1
|
Tessmann JW, Deng P, Durham J, Li C, Banerjee M, Wang Q, Goettl RA, He D, Wang C, Lee EY, Evers BM, Hennig B, Zaytseva YY. Perfluorooctanesulfonic acid exposure leads to downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 2 expression and upregulation of markers associated with intestinal carcinogenesis in mouse intestinal tissues. CHEMOSPHERE 2024; 359:142332. [PMID: 38754493 PMCID: PMC11157449 DOI: 10.1016/j.chemosphere.2024.142332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including β-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.
Collapse
Affiliation(s)
- Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ryan A Goettl
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Daheng He
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Chi Wang
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Belli S, Pesapane A, Servetto A, Esposito D, Napolitano F, Ascione CM, Allotta A, Zambrano N, Marino FZ, Franco R, Troiani T, Formisano L, Bianco R. Combined blockade of mTOR and p21-activated kinases pathways prevents tumour growth in KRAS-mutated colorectal cancer. Br J Cancer 2023; 129:1071-1082. [PMID: 37568037 PMCID: PMC10539494 DOI: 10.1038/s41416-023-02390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The identification of novel therapeutic strategies for metastatic colorectal cancer (mCRC) patients harbouring KRAS mutations represents an unmet clinical need. In this study, we aimed to clarify the role of p21-activated kinases (Paks) as therapeutic target for KRAS-mutated CRC. METHODS Paks expression and activation levels were evaluated in a cohort of KRAS-WT or -mutated CRC patients by immunohistochemistry. The effects of Paks inhibition on tumour cell proliferation and signal transduction were assayed by RNAi and by the use of three pan-Paks inhibitors (PF-3758309, FRAX1036, GNE-2861), evaluating CRC cells, spheroids and tumour xenografts' growth. RESULTS Paks activation positively correlated with KRAS mutational status in both patients and cell lines. Moreover, genetic modulation or pharmacological inhibition of Paks led to a robust impairment of KRAS-mut CRC cell proliferation. However, Paks prolonged blockade induced a rapid tumour adaptation through the hyper-activation of the mTOR/p70S6K pathway. The addition of everolimus (mTOR inhibitor) prevented the growth of KRAS-mut CRC tumours in vitro and in vivo, reverting the adaptive tumour resistance to Paks targeting. CONCLUSIONS In conclusion, our results suggest the simultaneous blockade of mTOR and Pak pathways as a promising alternative therapeutic strategy for patients affected by KRAS-mut colorectal cancer.
Collapse
Affiliation(s)
- Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Ada Pesapane
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Claudia Maria Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alessandra Allotta
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy
| | | | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Teresa Troiani
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
3
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Jaiswal P, Tripathi V, Nayak A, Kataria S, Lukashevich V, Das A, Parmar HS. A molecular link between diabetes and breast cancer: Therapeutic potential of repurposing incretin-based therapies for breast cancer. Curr Cancer Drug Targets 2021; 21:829-848. [PMID: 34468298 DOI: 10.2174/1568009621666210901101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.
Collapse
Affiliation(s)
- Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Shreya Kataria
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Vladimir Lukashevich
- Institute of Physiology of the National Academy of Sciences of Belarus, Minsk-220072. Belarus
| | - Apurba Das
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | | |
Collapse
|
5
|
Konishi T, Yoshidome H, Shida T, Furukawa K, Takayashiki T, Kuboki S, Takano S, Miyazaki M, Ohtsuka M. Phosphorylated mTOR expression as a predictor of survival after liver resection for colorectal liver metastases. J Surg Oncol 2021; 124:598-606. [PMID: 34061356 DOI: 10.1002/jso.26551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Phosphorylated mammalian target of rapamycin (p-mTOR) plays a crucial role in the process of cancer progression. Common gene mutations of colorectal cancer lead to the activation of the PI3k/Akt/mTOR pathway. In this study, we determined whether p-mTOR expression in colorectal liver metastases is a predictive marker of prognosis following liver resection. METHODS Eighty-one patients with colorectal liver metastases who had undergone curative resection were evaluated using immunohistochemistry of p-mTOR. Data regarding clinicopathological features and patient survival were analyzed. RESULTS The p-mTOR expression in colorectal liver metastases was detected in 55 (67.9%) patients. Patients whose metastases had high p-mTOR expression showed a significantly lower overall survival rate after resection as compared to patients with low p-mTOR expression (p = 0.016), while there was no significant difference in the disease-free survival between the two groups. Repeat resection for recurrence was performed more frequently in patients with p-mTOR positive than others (p = 0.024). Multivariate analysis showed that p-mTOR expression was an independent prognostic factor of overall survival after liver resection (p = 0.019). CONCLUSIONS mTOR was frequently activated in colorectal liver metastases, and the p-mTOR expression was a biological marker for predicting the overall survival of patients with colorectal liver metastases following liver resection.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Hiroyuki Yoshidome
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan.,Department of Surgery, Oami Municipal Hospital, Oami-Shirasato-shi, Chiba, Japan
| | - Takashi Shida
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| |
Collapse
|
6
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Anaplastic Thyroid Carcinoma: Current Issues in Genomics and Therapeutics. Curr Oncol Rep 2021; 23:31. [PMID: 33582932 DOI: 10.1007/s11912-021-01019-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Anaplastic thyroid carcinoma is a type of thyroid carcinoma with the most aggressive biological behaviour amongst thyroid cancer. Here, we review the current genomic and the impacts of advances in therapies to improve the management of patients with the cancer. RECENT FINDINGS Common mutations being identified in anaplastic thyroid carcinoma are p53 and TERT promoter mutations. Other common mutated genes included BRAF, RAS, EIF1AX, PIK3CA, PTEN and AKT1, SWI/SNF, ALK and CDKN2A. Changes in expression of different microRNAs are also involved in the pathogenesis of anaplastic thyroid carcinoma. Curative resection combined with radiotherapy and combination chemotherapies (such as anthracyclines, platins and taxanes) has been shown to have effects in the treatment of some patients with anaplastic thyroid carcinoma. Newer molecular targeted therapies in clinical trials target mostly the cell membrane kinase and downstream proteins. These include targeting the EGFR, FGFR, VEGFR, c-kit, PDGFR and RET on the cell membrane as well as VEGF itself and the downstream targets such as BRAF, MEK and mTOR. Immunotherapy is also being tested in the cancer. Updated knowledge of genomic as well as clinical trials on novel therapies is needed to improve the management of the patients with this aggressive cancer.
Collapse
|
8
|
Synergistic Anti-Tumor Effect of mTOR Inhibitors with Irinotecan on Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11101581. [PMID: 31627299 PMCID: PMC6826690 DOI: 10.3390/cancers11101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Advanced colorectal cancer has a poor prognosis because of metastasis formation and resistance to combined therapies. Downstream of PI3K/Akt and Ras/MAPK pathways, the mTOR kinase plays a decisive role in treatment failure. We previously established that irinotecan has antiangiogenic properties and it is known that new mammalian target of rapamycin (mTOR) catalytic AZD inhibitors, unlike rapamycin, target both mTORC1 and mTORC2. Thus, we hypothesized that the complete inhibition of the PI3K/AKT/mTOR/HIF-1α axis with mTOR catalytic inhibitors and low doses of irinotecan may have antitumor effects. We showed that the AZD8055 and AZD2014 inhibitors were much more potent than rapamycin to reduce cell viability of four colon cell lines. On the other hand, whereas AZD2014 alone inhibits migration by 40%, the drug combination led to 70% inhibition. Similarly, neither irinotecan nor AZD2014 significantly reduced cell invasion, whereas a combination of the two inhibits invasion by 70%. In vivo, irinotecan and AZD2014 combination drastically reduced ectopic patient-derived colon tumor growth and this combination was more potent than Folfox or Folfiri. Finally, the combination totally inhibited liver and lung metastases developed from orthotopic implantation of SW480 cells. Thus, the use of mTOR catalytic inhibitors, in association with other chemotherapeutic agents like irinotecan at low doses, is potentially a hope for colon cancer treatment.
Collapse
|
9
|
Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells. Sci Rep 2017; 7:11633. [PMID: 28912474 PMCID: PMC5599689 DOI: 10.1038/s41598-017-11202-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Here, we investigated the anticancer effect of Rhus coriaria extract (RCE) on HT-29 and Caco-2 human colorectal cancer cells. We found that RCE significantly inhibited the viability and colony growth of colon cancer cells. Moreover, RCE induced Beclin-1-independent autophagy and subsequent caspase-7-dependent apoptosis. Blocking of autophagy by chloroquine significantly reduced RCE-induced cell death, while blocking of apoptosis had no effect on RCE-induced cell death. Mechanistically, RCE inactivated the AKT/mTOR pathway by promoting the proteasome-dependent degradation of both proteins. Strikingly, we also found that RCE targeted Beclin-1, p53 and procaspase-3 to degradation. Proteasome inhibition by MG-132 not only restored these proteins to level comparable to control cells, but also reduced RCE-induced cell death and blocked the activation of autophagy and apoptosis. The proteasomal degradation of mTOR, which occurred only 3 hours post-RCE treatment was concomitant with an overall increase in the level of ubiquitinated proteins and translated stimulation of proteolysis by the proteasome. Our findings demonstrate that Rhus coriaria possesses strong anti-colon cancer activity through stimulation of proteolysis as well as induction of autophagic and apoptotic cell death, making it a potential and valuable source of novel therapeutic cancer drug.
Collapse
|
10
|
Sticz T, Molnár A, Márk Á, Hajdu M, Nagy N, Végső G, Micsik T, Kopper L, Sebestyén A. mTOR activity and its prognostic significance in human colorectal carcinoma depending on C1 and C2 complex-related protein expression. J Clin Pathol 2017; 70:410-416. [PMID: 27729429 DOI: 10.1136/jclinpath-2016-203913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
AIMS Tumour heterogeneity and altered activation of signalling pathways play important roles in therapy resistance. The PI3K/Akt/mTOR signalling network is a well-known regulator of several functions that contribute to tumour growth. mTOR exists in two functionally different multiprotein complexes. We aimed to determine mTOR activity-related proteins in clinically followed, conventionally treated colon carcinomas and to analyse the correlation between clinical data and mTORC1 and mTORC2 activity. METHODS Immunohistochemistry was performed with different antibodies on tissue microarray blocks from 103 patients with human colorectal adenocarcinoma. mTORC1- and mTORC2-related activity were scored on different stainings including analysis of the expression of Raptor and Rictor-specific elements of mTORC1 and C2 complexes. The staining scores and clinical/survival data were compared and analysed. RESULTS Detailed characterisation showed stage and grade independent high mTOR activity in 74% of cases. High mTOR activity was present in mTORC1 and/or mTORC2 complexes; >60% of cases had mTORC2-related high mTOR activity. Based on our analysis, high mTOR activity and Rictor overexpression could be markers of a bad prognosis. Combined phosphoprotein and Rictor/Raptor expression evaluation revealed even stronger statistical correlation with prognosis. CONCLUSIONS The presented staining panel could be appropriate and highly recommended for the accurate specification of mTORC1 and C2 activity of tumour tissues. This could help in the selection of mTOR inhibitors and can provide information about prognosis, which may guide decisions about the intensity of therapy.
Collapse
Affiliation(s)
- Tamás Sticz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Molnár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Melinda Hajdu
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gyula Végső
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - László Kopper
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Tumor Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Islam F, Haque MH, Yadav S, Islam MN, Gopalan V, Nguyen NT, Lam AK, Shiddiky MJA. An electrochemical method for sensitive and rapid detection of FAM134B protein in colon cancer samples. Sci Rep 2017; 7:133. [PMID: 28273937 PMCID: PMC5428029 DOI: 10.1038/s41598-017-00206-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/14/2017] [Indexed: 12/29/2022] Open
Abstract
Despite the excellent diagnostic applications of the current conventional immunoassay methods such as ELISA, immunostaining and Western blot for FAM134B detection, they are laborious, expensive and required a long turnaround time. Here, we report an electrochemical approach for rapid, sensitive, and specific detection of FAM134B protein in biological (colon cancer cell extracts) and clinical (serum) samples. The approach utilises a differential pulse voltammetry (DPV) in the presence of the [Fe(CN)6]3-/4- redox system to quantify the FAM134B protein in a two-step strategy that involves (i) initial attachment of FAM134B antibody on the surface of extravidin-modified screen-printed carbon electrode, and (ii) subsequent detection of FAM134B protein present in the biological/clinical samples. The assay system was able to detect FAM134B protein at a concentration down to 10 pg μL-1 in phosphate buffered saline (pH 7.4) with a good inter-assay reproducibility (% RSD = <8.64, n = 3). We found excellent sensitivity and specificity for the analysis of FAM134B protein in a panel of colon cancer cell lines and serum samples. Finally, the assay was further validated with ELISA method. We believe that our assay could potentially lead a low-cost alternative to conventional immunological assays for target antigens analysis in point-of-care applications.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
| | - Md Hakimul Haque
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Sharda Yadav
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia.
| | - Muhammad J A Shiddiky
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia.
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia.
| |
Collapse
|
12
|
Islam F, Gopalan V, Wahab R, Lee KTW, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AKY. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet 2017; 136:321-337. [DOI: 10.1007/s00439-017-1760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
|
13
|
Islam F, Gopalan V, Wahab R, Smith RA, Qiao B, Lam AKY. Stage dependent expression and tumor suppressive function of FAM134B( JK1) in colon cancer. Mol Carcinog 2017; 56:238-249. [DOI: 10.1002/mc.22488] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Robert A. Smith
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Bin Qiao
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| |
Collapse
|
14
|
Alalem M, Ray A, Ray BK. Metformin induces degradation of mTOR protein in breast cancer cells. Cancer Med 2016; 5:3194-3204. [PMID: 27748082 PMCID: PMC5119975 DOI: 10.1002/cam4.896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022] Open
Abstract
Activation of mTOR is implicated in the development and progression of breast cancer. mTOR inhibition exhibited promising antitumor effects in breast cancer; however, its effect is compromised by several feedback mechanisms. One of such mechanisms is the upregulation of mTOR pathway in breast cancer cells. Despite the established role of mTOR activation in breast cancer, the status of total mTOR protein and its impact on the tumor behavior and response to treatment are poorly understood. Besides, the mechanisms underlying mTOR protein degradation in normal and cancer breast cells are still largely unknown. We and others found that total mTOR protein level is elevated in breast cancer cells compared to their nonmalignant counterparts. We have detected defective proteolysis of mTOR protein in breast cancer cells, which could, at least in part, explain the high level of mTOR protein in these cells. We show that metformin treatment in MCF‐7 breast cancer cells induced degradation of mTOR and sequestration of this protein in a perinuclear region. The decrease in mTOR protein level in these cells correlated positively with a concomitant inhibition of proliferation and migration potentials of these cells. These findings provided a novel mechanism for the metformin action in breast cancer treatment. Understanding the proteolytic mechanism responsible for mTOR level in breast cancer may pave the way for improving the efficacy of breast cancer treatment regimens and mitigating drug resistance as well as providing a basis for potential novel therapeutic modalities for breast cancer.
Collapse
Affiliation(s)
- Mohamed Alalem
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211
| | - Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211
| | - Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
15
|
Gopalan V, Saremi N, Sullivan E, Kabir S, Lu CT, Salajegheh A, Leung M, Smith RA, Lam AKY. The expression profiles of the galectin gene family in colorectal adenocarcinomas. Hum Pathol 2016; 53:105-113. [PMID: 27001434 DOI: 10.1016/j.humpath.2016.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
We aim to investigate the expression profiles of galectin family genes (galectins-1, 2, 3, 4, 7, 8, 9, 10, and 11) in colorectal carcinomas. Messenger RNA (mRNA) expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10, and 12) was analyzed by real-time polymerase chain reaction in colorectal tissues from 201 patients (54 noncancer colorectal tissues, 49 adenomas, and 98 adenocarcinomas). Galectin-1 and galectin-3 protein expressions were determined by immunohistochemistry. In general, high galectin mRNA expression was noted in colorectal carcinomas in early stages of their pathogenesis. Significant differences in galectins-2, 3, 7, 8, and 10 mRNA expression were associated with pathologic stages (P<.05). Increased prevalence of galectins-2, 7, 8, and 10 mRNA overexpression was noted in nonmetastatic colorectal carcinomas (P<.05). Galectin-1 and galectin-3 proteins were present in the nucleus and cytoplasm of the colorectal tissues and expressed significantly higher in colorectal carcinomas when compared to colorectal adenomas (61% and 95%, respectively). Patients with colorectal carcinoma with high levels of galectin-3 mRNA and protein expression showed better prognosis (P=.052). To conclude, many novel correlations between the deregulation of galectin family genes and various clinicopathological features in colorectal adenocarcinoma were noted. Overexpression of galectins at the mRNA level and proteins were predominant in earlier stages of colorectal carcinomas. These altered expression patterns of galectin genes suggest the multifunctional role of galectin genes in the regulation of colorectal cancer development, progression, and metastasis.
Collapse
Affiliation(s)
- Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Nassim Saremi
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Emily Sullivan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sadiul Kabir
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Cu-Tai Lu
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Melissa Leung
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
16
|
Pillai S, Gopalan V, Smith RA, Lam AKY. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol 2016; 100:190-208. [DOI: 10.1016/j.critrevonc.2016.01.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
|
17
|
Ebrahimi F, Gopalan V, Wahab R, Lu CT, Anthony Smith R, Lam AKY. Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp Cell Res 2015; 339:333-341. [DOI: 10.1016/j.yexcr.2015.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/06/2015] [Accepted: 10/04/2015] [Indexed: 12/18/2022]
|
18
|
Malley CO, Pidgeon GP. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials. BBA CLINICAL 2015; 5:29-40. [PMID: 27051587 PMCID: PMC4802403 DOI: 10.1016/j.bbacli.2015.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a crucial point of convergence between growth factor signalling, metabolism, nutrient status and cellular proliferation. The mTOR pathway is heavily implicated in the progression of many cancers and is emerging as an important driver of gastrointestinal (GI) malignancies. Due to its central role in adapting metabolism to environmental conditions, mTOR signalling is also believed to be critical in the development of obesity. Recent research has delineated that excessive nutrient intake can promote signalling through the mTOR pathway and possibly evoke changes to cellular metabolism that could accelerate obesity related cancers. Acting through its two effector complexes mTORC1 and mTORC2, mTOR dictates the transcription of genes important in glycolysis, lipogenesis, protein translation and synthesis and has recently been defined as a central mediator of the Warburg effect in cancer cells. Activation of the mTOR pathway is involved in both the pathogenesis of GI malignancies and development of resistance to conventional chemotherapy and radiotherapy. The use of mTOR inhibitors is a promising therapeutic option in many GI malignancies, with greatest clinical efficacy seen in combination regimens. Recent research has also provided insight into crosstalk between mTOR and other pathways which could potentially expand the list of therapeutic targets in the mTOR pathway. Here we review the available strategies for targeting the mTOR pathway in GI cancers. We discuss current clinical trials of both established and novel mTOR inhibitors, with particular focus on combinations of these drugs with conventional chemotherapy, radiotherapy and targeted therapies.
Collapse
Affiliation(s)
- Cian O Malley
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Xu M, Gao Y, Yu T, Wang J, Cheng L, Cheng L, Cheng D, Zhu B. Functional promoter rs2295080 T>G variant in MTOR gene is associated with risk of colorectal cancer in a Chinese population. Biomed Pharmacother 2015; 70:28-32. [PMID: 25776475 DOI: 10.1016/j.biopha.2014.12.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) plays an important role in the development and progression of colorectal cancer (CRC). Recently, a functional polymorphism (rs2295080 T>G) in the promoter of MTOR has been shown to influence its expression and confer susceptibility to cancer. Therefore, in the present study, we sought to investigate the influence of this polymorphism on the risk of CRC. METHODS We genotyped this polymorphism by using the TaqMan method in a case-control study comprising of 737 CRC patients and 777 controls. The logistic regression was used to assess the genetic association with occurrence of CRC. The functionality of the polymorphism was examined by luciferase reporter assay. RESULTS We found the variant genotypes of MTOR rs2295080 (TG/GG) were significantly associated with decreased CRC risk, compared with the wild genotype [TG/GG vs. TT: adjusted odds ratio (OR)=0.76, 95% confidence interval (CI)=0.62-0.94, P=0.011], and the protective effect of this polymorphism was more predominant among the subgroups of elder (OR=0.66, 95% CI=0.49-0.89) and male (OR=0.63, 95% CI=0.48-0.84) subjects. Furthermore, the luciferase reporter assay showed that the rs2295080G allele significantly decreased the luciferase activity in both sw480 and sw620 cell lines (P=0.002 and P<0.001, respectively). CONCLUSIONS Our results suggest that the functional rs2295080 T>G in the promoter of MTOR may influence the susceptibility of CRC in the Chinese population through regulating the transcription activity of MTOR promoter. Large population-based prospective studies are required to validate our findings.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Yan Gao
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Tingting Yu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, China
| | - Jirong Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Lifang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Dawei Cheng
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, China.
| | - Baoli Zhu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China.
| |
Collapse
|
20
|
Gopalan V, Smith RA, Lam AKY. Downregulation of microRNA-498 in colorectal cancers and its cellular effects. Exp Cell Res 2015; 330:423-428. [DOI: 10.1016/j.yexcr.2014.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
|
21
|
Wang XW, Zhang YJ. Targeting mTOR network in colorectal cancer therapy. World J Gastroenterol 2014; 20:4178-88. [PMID: 24764656 PMCID: PMC3989954 DOI: 10.3748/wjg.v20.i15.4178] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/28/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) integrates growth factor signals with cellular nutrient and energy levels and coordinates cell growth, proliferation and survival. A regulatory network with multiple feedback loops has evolved to ensure the exquisite regulation of cell growth and division. Colorectal cancer is the most intensively studied cancer because of its high incidence and mortality rate. Multiple genetic alterations are involved in colorectal carcinogenesis, including oncogenic Ras activation, phosphatidylinositol 3-kinase pathway hyperactivation, p53 mutation, and dysregulation of wnt pathway. Many oncogenic pathways activate the mTOR pathway. mTOR has emerged as an effective target for colorectal cancer therapy. In vitro and preclinical studies targeting the mTOR pathway for colorectal cancer chemotherapy have provided promising perspectives. However, the overall objective response rates in major solid tumors achieved with single-agent rapalog therapy have been modest, especially in advanced metastatic colorectal cancer. Combination regimens of mTOR inhibitor with agents such as cytotoxic chemotherapy, inhibitors of vascular endothelial growth factor, epidermal growth factor receptor and Mitogen-activated protein kinase kinase (MEK) inhibitors are being intensively studied and appear to be promising. Further understanding of the molecular mechanism in mTOR signaling network is needed to develop optimized therapeutic regimens. In this paper, oncogenic gene alterations in colorectal cancer, as well as their interaction with the mTOR pathway, are systematically summarized. The most recent preclinical and clinical anticancer therapeutic endeavors are reviewed. New players in mTOR signaling pathway, such as non-steroidal anti-inflammatory drug and metformin with therapeutic potentials are also discussed here.
Collapse
|
22
|
Gopalan V, Smith RA, Lam AKY. mTOR expression in colorectal adenoma—reply. Hum Pathol 2014; 45:897. [DOI: 10.1016/j.humpath.2013.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/08/2013] [Indexed: 11/20/2022]
|
23
|
Handra-Luca A. mTOR expression in colorectal adenoma. Hum Pathol 2014; 45:895-7. [PMID: 24656101 DOI: 10.1016/j.humpath.2013.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Adriana Handra-Luca
- Service d'Anatomie Pathologique, APHP GHU Avicenne, Universite Paris Nord Sorbonne Cite: 125, rue de Stalingrad, 93000 Bobigny, France.
| |
Collapse
|