1
|
Nalkiran I, Sevim Nalkiran H, Ozcelik N, Kivrak M. In Silico Identification of LSD1 Inhibition-Responsive Targets in Small Cell Lung Cancer. Bioengineering (Basel) 2025; 12:504. [PMID: 40428124 PMCID: PMC12108737 DOI: 10.3390/bioengineering12050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy characterized by rapid progression, high metastatic potential, and limited therapeutic options. Lysine-specific demethylase 1 (LSD1) has been identified as a promising epigenetic target in SCLC. RG6016 (ORY-1001) is a selective LSD1 inhibitor currently under clinical investigation for its antitumor activity. In this study, publicly available RNA-Seq datasets from SCLC patient-derived xenograft (PDX) models treated with RG6016 were reanalyzed using bioinformatic approaches. Differential gene expression analysis was conducted to identify genes responsive to LSD1 inhibition. Candidate genes showing significant downregulation were further evaluated by molecular docking to assess their potential interaction with RG6016. The analysis identified a set of differentially expressed genes following RG6016 treatment, including notable downregulation of MYC, UCHL1, and TSPAN8. In silico molecular docking revealed favorable docking poses between RG6016 and the proteins encoded by these genes, suggesting potential direct or indirect targeting. These findings support a broader mechanism of action for RG6016 beyond its known interaction with LSD1. This study demonstrates that RG6016 may exert its antitumor effects through the modulation of additional molecular targets such as MYC, UCHL1, and TSPAN8 in SCLC. The combined bioinformatic and molecular docking analyses provide new insights into the potential multi-target profile of RG6016 and indicate the need for further experimental validation.
Collapse
Affiliation(s)
- Ihsan Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (I.N.); (H.S.N.)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (I.N.); (H.S.N.)
| | - Neslihan Ozcelik
- Department of Chest Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye;
| | - Mehmet Kivrak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye
| |
Collapse
|
2
|
Scherzai S, Lennartz M, Jacobsen F, Viehweger F, Dum D, Menz A, Schlichter R, Hinsch A, Höflmayer D, Hube-Magg C, Fraune C, Bernreuther C, Lebok P, Weidemann S, Sauter G, Clauditz TS, Krech T, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S. PGP9.5 expression in human tumors: A tissue microarray study on 13,920 tumors from 120 different tumor entities. Pathol Res Pract 2024; 264:155676. [PMID: 39520970 DOI: 10.1016/j.prp.2024.155676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The protein gene product 9.5 (PGP9.5), also termed ubiquitin C-terminal hydrolase L1 (UCH-L1) is an important component of the ubiquitination/deubiquitination system and plays a role in axonal transport. To comprehensively determine PGP9.5 expression in neoplastic tissues, a tissue microarray containing 13,920 samples from 120 different tumor types and subtypes was analyzed by immunohistochemistry (IHC). PGP9.5 immunostaining was found in 109 of 120 tumor categories, 87 of which contained at least one strongly positive case. PGP9.5 positivity was most seen in neuronal and neuroendocrine neoplasms (50-100 %), germ cell neoplasms (28-84 %), sarcomas and carcinosarcomas (up to 91 %), and in mesotheliomas (58-83 %). In clear cell RCC (renal cell carcinomas), strong PGP9.5 staining was associated with high ISUP (International Society of Urological Pathology) grade (p<0.0001), advanced pT stage (p=0.0003), nodal (p=0.0242) and distant metastasis (p<0.0001) as well as with a short overall, tumor specific and recurrence free survival (p≤0.0007 each). In papillary RCC, strong PGP9.5 staining was associated with high ISUP grade (p=0.009) and reduced recurrence free survival (p=0.0221). In urothelial carcinoma of the urinary bladder, high PGP9.5 expression was associated with muscle-invasion (p<0.0001). PGP9.5 immunostaining was unrelated to histological parameters for tumor aggressiveness in 295 serous high-grade ovarian carcinomas, 174 endometrioid endometrium carcinomas, 292 papillary and 89 follicular thyroid carcinomas, 405 ductal adenocarcinomas of the pancreas and in 327 gastric adenocarcinomas. In summary, our data provide a comprehensive overview of PGP9.5 expression in cancer and demonstrate positive cases in a broad range of entities. PGP9.5 overexpression is linked to patient outcome in some tumor entities (i.e., clear cell RCC) but appears to be unrelated to clinically relevant tumor characteristics in many other frequent tumor entities.
Collapse
Affiliation(s)
- Sekander Scherzai
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Department of Pathology, Akademisches Krankenhaus Fürth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Lien HC, Yu HC, Yu WH, Lin SF, Chen TWW, Chen IC, Hsiao LP, Yeh LC, Li YC, Lo C, Lu YS. Characteristics and transcriptional regulators of spontaneous epithelial-mesenchymal transition in genetically unperturbed patient-derived non-spindled breast carcinoma. Breast Cancer Res 2024; 26:130. [PMID: 39256881 PMCID: PMC11385830 DOI: 10.1186/s13058-024-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Although tumor cells undergoing epithelial-mesenchymal transition (EMT) typically exhibit spindle morphology in experimental models, such histomorphological evidence of EMT has predominantly been observed in rare primary spindle carcinomas. The characteristics and transcriptional regulators of spontaneous EMT in genetically unperturbed non-spindled carcinomas remain underexplored. METHODS We used primary culture combined with RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and in situ RNA-seq to explore the characteristics and transcription factors (TFs) associated with potential spontaneous EMT in non-spindled breast carcinoma. RESULTS Our primary culture revealed carcinoma cells expressing diverse epithelial-mesenchymal traits, consistent with epithelial-mesenchymal plasticity. Importantly, carcinoma cells undergoing spontaneous EMT did not necessarily exhibit spindle morphology, even when undergoing complete EMT. EMT was a favored process, whereas mesenchymal-epithelial transition appeared to be crucial for secondary tumor growth. Through scRNA-seq, we identified TFs that were sequentially and significantly upregulated as carcinoma cells progressed through the EMT process, which correlated with increasing VIM expression. Once upregulated, the TFs remained active throughout the EMT process. ZEB1 was a key initiator and sustainer of EMT, as indicated by its earliest significant upregulation in the EMT process, its exact correlation with VIM expression, and the reversal of EMT and downregulation of EMT-upregulated TFs upon ZEB1 knockdown. The correlation between ZEB1 and vimentin expression in triple-negative breast cancer and metaplastic breast carcinoma tumor cohorts further highlighted its role. The immediate upregulation of ZEB2 following that of ZEB1, along with the observation that the knockdown of ZEB1 or ZEB2 downregulates both ZEB1 and ZEB2 concomitant with the reversal of EMT, suggests their functional cooperation in EMT. This finding, together with that of a lack of correlation of SNAI1, SNAI2, and TWIST1 expression with the mesenchymal phenotype, indicated EMT-TFs have a context-dependent role in EMT. Upregulation of EMT-related gene signatures during EMT correlated with poor patient outcomes, highlighting the biological importance of the model. Elevated EMT gene signatures and increased ZEB1 and ZEB2 expression in vimentin-positive compared to vimentin-negative carcinoma cells within the corresponding primary tumor tissue confirmed ZEB1 and ZEB2 as intrinsic, instead of microenvironmentally-induced, EMT regulators, and vimentin as an in vivo indicator of EMT. CONCLUSIONS Our findings provide insights into the characteristics and transcriptional regulators of spontaneous EMT in primary non-spindled carcinoma.
Collapse
Affiliation(s)
- Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chieh Yu
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Wen-Hsuan Yu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Li-Ping Hsiao
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Ling-Chun Yeh
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Yu-Chia Li
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan.
| |
Collapse
|
4
|
Zhang D, Fu Y, Tian G, Li J, Shang D, Zhou S. UCHL1 promotes proliferation and metastasis in head and neck squamous cell carcinoma and could be a potential therapeutic target. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:684-697. [PMID: 35165060 DOI: 10.1016/j.oooo.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to research the physiological roles of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Ten HNSCC samples and matched normal oral mucosal tissues were collected. UCHL1 expression of these tissues was detected by the immunohistochemical staining and real-time quantitative polymerase chain reaction. The human HNSCC cell line HN6 UCHL1 knockout (UCHL1 KO) cell line was constructed using CRISPR/CAS9 gene editing and verified by western blotting. Wound healing assay, cell proliferation assay, cell invasion assay, and flow cytometric analysis of the cell cycle and apoptosis were applied to research the role of UCHL1 in HNSCC. Also, an RNAseq gene expression data set and HNSCC patient survival data from The Cancer Genome Atlas were analyzed. RESULTS UCHL1 was highly expressed in HNSCC tissues compared with normal oral mucosal tissues (P = .032). A decreased proliferation (P < .0001), migration (P < .0001), and invasion (P = .0049) ability of HN6 cells was exhibited after knockout of UCHL1. However, HN6 UCHL1 KO cells showed no significant differences in the cell cycle or apoptosis. The progression, nodal metastasis status, and stage of HNSCC had a positive correlation with the expression of UCHL1. CONCLUSIONS UCHL1 plays an important role in HNSCC, and we consider that targeting UCHL1 may be a feasible therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - You Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Guocai Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Dihua Shang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China.
| |
Collapse
|
5
|
Kamseng P, Siriboonpiputtana T, Puavilai T, Chuncharunee S, Paisooksantivatana K, Chareonsirisuthigul T, Junking M, Chiraphapphaiboon W, Yenchitsomanus PT, Rerkamnuaychoke B. Targeting UCHL1 Induces Cell Cycle Arrest in High-Risk Multiple Myeloma with t(4;14). Pathol Oncol Res 2021; 27:606567. [PMID: 34257568 PMCID: PMC8262241 DOI: 10.3389/pore.2021.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022]
Abstract
Multiple myeloma (MM) patients considered to be at high cytogenetic risk commonly fail to respond to standard treatment. A thorough understanding of the molecular mechanism of MM development is, therefore, needed. We endeavored to explore the transcriptional signature among different subgroups of newly diagnosed MM using gene chip-based expression microarray. Bone marrow samples of 15 newly diagnosed Thai MM patients were included. The chromosomal translocation t(4;14) was the most frequently identified genetic alteration in the high-risk subgroup. Cluster analysis from expression profiling demonstrated that high-risk MM have a distinctly different expression pattern compared to standard-risk patients. The most significant differentially expressed gene was UCHL1. Functional enrichment analysis by Gene Set Enrichment Analysis, FUNRICH, and Gene Ontology Panther pathway revealed the gene sets involved in cell cycle control to be enriched in the t(4;14) high-risk group. Interestingly, among the well-established downstream targets of UCHL1, only CCND2 was significantly expressed in the t(4;14) high-risk group. Suppression of UCHL1 protein level by LDN-5744 inhibitor could arrest the cell cycle in G1 phase in cell lines. These findings shed light on the molecular mechanism of UCHL1 in t(4;14) high-risk MM and support the evidence that alteration of the UCHL1 pathway may play a role in the pathogenesis of high-risk MM.
Collapse
Affiliation(s)
- Parin Kamseng
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Teeraya Puavilai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Karan Paisooksantivatana
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Tessier-Cloutier B, Cochrane DR, Karnezis AN, Colborne S, Magrill J, Talhouk A, Zhang J, Leung S, Hughes CS, Piskorz A, Cheng AS, Greening K, du Bois A, Pfisterer J, Soslow RA, Kommoss S, Brenton JD, Morin GB, Gilks CB, Huntsman DG, Kommoss F. Proteomic analysis of transitional cell carcinoma-like variant of tubo-ovarian high-grade serous carcinoma. Hum Pathol 2020; 101:40-52. [PMID: 32360491 PMCID: PMC8204941 DOI: 10.1016/j.humpath.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
The current World Health Organization classification does not distinguish transitional cell carcinoma of the ovary (TCC) from conventional tubo-ovarian high-grade serous carcinoma (HGSC), despite evidence suggesting improved prognosis for patients with TCC; instead, it is considered a morphologic variant of HGSC. The immunohistochemical (IHC) markers applied to date do not distinguish between TCC and HGSC. Therefore, we sought to compare the proteomic profiles of TCC and conventional HGSC to identify proteins enriched in TCC. Prognostic biomarkers in HGSC have proven to be elusive, and our aim was to identify biomarkers of TCC as a way of reliably and reproducibly identifying patients with a favorable prognosis and better response to chemotherapy compared with those with conventional HGSC. Quantitative global proteome analysis was performed on archival material of 12 cases of TCC and 16 cases of HGSC using SP3 (single-pot, solid phase-enhanced, sample preparation)-Clinical Tissue Proteomics, a recently described protocol for full-proteome analysis from formalin-fixed paraffin-embedded tissues. We identified 430 proteins that were significantly enriched in TCC over HGSC. Unsupervised co-clustering perfectly distinguished TCC from HGSC based on protein expression. Pathway analysis showed that proteins associated with cell death, necrosis, and apoptosis were highly expressed in TCCs, whereas proteins associated with DNA homologous recombination, cell mitosis, proliferation and survival, and cell cycle progression pathways had reduced expression. From the proteomic analysis, three potential biomarkers for TCC were identified, claudin-4 (CLDN4), ubiquitin carboxyl-terminal esterase L1 (UCHL1), and minichromosome maintenance protein 7 (MCM7), and tested by IHC analysis on tissue microarrays. In agreement with the proteomic analysis, IHC expression of those proteins was stronger in TCC than in HGSC (p < 0.0001). Using global proteomic analysis, we are able to distinguish TCC from conventional HGSC. Follow-up studies will be necessary to confirm that these molecular and morphologic differences are clinically significant.
Collapse
Affiliation(s)
- Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Anthony N Karnezis
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Shane Colborne
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Jamie Magrill
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Aline Talhouk
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jonathan Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Samuel Leung
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Anna Piskorz
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Angela S Cheng
- Genetic Pathology Evaluation Centre, The University of British Columbia, Vancouver, Canada
| | - Kendall Greening
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | | | - Robert A Soslow
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stefan Kommoss
- Department of Obstetrics and Gynecology, Tübingen University Hospital, Tübingen, Germany
| | - James D Brenton
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany.
| |
Collapse
|
7
|
Krabill AD, Chen H, Hussain S, Feng C, Abdullah A, Das C, Aryal UK, Post CB, Wendt MK, Galardy PJ, Flaherty DP. Ubiquitin C-Terminal Hydrolase L1: Biochemical and Cellular Characterization of a Covalent Cyanopyrrolidine-Based Inhibitor. Chembiochem 2020; 21:712-722. [PMID: 31449350 PMCID: PMC7042063 DOI: 10.1002/cbic.201900434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/09/2022]
Abstract
The deubiquitinase (DUB) ubiquitin C-terminal hydrolase L1 (UCHL1) is expressed primarily in the central nervous system under normal physiological conditions. However, UCHL1 is overexpressed in various aggressive forms of cancer with strong evidence supporting UCHL1 as an oncogene in lung, glioma, and blood cancers. In particular, the level of UCHL1 expression in these cancers correlates with increased invasiveness and metastatic behavior, as well as poor patient prognosis. Although UCHL1 is considered an oncogene with potential as a therapeutic target, there remains a significant lack of useful small-molecule probes to pharmacologically validate in vivo targeting of the enzyme. Herein, we describe the characterization of a new covalent cyanopyrrolidine-based UCHL1 inhibitory scaffold in biochemical and cellular studies to better understand the utility of this inhibitor in elucidating the role of UCHL1 in cancer biology.
Collapse
Affiliation(s)
- Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Sajjad Hussain
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
| | - Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, 560 Oval, West Lafayette, IN, 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Biosciences Center, Purdue University, 1275 3rd St., West Lafayette, IN, 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 915 W State St., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| | - Paul J Galardy
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Liu S, González-Prieto R, Zhang M, Geurink PP, Kooij R, Iyengar PV, van Dinther M, Bos E, Zhang X, Le Dévédec SE, van de Water B, Koning RI, Zhu HJ, Mesker WE, Vertegaal ACO, Ovaa H, Zhang L, Martens JWM, Ten Dijke P. Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis. Clin Cancer Res 2019; 26:1460-1473. [PMID: 31857432 DOI: 10.1158/1078-0432.ccr-19-1373] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Therapies directed to specific molecular targets are still unmet for patients with triple-negative breast cancer (TNBC). Deubiquitinases (DUB) are emerging drug targets. The identification of highly active DUBs in TNBC may lead to novel therapies. EXPERIMENTAL DESIGN Using DUB activity probes, we profiled global DUB activities in 52 breast cancer cell lines and 52 patients' tumor tissues. To validate our findings in vivo, we employed both zebrafish and murine breast cancer xenograft models. Cellular and molecular mechanisms were elucidated using in vivo and in vitro biochemical methods. A specific inhibitor was synthesized, and its biochemical and biological functions were assessed in a range of assays. Finally, we used patient sera samples to investigate clinical correlations. RESULTS Two DUB activity profiling approaches identified UCHL1 as being highly active in TNBC cell lines and aggressive tumors. Functionally, UCHL1 promoted metastasis in zebrafish and murine breast cancer xenograft models. Mechanistically, UCHL1 facilitates TGFβ signaling-induced metastasis by protecting TGFβ type I receptor and SMAD2 from ubiquitination. We found that these responses are potently suppressed by the specific UCHL1 inhibitor, 6RK73. Furthermore, UCHL1 levels were significantly increased in sera of patients with TNBC, and highly enriched in sera exosomes as well as TNBC cell-conditioned media. UCHL1-enriched exosomes stimulated breast cancer migration and extravasation, suggesting that UCHL1 may act in a paracrine manner to promote tumor progression. CONCLUSIONS Our DUB activity profiling identified UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis and may provide a potential target for TNBC treatment.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mengdi Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Kooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Prasanna Vasudevan Iyengar
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten van Dinther
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaobing Zhang
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | | | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. .,Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Guo M, Sinha S, Wang SM. Coupled Genome-Wide DNA Methylation and Transcription Analysis Identified Rich Biomarkers and Drug Targets in Triple-Negative Breast Cancer. Cancers (Basel) 2019; 11:E1724. [PMID: 31690011 PMCID: PMC6896154 DOI: 10.3390/cancers11111724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 02/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has poor clinical prognosis. Lack of TNBC-specific biomarkers prevents active clinical intervention. We reasoned that TNBC must have its specific signature due to the lack of three key receptors to distinguish TNBC from other types of breast cancer. We also reasoned that coupling methylation and gene expression as a single unit may increase the specificity for the detected TNBC signatures. We further reasoned that choosing the proper controls may be critical to increasing the sensitivity to identify TNBC-specific signatures. Furthermore, we also considered that specific drugs could target the detected TNBC-specific signatures. We developed a system to identify potential TNBC signatures. It consisted of (1) coupling methylation and expression changes in TNBC to identify the methylation-regulated signature genes for TNBC; (2) using TPBC (triple-positive breast cancer) as the control to detect TNBC-specific signature genes; (3) searching in the drug database to identify those targeting TNBC signature genes. Using this system, we identified 114 genes with both altered methylation and expression, and 356 existing drugs targeting 10 of the 114 genes. Through docking and molecular dynamics simulation, we determined the structural basis between sapropterin, a drug used in the treatment of tetrahydrobiopterin deficiency, and PTGS2, a TNBC signature gene involved in the conversion of arachidonic acid to prostaglandins. Our study reveals the existence of rich TNBC-specific signatures, and many can be drug target and biomarker candidates for clinical applications.
Collapse
Affiliation(s)
- Maoni Guo
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
10
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
12
|
Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med Genomics 2017; 10:28. [PMID: 28589855 PMCID: PMC5461552 DOI: 10.1186/s12920-017-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable. METHODS Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates. Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype. RESULTS It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method. Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation. CONCLUSIONS In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies.
Collapse
Affiliation(s)
- Garam Lee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - So Yeon Kim
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
13
|
Wang W, Zou L, Zhou D, Zhou Z, Tang F, Xu Z, Liu X. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol Carcinog 2015; 55:1329-42. [PMID: 26293643 DOI: 10.1002/mc.22376] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjuan Wang
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
| | - Liping Zou
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
| | - Danmei Zhou
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
| | - Zhongwen Zhou
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
| | - Feng Tang
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
| | - Zude Xu
- Department of Pathology; Huashan Hospital; Fudan University; Shanghai China
- Department of Pathology, School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences; Fudan University; Shanghai China
- Department of Pathology, the Fifth People's Hospital of Shanghai; Fudan University; Shanghai China
| |
Collapse
|
14
|
The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol 2015; 36:8379-87. [DOI: 10.1007/s13277-015-3566-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
|
15
|
Reddy SS, Shruthi K, Reddy VS, Raghu G, Suryanarayana P, Giridharan N, Reddy GB. Altered ubiquitin-proteasome system leads to neuronal cell death in a spontaneous obese rat model. Biochim Biophys Acta Gen Subj 2014; 1840:2924-34. [DOI: 10.1016/j.bbagen.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
|