1
|
Němejcová K, Bártů MK, Michálková R, Drozenová J, Fabian P, Fadare O, Hausnerová J, Laco J, Matěj R, Méhes G, Singh N, Stolnicu S, Škapa P, Švajdler M, Stružinská I, Cibula D, Kocian R, Lax SF, McCluggage WG, Dundr P. A comprehensive immunohistochemical analysis of IMP2 and IMP3 in 542 cases of ovarian tumors. Diagn Pathol 2023; 18:15. [PMID: 36740684 PMCID: PMC9901072 DOI: 10.1186/s13000-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IMP2 and IMP3 are mRNA binding proteins involved in carcinogenesis. We examined a large cohort of ovarian tumors with the aim to assess the value of IMP2 and IMP3 for differential diagnosis, and to assess their prognostic significance. METHODS Immunohistochemical analyses with antibodies against IMP2 and IMP3 were performed on 554 primary ovarian tumors including 114 high grade serous carcinomas, 100 low grade serous carcinomas, 124 clear cell carcinomas, 54 endometrioid carcinomas, 34 mucinous carcinomas, 75 mucinous borderline tumors, and 41 serous borderline tumors (micropapillary variant). The associations of overall positivity with clinicopathological characteristics were evaluated using the chi-squared test or Fisher's Exact test. RESULTS We found IMP2 expression (in more than 5% of tumor cells) in nearly all cases of all tumor types, so the prognostic meaning could not be analyzed. The positive IMP3 expression (in more than 5% of tumor cells) was most common in mucinous carcinomas (82%) and mucinous borderline tumors (81%), followed by high grade serous (67%) and clear cell carcinomas (67%). The expression was less frequent in endometrioid carcinomas (39%), low grade serous carcinomas (23%), and micropapillary variant of serous borderline tumors (20%). Prognostic significance of IMP3 could be evaluated only in low grade serous carcinomas in the case of relapse-free survival, where negative cases showed better RFS (p = 0.033). CONCLUSION Concerning differential diagnosis our results imply that despite the differences in expression in the different ovarian tumor types, the practical value for diagnostic purposes is limited. Contrary to other solid tumors, we did not find prognostic significance of IMP3 in ovarian cancer, with the exception of RFS in low grade serous carcinomas. However, the high expression of IMP2 and IMP3 could be of predictive value in ovarian carcinomas since IMP proteins are potential therapeutical targets.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Michaela Kendall Bártů
- grid.411798.20000 0000 9100 9940Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic
| | - Romana Michálková
- grid.411798.20000 0000 9100 9940Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic
| | - Jana Drozenová
- grid.4491.80000 0004 1937 116XDepartment of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| | - Pavel Fabian
- grid.419466.8Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Oluwole Fadare
- grid.266100.30000 0001 2107 4242Department of Pathology, University of California San Diego, San Diego, CA USA
| | - Jitka Hausnerová
- grid.10267.320000 0001 2194 0956Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jan Laco
- grid.4491.80000 0004 1937 116XThe Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Radoslav Matěj
- grid.411798.20000 0000 9100 9940Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- grid.7122.60000 0001 1088 8582Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - Naveena Singh
- grid.4868.20000 0001 2171 1133Department of Cellular Pathology, Barts Health NHS Trust, and Blizard Institute of Core Pathology, Queen Mary University of London, London, UK
| | - Simona Stolnicu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Târgu Mureș, Romania
| | - Petr Škapa
- grid.412826.b0000 0004 0611 0905Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marián Švajdler
- grid.4491.80000 0004 1937 116XŠikl’s Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ivana Stružinská
- grid.411798.20000 0000 9100 9940Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic
| | - David Cibula
- grid.411798.20000 0000 9100 9940Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, 12000 Prague, Czech Republic
| | - Roman Kocian
- grid.411798.20000 0000 9100 9940Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, 12000 Prague, Czech Republic
| | - Sigurd F. Lax
- grid.9970.70000 0001 1941 5140Department of Pathology, Hospital Graz II, Graz, Austria, and Johannes Kepler University Linz, Linz, Austria
| | - W. Glenn McCluggage
- grid.412915.a0000 0000 9565 2378Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Pavel Dundr
- grid.411798.20000 0000 9100 9940Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic
| |
Collapse
|
2
|
Zhao Y, Huang B, Zhou L, Cai L, Qian J. Challenges in diagnosing hydatidiform moles: a review of promising molecular biomarkers. Expert Rev Mol Diagn 2022; 22:783-796. [PMID: 36017690 DOI: 10.1080/14737159.2022.2118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hydatidiform moles (HMs) are pathologic conceptions with unique genetic bases and abnormal placental villous tissue. Overlapping ultrasonographical and histological manifestations of molar and non-molar (NM) gestations and HMs subtypes makes accurate diagnosis challenging. Currently, immunohistochemical analysis of p57 and molecular genotyping have greatly improved the diagnostic accuracy. AREAS COVERED The differential expression of molecular biomarkers may be valuable for distinguishing among the subtypes of HMs and their mimics. Thus, biomarkers may be the key to refining HMs diagnosis. In this review, we summarize the current challenges in diagnosing HMs, and provide a critical overview of the recent literature about potential diagnostic biomarkers and their subclassifications. An online search on PubMed, Web of Science, and Google Scholar databases was conducted from the inception to 1 April 2022. EXPERT OPINION the emerging biomarkers offer new possibilities to refine the diagnosis for HMs and pregnancy loss. Although the additional studies are required to be quantified and investigated in clinical trials to verify their diagnostic utility. It is important to explore, validate, and facilitate the wide adoption of newly developed biomarkers in the coming years.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Bo Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Lin Zhou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Luya Cai
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Jianhua Qian
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Faucher-Giguère L, Roy A, Deschamps-Francoeur G, Couture S, Nottingham RM, Lambowitz AM, Scott MS, Abou Elela S. High-grade ovarian cancer associated H/ACA snoRNAs promote cancer cell proliferation and survival. NAR Cancer 2022; 4:zcab050. [PMID: 35047824 PMCID: PMC8759569 DOI: 10.1093/narcan/zcab050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are an omnipresent class of non-coding RNAs involved in the modification and processing of ribosomal RNA (rRNA). As snoRNAs are required for ribosome production, the increase of which is a hallmark of cancer development, their expression would be expected to increase in proliferating cancer cells. However, assessing the nature and extent of snoRNAs' contribution to cancer biology has been largely limited by difficulties in detecting highly structured RNA. In this study, we used a dedicated midsize non-coding RNA (mncRNA) sensitive sequencing technique to accurately survey the snoRNA abundance in independently verified high-grade serous ovarian carcinoma (HGSC) and serous borderline tumour (SBT) tissues. The results identified SNORA81, SNORA19 and SNORA56 as an H/ACA snoRNA signature capable of discriminating between independent sets of HGSC, SBT and normal tissues. The expression of the signature SNORA81 correlates with the level of ribosomal RNA (rRNA) modification and its knockdown inhibits 28S rRNA pseudouridylation and accumulation leading to reduced cell proliferation and migration. Together our data indicate that specific subsets of H/ACA snoRNAs may promote tumour aggressiveness by inducing rRNA modification and synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sherif Abou Elela
- To whom correspondence should be addressed. Tel: +1 819 821 8000 (Ext 75275);
| |
Collapse
|
4
|
The "Far Left" of the Morphologic Spectrum of Ovarian High-grade Serous Carcinoma: Case Report of a Purely Noninvasive High-grade Serous Carcinoma Mimicking an Ovarian Serous Borderline Tumor. Int J Gynecol Pathol 2021; 40:175-179. [PMID: 32168063 DOI: 10.1097/pgp.0000000000000668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-grade serous carcinoma has a variety of different growth patterns, but is typically easily recognizable to pathologists and rarely confused with serous borderline tumors. We report a case of a 71-yr-old woman with a unilateral 5.1 cm ovarian cyst with small papillary projections on contrast-enhanced magnetic resonance imaging of the pelvis. Histologic examination showed a noninvasive papillary neoplasm with hierarchical branching and epithelial proliferation, and thus, at low magnification, bearing a striking resemblance to a serous borderline tumor. However, a more careful examination demonstrated high-grade cytologic features, nuclear pleomorphism, and abundant mitotic activity, suggestive of high-grade serous carcinoma. The morphology and immunohistochemical profile of this lesion is consistent with a rare, purely noninvasive growth pattern of high-grade serous carcinoma. This lesion represents the "far left" of the high-grade ovarian serous carcinoma morphologic spectrum and can mimic a serous borderline tumor.
Collapse
|
5
|
Rei M, Raposo S, Figueiredo P, Sousa R, Sá L. Case Report: Borderline tumor and primary peritoneal carcinoma - a rare synchronism. F1000Res 2019; 8:1630. [PMID: 31807285 PMCID: PMC6871352 DOI: 10.12688/f1000research.20420.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian borderline serous tumors present with peritoneal involvement in 20% of cases, either as non-invasive or invasive implants, the latter also known as extraovarian low-grade serous carcinoma. The coexistence of high-grade serous carcinoma is rare, suggesting a synchronous neoplasia with a distinct and independent tumor biology and behavior. We aim to describe a case of a synchronous ovary-peritoneum neoplasia: serous borderline tumor and primary peritoneal high-grade serous carcinoma. A discussion and literature review concerning the optimal diagnostic and therapeutic approach is provided.
Collapse
Affiliation(s)
- Mariana Rei
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário São João, Porto, Porto, 4200-319, Portugal.,Unit of Obstetrics and Gynecology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sofia Raposo
- Department of Gynecology, Instituto Português de Oncologia Francisco Gentil de Coimbra, Coimbra, Portugal
| | - Paulo Figueiredo
- Department of Pathology, Instituto Português de Oncologia Francisco Gentil de Coimbra, Coimbra, Portugal
| | - Rita Sousa
- Department of Gynecology, Instituto Português de Oncologia Francisco Gentil de Coimbra, Coimbra, Portugal
| | - Luís Sá
- Department of Gynecology, Instituto Português de Oncologia Francisco Gentil de Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Wu C, Ma H, Qi G, Chen F, Chu J. Insulin-like growth factor II mRNA-binding protein 3 promotes cell proliferation, migration and invasion in human glioblastoma. Onco Targets Ther 2019; 12:3661-3670. [PMID: 31190868 PMCID: PMC6527097 DOI: 10.2147/ott.s200901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Background/Aims: Recently, the insulin-like growth factor mRNA-binding protein 3 (IMP3) has been reported to be involved in tumorigenesis. We aimed to study the expression and role of IMP3 in human glioblastoma. Methods: We analyzed the expression of IMP3 in 70 cases of glioma tissues, normal brain tissues and 5 kinds of cell lines using western blot. Immunohistochemistry (IHC) was used to evaluate the expression and distribution of IMP3 in glioma tissues. Colony formation, wound healing, migration and invasion assays and tumorigenesis in nude mice were used to explore the function of IMP3 in vitro and in vivo. The epithelial-mesenchymal transition (EMT)-related biomarkers were detected by western blot. Results: We found that the expression level of IMP3 was obviously higher in glioma tissues than that in normal brain tissues, and associated with glioma grade. In-vitro assays revealed that IMP3 overexpression significantly induced cell proliferation, migration, and invasion. Mechanically, IMP3 over-expression downregulated the expression of E-cadherin, but upregulated the expressions of N-cadherin, vimentin, snail, slug and MMP9. However, the inhibition of IMP3 impaired these oncogenic effects. In vivo assay also demonstrated that silencing of IMP3 inhibited tumor growth and improved survival of tumor-bearing xenograft nude mice. Conclusion: IMP3 can promote cell proliferation, migration and invasion by inducing EMT in glioblastoma. Thus, targeting IMP3 pathway may be a novel way to treat patients with glioblastoma.
Collapse
Affiliation(s)
- Chao Wu
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, People's Republic of China
| | - Hongxin Ma
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, People's Republic of China
| | - Guijun Qi
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, People's Republic of China
| | - Fanyu Chen
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, People's Republic of China
| | - Jiancheng Chu
- Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, People's Republic of China
| |
Collapse
|
7
|
Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, Wei X, Liu D, Sun C, Chen G, Hu J, Meng L, Zhou J, Sawada K, Fruscio R, Grunt TW, Wischhusen J, Vargas-Hernández VM, Pothuri B, Coleman RL. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med 2019; 216:688-703. [PMID: 30710055 PMCID: PMC6400537 DOI: 10.1084/jem.20180765] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
The study provides insights in HGSOC by identifying that ascitic CAFs selectively recruit ITGA5high ascitic tumor cells to form heterotypic spheroids named metastatic units (MUs), which actively engage in peritoneal metastasis, discriminates HGSOC from LGSOC, and act as therapeutic targets in hampering OC metastasis. High-grade serous ovarian cancer (HGSOC) is hallmarked by early onset of peritoneal dissemination, which distinguishes it from low-grade serous ovarian cancer (LGSOC). Here, we describe the aggressive nature of HGSOC ascitic tumor cells (ATCs) characterized by integrin α5high (ITGA5high) ATCs, which are prone to forming heterotypic spheroids with fibroblasts. We term these aggregates as metastatic units (MUs) in HGSOC for their advantageous metastatic capacity and active involvement in early peritoneal dissemination. Intriguingly, fibroblasts inside MUs support ATC survival and guide their peritoneal invasion before becoming essential components of the tumor stroma in newly formed metastases. Cancer-associated fibroblasts (CAFs) recruit ITGA5high ATCs to form MUs, which further sustain ATC ITGA5 expression by EGF secretion. Notably, LGSOC is largely devoid of CAFs and the resultant MUs, which might explain its metastatic delay. These findings identify a specialized MU architecture that amplifies the tumor–stroma interaction and promotes transcoelomic metastasis in HGSOC, providing the basis for stromal fibroblast-oriented interventions in hampering OC peritoneal propagation.
Collapse
Affiliation(s)
- Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongyuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sen Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoshui Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taoran Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Gong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Yamadaoka Suita, Osaka, Japan
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Thomas W Grunt
- Signaling Networks Program, Division of Oncology, Department of Medicine I, Comprehensive Cancer Center & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, Experimental Tumor Immunology, University of Würzburg Medical School, Würzburg, Germany
| | | | - Bhavana Pothuri
- Division of Gynecological Oncology, NYU Langone Medical Center, Perlmutter Cancer Center, New York, NY
| | - Robert L Coleman
- Department of Gynecological Oncology & Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Endocervical Adenocarcinoma With Morphologic Features of Both Usual and Gastric Types: Clinicopathologic and Immunohistochemical Analyses and High-risk HPV Detection by In Situ Hybridization. Am J Surg Pathol 2017; 41:696-705. [PMID: 28296678 DOI: 10.1097/pas.0000000000000833] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fourth edition of the World Health Organization classification set up new entities of endocervical adenocarcinoma (ECA), namely the "usual type" and "gastric type." These 2 types are considered to be distinct histogenetically because of their differing immunophenotypes, human papillomavirus (HPV) status, and prognoses. Usual-type ECAs (U-ECAs) are virtually always associated with high-risk human papillomavirus (HR-HPV) infection. Gastric-type ECAs (G-ECAs) are believed not to be associated with HR-HPV infection. Morphologically, U-ECA cells are characterized by mucin-poor and eosinophilic cytoplasm, resembling endometrioid carcinoma (a pseudoendometrioid feature). G-ECA cells are characterized by abundant clear or pale, mucinous cytoplasm and distinct cell borders. However, in routine practice we noticed that some ECAs contain morphologically usual type-like components and gastric type-like components in a single tumor; we have named these "G+U" ECAs. The histogenesis of such tumors has not been investigated. We conducted the present study to clarify the clinicopathologic and immunohistochemical features and HPV status of G+U ECAs, and to determine whether G+U ECAs are genuine G-ECAs mimicking U-ECAs or genuine U-ECAs with gastric type-like morphology. We retrospectively analyzed a series of 70 consecutive cases of ECA diagnosed as mucinous ECA, endocervical type, and we reclassified them on the basis of the latest World Health Organization classification. We identified 48 (69%) pure U-ECAs, 9 pure G-ECAs, and 13 G+U ECAs. Ten of the 13 G+U ECAs (77%) showed no HR-HPV infection by in situ hybridization (HPV-unrelated G+U ECAs) and showed frequent HIK1083 expression and aberrant p53 expression in both usual type-like and gastric type-like components. The other 3 G+U ECAs showed HR-HPV infection (HPV-related G+U EACs) and frequent p16+/p53-/HIK1083- immunophenotype in both usual type-like and gastric type-like components. The U-ECAs were characterized by HR-HPV infection detected by in situ hybridization and frequent p16+/p53-/HIK1083- immunophenotype, similar to that of the HPV-related G+U ECAs. In contrast, the pure G-ECAs were characterized by the absence of HPV infection and frequent HIK1083 expression and aberrant p53 expression, similar to that of HPV-unrelated G+U ECAs. G+U ECAs thus represent a heterogenous group composed of genuine G-ECAs and genuine U-ECAs. Most of the G+U ECAs we examined were genuine HPV-unrelated G-ECAs with usual type-like components showing mucin-poor, eosinophilic cytoplasm (pseudoendometrioid morphology). A small population of G+U ECAs was genuine HPV-related U-ECAs with gastric type-like components showing mucin-rich, voluminous cytoplasm. Thus, both types of ECAs can occasionally display patterns of differentiation suggesting a component of the other type but true mixed tumors do not appear to exist. Ancillary techniques (immunohistochemical analysis of p16, p53, and HPV DNA detection assays) should be used to assure proper classification of tumors with mixed morphologic features.
Collapse
|
9
|
Li Y, Zhang J. Expression of mutant p53 in oral squamous cell carcinoma is correlated with the effectiveness of intra-arterial chemotherapy. Oncol Lett 2015; 10:2883-2887. [PMID: 26722257 DOI: 10.3892/ol.2015.3651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to evaluate the correlation between the positive expression rate of mutant p53 and the clinical characteristics of patients with oral squamous cell carcinoma (OSCC), as well as the effectiveness of intra-arterial chemotherapy. Expression of mutant p53 in tumor tissues was determined by immunohistochemical analysis of 51 OSCC patients, prior to and following intra-arterial chemotherapy. Prior to intra-arterial chemotherapy, mutant p53 positive rates in patients with higher pathological grades were significantly higher than those of the patients with lower pathological grades. The mutant p53 positive rate in patients with lymph node metastasis was 73% (19/26), which was significantly higher than that of the patients without lymph node metastasis (20%, 5/25). Mutant p53 was expressed in 17% (3/18) of clinical phase II patients, while 64% (21/33) of clinical phase III and IV patients exhibited positive expression of mutant p53 (P<0.05). The mutant p53 positive rate in chemotherapy non-responsive patients was 69% (11/16), which was significantly higher than that in the chemotherapy-responsive patients (37%, 13/35). Mutant p53 positive rates were not significantly correlated with age, gender or the location of the tumor. The mutant p53 positive rate prior to chemotherapy was 47% (24/51), and decreased to 18% (9/51) following chemotherapy. Expression of mutant p53 was decreased in all 13 (100%) chemotherapy-responsive patients, while only 5 (45%) chemotherapy non-responsive patients exhibited reduced expression levels of mutant p53 (P<0.05). In conclusion, mutant p53 has a significant role in the differentiation, development and treatment guidance of OSCC. Intra-arterial chemotherapy with 5-fluorourcil and carboplatin potentially exerts a therapeutic effect by reducing the expression of mutant p53.
Collapse
Affiliation(s)
- Yadong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinsong Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|