genetic evidence to validate abnormal gametogenesis in tumors remains lacking. Here we show that p53 deficiency elicits abnormal gametogenesis from primordial germ cell-like stage to late oocyte-like stage and subsequent parthenogenetic activation. The similar upregulation of abnormal gametogenesis by p53 deficiency is observed both in p53-/- mouse model and cultured cancer cells. Notably, germ cell-like cells isolated from distinct tumors from p53-/- mice and cancer cell lines display potent tumorigenicity potential. Abnormal oogenesis induced by p53 deficiency and then spontaneous parthenogenetic activation endow tumors with imitated embryonic development, life cycle, and therapeutic resistance. Our study establishes the genetic evidence to support embryonal/gametogenesis theory of tumors and reveals a pivotal role of p53 in restricting abnormal gametogenesis that may represent a novel aspect for p53's tumor suppression.
Collapse
Affiliation(s)
- Chunfang Liu
- 1Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhen Cai
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Guoxiang Jin
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Danni Peng
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bo-Syong Pan
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xian Zhang
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Fei Han
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xiaohong Xu
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Hui-Kuan Lin
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- 4Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan
- 5Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
18
|
Oh SJ, Cho H, Kim S, Noh KH, Song KH, Lee HJ, Woo SR, Kim S, Choi CH, Chung JY, Hewitt SM, Kim JH, Baek S, Lee KM, Yee C, Park HC, Kim TW. Targeting Cyclin D-CDK4/6 Sensitizes Immune-Refractory Cancer by Blocking the SCP3-NANOG Axis. Cancer Res 2018; 78:2638-2653. [PMID: 29437706 DOI: 10.1158/0008-5472.can-17-2325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Immunoediting caused by antitumor immunity drives tumor cells to acquire refractory phenotypes. We demonstrated previously that tumor antigen-specific T cells edit these cells such that they become resistant to CTL killing and enrich NANOGhigh cancer stem cell-like cells. In this study, we show that synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, is overexpressed in immunoedited cells and upregulates NANOG by hyperactivating the cyclin D1-CDK4/6 axis. The SCP3-cyclin D1-CDK4/6 axis was preserved across various types of human cancer and correlated negatively with progression-free survival of cervical cancer patients. Targeting CDK4/6 with the inhibitor palbociclib reversed multiaggressive phenotypes of SCP3high immunoedited tumor cells and led to long-term control of the disease. Collectively, our findings establish a firm molecular link of multiaggressiveness among SCP3, NANOG, cyclin D1, and CDK4/6 and identify CDK4/6 inhibitors as actionable drugs for controlling SCP3high immune-refractory cancer.Significance: These findings reveal cyclin D1-CDK4/6 inhibition as an effective strategy for controlling SCP3high immune-refractroy cancer. Cancer Res; 78(10); 2638-53. ©2018 AACR.
Collapse
Affiliation(s)
- Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hanbyoul Cho
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suhyun Kim
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Seon Rang Woo
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Suyeon Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungki Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
19
|
Kitano H, Chung JY, Noh KH, Lee YH, Kim TW, Lee SH, Eo SH, Cho HJ, Choi CH, Inoue S, Hanaoka J, Fukuoka J, Hewitt SM. Synaptonemal complex protein 3 is associated with lymphangiogenesis in non-small cell lung cancer patients with lymph node metastasis. J Transl Med 2017. [PMID: 28623914 PMCID: PMC5473978 DOI: 10.1186/s12967-017-1241-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The interaction of vascular endothelial growth factor-C (VEGF-C)/VEGF-D/VEGF receptor-3 is considered to be a major driver of lymphangiogenesis, however the mechanism of this process remains unclear. We aimed to investigate the possible lymphangiogenic significance of synaptonemal complex protein 3 (SCP3) in non-small cell lung cancer (NSCLC). Methods The expression of SCP3, VEGF-C, and VEGF-D were measured and examined a correlation between SCP3 and VEGF-C or VEGF-D in various human lung cancer cell lines. Subsequently, we assessed SCP3, VEGF-A, VEGF-B, VEGF-C, and VEGF-D expression in archival tumor tissues from 89 NSCLC patients with lymph node (LN) metastasis by combined immunohistochemistry with quantitative digital image analysis. Results Positive correlations between SCP3 and VEGF-C expression (R2 = 0.743) and VEGF-D expression (R2 = 0.932) were detected in various human lung cancer cell lines. The high expression of SCP3, VEGF-A, VEGF-B, VEGF-C, and VEGF-D were detected in 24 (27.0%), 22 (24.7%), 27 (30.3%), 27 (30.3%), and 24 cases (27.0%), respectively. Notably, SCP3 positively correlated with VEGF-C and VEGF-D expression (for both, P < 0.001) and negatively correlated with VEGF-A and VEGF-B expression (P = 0.029 and P = 0.026, respectively). In multivariate analysis of patients with LN metastasis, SCP3 expression predicted worse overall survival (hazard ratio = 1.86, P = 0.008). Conclusions SCP3 is associated with lymphangiogenesis and provides insight into the SCP3-VEGF-C/VEGF-D axis based cancer therapy strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haruhisa Kitano
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung Hee Noh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Young-Ho Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 136-701, Korea.,Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 136-701, Korea
| | - Seok Hyung Lee
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Soo-Heang Eo
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Hyung Jun Cho
- Department of Statistics, Korea University, Seoul, 136-701, Korea
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Korea
| | - Shuhei Inoue
- Department of Thoracic Surgery, National Hospital Organization Higashi-Ohmi General Medical Center, Higashi-Oumi, 527-8505, Japan
| | - Jun Hanaoka
- Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Li Y, He Z, Shi S, Zhang Y, Chen D, Zhang W, Zhang L. Scp3 expression in relation to the ovarian differentiation in the protogynous hermaphroditic ricefield eel Monopterus albus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1609-1619. [PMID: 27277446 DOI: 10.1007/s10695-016-0244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Synaptonemal complex protein 3 (Scp3), which is encoded by scp3, is a meiotic marker commonly used to trace the timing of gonadal differentiation in vertebrates. In the present study, the ricefield eel scp3 cDNA was cloned, and a fragment encoding amino acids 49 to 244 was overexpressed. The recombinant Scp3 polypeptide was purified and used to generate a rabbit anti-Scp3 polyclonal antiserum. In adult ricefield eels, scp3 mRNA was predominantly detected in the gonads and faintly detected in discrete brain areas. In the gonads, Scp3 immunoreactivities were shown to be localized to the germ cells, including meiotic primary growth oocytes, spermatocytes, and pre-meiotic spermatogonia. During early ovarian differentiation, immunoreactive Scp3 was not detected in the gonads of ricefield eels at 6 days post-hatching (dph) but was found to be abundantly localized in the cytoplasm of some oogonia at 7 dph, coinciding with the appearance of the ovarian cavity and ovarian differentiation. At 14 dph, strong Scp3 immunostaining was detected on one side of the nucleus with a distinct polarity in some germ cells, presumably at the leptotene stage. Consistent with these results, the expression of scp3 mRNA was faintly detected in the gonads of ricefield eels at 6 dph, increased at 8 dph, and then remained relatively high thereafter. Taken together, these results suggest that the appearance of immunoreactive Scp3 in oogonia could be a marker for early ovarian differentiation in ricefield eels. The translocation of the Scp3 protein from the cytoplasm to the nucleus in the oogonium of ricefield eels appears to be a controlled process that warrants further study.
Collapse
Affiliation(s)
- Yixue Li
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhi He
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- College of Animal Sciences and Technology, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Shuxia Shi
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yize Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Lihong Zhang
- Biology Department, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
21
|
MOBASHERI MB, SHIRKOOHI R, MODARRESSI MH. Synaptonemal Complex Protein 3 Transcript Analysis in Breast Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2016; 45:1618-1624. [PMID: 28053928 PMCID: PMC5207103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/21/2016] [Indexed: 11/05/2022]
Abstract
BACKGROUND Breast cancer is the most frequent cancer in women. Cancer/Testis antigens are immunogenic proteins ectopically expressed in human neoplasms. Synaptonemal complex protein 3 (SYCP3) belongs to cancer/testis genes family involved in meiotic events and spermatogenesis. The aim of this study was to express analysis of SYCP3 in breast cancer and validate it as a breast cancer biomarker. METHODS Expression of SYCP3 transcripts in 47 breast tumors, 6 breast cancer cell lines (MCF7, SKBR3, T47D, BT474, MDA-MB-231 and MDA-MB 468), 5 normal breast and 2 testis tissues was studied by Real Time RT-PCR reaction. The reference genes phosphoglucomutase 1 and hypoxanthine guanine phosphoribosyl transferase were used as reactions normalizers. The software tool REST 2009 was applied for statistical analysis of the data. The research was conducted from Apr 2014 to August 2015 in Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. RESULTS All of the studied breast cancer cell lines showed very high levels of SYCP3 overexpression in comparison to normal breast (P=0.001) and even to normal testis (P=0.001), except for MCF7 cell line. Breast tumors showed moderately increasing in transcript changes in comparison to normal breast. CONCLUSION SYCP3 is a known testis-specific gene, but interestingly five out of six studied breast cancer of cell lines showed higher expression levels of SYCP3 in comparison to normal testis and normal breast tissues. SYCP3 has critical role in cell division with known interaction with the tumor suppressor genes, BRCA1 and BRCA2, which are critical genes in breast cancer.
Collapse
Affiliation(s)
- Maryam Beigom MOBASHERI
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza SHIRKOOHI
- Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein MODARRESSI
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Nielsen AY, Gjerstorff MF. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. Int J Mol Sci 2016; 17:E890. [PMID: 27275820 PMCID: PMC4926424 DOI: 10.3390/ijms17060890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aaraby Yoheswaran Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| |
Collapse
|
23
|
Cho H, Noh KH, Chung JY, Takikita M, Chung EJ, Kim BW, Hewitt SM, Kim TW, Kim JH. Synaptonemal complex protein 3 is a prognostic marker in cervical cancer. PLoS One 2014; 9:e98712. [PMID: 24905095 PMCID: PMC4048308 DOI: 10.1371/journal.pone.0098712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/06/2014] [Indexed: 01/15/2023] Open
Abstract
Synaptonemal complex protein 3 (SCP3), a member of Cor1 family, is up-regulated in various cancer cells; however, its oncogenic potential and clinical significance has not yet been characterized. In the present study, we investigated the oncogenic role of SCP3 and its relationship with phosphorylated AKT (pAKT) in cervical neoplasias. The functional role of SCP3 expression was investigated by overexpression or knockdown of SCP3 in murine cell line NIH3T3 and human cervical cancer cell lines CUMC6, SiHa, CaSki, and HeLa both in vitro and in vivo. Furthermore, we examined SCP3 expression in tumor specimens from 181 cervical cancer and 400 cervical intraepithelial neoplasia (CIN) patients by immunohistochemistry and analyzed the correlation between SCP3 expression and clinicopathologic factors or survival. Overexpression of SCP3 promoted AKT-mediated tumorigenesis both in vitro and in vivo. Functional studies using NIH3T3 cells demonstrated that the C-terminal region of human SCP3 is important for AKT activation and its oncogenic potential. High expression of SCP3 was significantly associated with tumor stage (P = 0.002) and tumor grade (P<0.001), while SCP3 expression was positively associated with pAKT protein level in cervical neoplasias. Survival times for patients with cervical cancer overexpressing both SCP3 and pAKT (median, 134.0 months, n = 68) were significantly shorter than for patients with low expression of either SCP3 or pAKT (161.5 months, n = 108) as determined by multivariate analysis (P = 0.020). Our findings suggest that SCP3 plays an important role in the progression of cervical cancer through the AKT signaling pathway, supporting the possibility that SCP3 may be a promising novel cancer target for cervical cancer therapy.
Collapse
Affiliation(s)
- Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Noh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan-Si, Gyeonggi-Do, Republic of Korea
- Department of Biochemistry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mikiko Takikita
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bo Wook Kim
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen M. Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tae Woo Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan-Si, Gyeonggi-Do, Republic of Korea
- Department of Biochemistry, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail: (TWK); (JHK)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (TWK); (JHK)
| |
Collapse
|
24
|
Kitano H, Chung JY, Ylaya K, Conway C, Takikita M, Fukuoka J, Doki Y, Hanaoka J, Hewitt SM. Profiling of phospho-AKT, phospho-mTOR, phospho-MAPK and EGFR in non-small cell lung cancer. J Histochem Cytochem 2014; 62:335-46. [PMID: 24487999 PMCID: PMC4005365 DOI: 10.1369/0022155414523022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of numerous pathways has been documented in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) has emerged as a common therapeutic target. The mitogen-activated protein kinase (MAPK) and AKT signaling pathways are downstream of EGFR and deregulated via genetic and epigenetic mechanisms in many human cancers. We evaluated selected markers in the EGFR pathway with reference to outcome. Tissues from 220 cases of NSCLC patients presented in a tissue microarray were assayed with immunohistochemistry for phosphorylated AKT, phosphorylated MAPK, phosphorylated mTOR, and EGFR and then quantified by automated image analysis. Individually, the biomarkers did not predict. Combined as ratios, p-mTOR/p-AKT, and p-MAPK/EGFR function as prognostic markers of survival (p=0.008 and p=0.029, respectively), however, no significance was found after adjustment (p=0.221, p=0.103). The sum of these ratios demonstrates a stronger correlation with survival (p<0.001) and remained statistically significant after adjustment (p=0.026). The algebraic combination of biomarkers offer the capacity to understand factors that predict outcome better than current approaches of evaluating biomarkers individually or in pairs. Our results show the sum of p-mTOR/p-AKT and p-MAPK/EGFR is a potential predictive marker of survival in NSCLC patients.
Collapse
Affiliation(s)
- Haruhisa Kitano
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland (HK, JYC, KY, CC, SMH)
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Seo EK, Kim TW, Park HH. Expression, crystallization and preliminary X-ray crystallographic studies of SCP3 coiled-coil domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1281-3. [PMID: 24192369 DOI: 10.1107/s1744309113026663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
The synaptonemal complex protein SCP3 is one of the components of the lateral element of the synaptonemal complex, which is a meiosis-specific complex structure formed at the synapse of homologous chromosomes. In this study, a C-terminal coiled-coil domain, SCP3, was overexpressed in Escherichia coli with an engineered C-terminal His tag. The coiled-coil domain of SCP3 was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 3.2 Å from a crystal belonging to space group C2, with unit-cell parameters a = 121.29, b = 43.08, c = 57.42 Å, β = 100.71°. The asymmetric unit was estimated to contain three molecules.
Collapse
Affiliation(s)
- Eun Kyoung Seo
- School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | |
Collapse
|